Using Evolution Strategy with Meta–models for Well Placement Optimization

Zyed Bouzarkouna 1, 2 Didier Yu Ding 1 Anne Auger 2
2 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : Optimum implementation of non-conventional wells allows us to increase considerably hydrocarbon recovery. By considering the high drilling cost and the potential improvement in well productivity, well placement decision is an important issue in field development. Considering complex reservoir geology and high reservoir heterogeneities, stochastic optimization methods are the most suitable approaches for optimum well placement. This paper proposes an optimization methodology to determine optimal well location and trajectory based upon the Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) which is a variant of Evolution Strategies recognized as one of the most powerful derivative-free optimizers for continuous optimization. To improve the optimization procedure, two new techniques are investigated: (1). Adaptive penalization with rejection is developed to handle well placement constraints. (2). A meta-model, based on locally weighted regression, is incorporated into CMA-ES using an approximate ranking procedure. Therefore, we can reduce the number of reservoir simulations, which are computationally expensive. Several examples are presented. Our new approach is compared with a Genetic Algorithm incorporating the Genocop III technique. It is shown that our approach outperforms the genetic algorithm: it leads in general to both a higher NPV and a significant reduction of the number of reservoir simulations.
Type de document :
Communication dans un congrès
ECMOR XII – 12 th European Conference on the Mathematics of Oil Recovery, Sep 2010, Oxford, United Kingdom. 2010
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00538745
Contributeur : Zyed Bouzarkouna <>
Soumis le : mardi 23 novembre 2010 - 11:36:16
Dernière modification le : mardi 15 mai 2018 - 14:50:02
Document(s) archivé(s) le : vendredi 2 décembre 2016 - 20:52:53

Fichier

Bouzarkouna_et_al._Ecmor2010.p...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00538745, version 1
  • ARXIV : 1011.5481

Collections

Citation

Zyed Bouzarkouna, Didier Yu Ding, Anne Auger. Using Evolution Strategy with Meta–models for Well Placement Optimization. ECMOR XII – 12 th European Conference on the Mathematics of Oil Recovery, Sep 2010, Oxford, United Kingdom. 2010. 〈inria-00538745〉

Partager

Métriques

Consultations de la notice

324

Téléchargements de fichiers

147