Multifractal and higher dimensional zeta functions

Abstract : In this paper, we generalize the zeta function for a fractal string (as in [18]) in several directions. We first modify the zeta function to be associated with a sequence of covers instead of the usual denition involving gap lengths. This modified zeta function allows us to denfine both a multifractal zeta function and a zeta function for higher-dimensional fractal sets. In the multifractal case, the critical exponents of the zeta function yield the usual multi-fractal spectrum of the measure. The presence of complex poles for this function indicate oscillations in the continuous partition function of the measure, and thus give more refined information about the multifractal spectrum of a measure. In the case of a self-similar set in R^n, the modified zeta function yields asymptotic information about both the "box" counting function of the set and the n-dimensional volume of the \epsilon-dilation of the set.
Type de document :
Article dans une revue
Nonlinearity, IOP Publishing, 2011, 24 (1), pp.259-276. 〈10.1088/0951-7715/24/1/013〉
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00538956
Contributeur : Lisandro Fermin <>
Soumis le : mercredi 24 novembre 2010 - 12:26:14
Dernière modification le : jeudi 29 mars 2018 - 13:36:01
Document(s) archivé(s) le : vendredi 25 février 2011 - 02:31:19

Fichier

Multifractal-2D-Strings.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Jacques Lévy Véhel, Franklin Mendivil. Multifractal and higher dimensional zeta functions. Nonlinearity, IOP Publishing, 2011, 24 (1), pp.259-276. 〈10.1088/0951-7715/24/1/013〉. 〈inria-00538956〉

Partager

Métriques

Consultations de la notice

348

Téléchargements de fichiers

168