Modeling, classifying and annotating weakly annotated images using bayesian network

Sabine Barrat 1 Salvatore Tabbone 1
1 QGAR - Querying Graphics through Analysis and Recognition
LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : In this paper, we propose a probabilistic graphical model to represent weakly annotated images. We consider an image as weakly annotated if the number of keywords defined for it is less than the maximum number defined in the ground truth. This model is used to classify images and automatically extend existing annotations to new images by taking into account semantic relations between keywords. The proposed method has been evaluated in visual-textual classification and automatic annotation of images. The visualtextual classification is performed by using both visual and textual information. The experimental results, obtained from a database of more than 30000 images, show an improvement by 50.5% in terms of recognition rate against only visual information classification. Taking into account semantic relations between keywords improves the recognition rate by 10.5%. Moreover, the proposed model can be used to extend existing annotations to weakly annotated images, by computing distributions of missing keywords. Semantic relations improve the mean rate of good annotations by 6.9%. Finally, the proposed method is competitive with a state-of-art model.
Type de document :
Article dans une revue
Journal of Visual Communication and Image Representation, Elsevier, 2010, 21 (4), pp.355-363. 〈http://portal.acm.org/citation.cfm?id=1805615〉. 〈10.1016/j.jvcir.2010.02.010〉
Liste complète des métadonnées

Littérature citée [40 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00538976
Contributeur : Sabine Barrat <>
Soumis le : mardi 23 novembre 2010 - 16:11:43
Dernière modification le : mardi 24 avril 2018 - 13:55:24
Document(s) archivé(s) le : jeudi 24 février 2011 - 03:18:31

Fichier

jvci.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Sabine Barrat, Salvatore Tabbone. Modeling, classifying and annotating weakly annotated images using bayesian network. Journal of Visual Communication and Image Representation, Elsevier, 2010, 21 (4), pp.355-363. 〈http://portal.acm.org/citation.cfm?id=1805615〉. 〈10.1016/j.jvcir.2010.02.010〉. 〈inria-00538976〉

Partager

Métriques

Consultations de la notice

129

Téléchargements de fichiers

155