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ABSTRACT original signal is itself irregular, most wavelet-based denois-
We present a denoising method that is well fitted to"9 methods will typically produce an oversmoothed signal

the processing of extremely irregular signals such a nd/or ;o—.called “ri_nging” effects. Indeeq, as recalled above,
(multi)fractal ones. Such signals are often encountered i e baS.IC idea behind wavelet thresholding is tha_t many real-
) orld signals have a sparse wavelet representation, with few

practice, €., in biomedical applications. The basic IOlealarge wavelet coefficients. Putting small coefficients to 0 in

Igbg()a r?/:t('jn:g[ies ﬂ:ﬁ] égguuslﬂlt%h(g lt:re eoggggligf%t?mgg$ ”:r}]t e noisy signal will then in general do no harm, since these
y 9 9 ' e mainly due to noise. Everywhere irregular signals, on the

then to extrapolate this information to the small scales. W her hand, have significant coefficients scattered all other

present theoretical results describing the precise properties . . ; S
. ; / .~ 1he time-frequency plane. At high frequencies, these signif-
the method. Numerical experiments show that this denoisin ant but relatively small coefficients in the signal crucially

scheme indeed performs well on irregular signals. determine the local irregularity. Zeroing small coefficients
will thus typically destroy the regularity information. As a
1. INTRODUCTION AND MOTIVATIONS consequence, it is no surprise that a specific method has to

. . S . ; .be designed for such signals.
Signal/image denoising is an important task in many appli To be more precise, let us consider a simple example

cations including biology, medicine, astronomy, geophysics, . :
and many more. For such applications and others, itis impo?’-vhere the kind of effect we are talking about occurs. We

tant to denoise the observed data in such a way that the feahﬁlltlﬁotntﬁd%a nm;sed v?rsmtn of.a \évi!erséras.s function. Re-
tures of interest to the practitioner are preserved. In severgf hat (N€ VVEIerstrass function 1S defined as.
cases, local irregularity has been shown to be such a feature o nhran
of interest. A particular example is provided by the study of W(x) = ZO)“ sin(4"x),
RR intervals from ECG. It has been showu.in [7, 8] that n=
such signals are multifractale. everywhere irregular with  whereA > 2, h € (0,1). This function is often considered in
an irregularity that varies rapidly in time. More importantly, fractal analysis, and it has also been used in various applica-
the degree of multifractality is strongly correlated with thetions,e.g. as a model for the sea surface [13]. It has Holder
condition of the heart. For this and other applications, deexponent at each point (see below for definitions), so that,
noising should clearly be performed in such a way that thehe smallerh is, the more irregular the graph w¥ looks
local regularity is controlled through the process. like. On figure 1 is displayed a Weierstrass function sampled

A popular set of denoising methods is based on deconsn 2 points and withh = 1/2. This function is then cor-
posing the corrupted signal in a wavelet basis, processing threpted with additive white Gaussian noise (not shown here).
wavelet coefficients, and then going back to the time domainThe noisy version is processed with hard-thresholding of the
In the case of additive white noise, this is justified by two fun-wavelet coefficients, where the threshold is chosen so as to
damental facts: first, many real-world signals have a sparsainimize thel? error with the (known) original signal. On
structure in the wavelet domaine. a few coefficients are the bottom of the figure is displayed the denoised function.
significant, and most are small or zero. Second, an orthonofrhe wavelet coefficients of the original, noisy, and denoised
mal wavelet transform turns white noise into white noise, signals are shown on figure 2.
that all wavelet coefficients of a white noise are statistically = One sees on these graphs that the signal is oversmoothed.
equal. Denoising in the wavelet domain thus allows to sepThis is easily explained if one looks at the wavelet coeffi-
arate in an easy way “large”, significant coefficients, fromcients: at each scalg= 1...n, the wavelet coefficients of
“small” ones due mainly to noise. W are of the order of 21("+05 or smaller. Whenj gets

The first and simplest methods for denoising based on thiarge, i.e. at small scales, they thus become negligible, on
above principles are the so-called hard and soft-thresholdingverage, with respect the ones of the noise. More precisely,
[2, 3]. Since the time these methods were introduced, &ere exists a scalp), depending on the standard deviation
huge number of improvements have been proposed, ranging the noise, such that, for> jg, the structure of the sig-
from block thresholding [11] to Bayesian approaches [12)hal at these scales is lost because of the noise (see below
and many more. for a mathematical statement). Optimizing the threshold for

A limitation of most of these methods is that they are notbestL? reconstruction will typically lead to putting the coef-
well adapted to highly textured or everywhere irregular sigficients at scale$ > jo to zero. This is apparent in the bot-
nals, in particular (multi)fractal or multifractional ones with tom parts of the figures. The denoised signal will thus have
possibly rapidly varying local regularity, as are RR intervalsno high-frequency structure, in contrast to the original one.
alluded to above. Itis in particular well-known that, when theBut it is precisely the small-scale coefficients that produce



Original Signal

unknown parameters from the available ones. This involves
exploitation of additional, external principles of our choice,
the ones that are believed to express relations between the
two groups of parameters."
0 01 02 03 04 05 06 07 08 09 1 When a signal is corrupted by white noise, the informa-
Denoised Signal tion carried by a wavelet coefficient of the original signal
. whose absolute value is smaller than the standard deviation
of the noise is essentially lost. Instead of setting to zero
“small” coefficients in the noisy signal as is done in hard-
thresholding, one tries to extrapolate their value from the ro-
L bust “large” ones. Several authors have put this paradigm
T to use. For instance, in [4], denoising is performed in two
steps: a) Apply a classical denoising method, such as hard
Figure 1: Weierstrass function with= 0.5 sampled on®  thresholding. The non-thresholded coefficients are stored in
points (top) and denoised version using hard-thresholding setV. b) Estimate the original coefficients from the thresh-
(bottom). Here and below we use Daubechies 4. olded noisy ones by minimizing the total variation under the
constraint that the coefficients M are left unchanged.
In other words, instead of putting the small coefficients
T, to 0, the method adjusts them in such a way that the total
b variation is minimized. This approach does suppress most
R ] of the “ringing”, but it tends to be slow and to oversmooth
PR textured parts.
o log |< £ ¢4 >| o ] Coifman et Sowa [1] have proposed a general formula-

fit)

logy < fus ¢ > t IR tion that applies not only to thresholding, but also to other
-+ logy < gy ¢35 > S kinds of processing such as quantification often present in

compression applications. It may be described as follows:
Let J be the set of indices for which the wavelet coefficients

Figure 2: Logarithms of wavelet coefficients for the Weier-f['jlre sm?lle_lr_k:han th(lat.thresfho:g, a(ll?lléie tht?] cc:crn”ple(nen—
strass function: originaf(), noisy (f,), and denoisedy,) sig- aryb sle ’ te.r?s.ut;]ng S'g#. h th \N/enfz € %.owmg
nals (each column corresponds to a scale). Coefficients equP@! constraints: the coefficients &f whose indices be-

to 0 are not represented. Threshold is indicated by the hor|2N9 o I will remain unchanged. The other ones are cho-
zontal line. sen in such a way that they remain smaller in absolute value

than a given constant (typically, the threshold), and that an
“energy” ®(fn) is minimized. The functiona® must verify
the impression of texture, or irregularity, as is exemplifiedCertain properties, and depends on the spepific application.
on figure 3, where we have represented graphs of functions, " contrast to the two methods just described (and to most
whose wavelet coefficients differ on specific ranges of scalé?t€r approaches), our implementation of the above para-

. . gm consists in extrapolating the unknown, small, coeffi-
qu approach to taqkle this pro_blgr_n IS basgd on a reCelfients by imposing &cal constraint rather thatglobal one.
paradigm where one tries to uagriori information on the

. - ore precisely, we set the small coefficients in such a way
;sr:gnaAl é?eg?rs]?;[giw?ri (r)efstﬁ:;%fa?:(g% 'ﬁﬂg é?\/rg#?l:] [tlr}reshol hat the local regularity at e_a_ch point of the den0|seq signal
' j matches the one of the original one. Of course, since the
original signal is unknown, so is its regularity. We will thus
o &how how to estimate the local regularity of the original sig-
cision whereas other parameters are known only vaguely Qfy from the noisy observations. Although local in time.(

ahrea ﬁ”or' Essentlally unknown. If one t;]elleves, hlow%ver! ecific to each point), this information has some robustness,
that the unknown parameters are somehow correlated Wt j; js global in scale (it is computed from coefficients at sev-

the known ones, then it is reasonable to try to extrapolate the5| scales). It is precisely through these regularity estimates

that one uses the information present in large coefficients to
- 4 extrapolate the small ones.

\\ M“\&KN The remainder of this paper is organized as follows. In
o bo, / " the next section, we recall some basic facts concerning the
"'“”“M/M ! N‘\M\N‘*‘me /fu L connection between local regularity and wavelet coefficients.
"\D(\ In section 3 we describe our denoising scheme. For this

ﬂ‘ method to work, we need to estimate the local regularity of
sl Y the original signal from the noisy observations. Section 4
explains how to do this. Finally, numerical experiments are

displayed in section 5.

Figure 3: Left: two functions with wavelet coefficients dif-
fering only at large scales. These two functions display the
same aspect in term of regularity. Right: Two functions with 2. WAVELETS AND LOCAL REGULARITY

wavelet coefficients differing only at small scales. These twop/e shall measure the local regularity in termspointwise
functions display different aspects in term of regularity. Holder exponentsThis exponent is defined at each point of



a locally bounded functiof as: Proposition 2.1. [9] Assume fe C#(R) for somee > 0 has

_ F(t+h) — £(0)] bounded support. Then:
o (t) =supq a,lim SUPT =0;.
h—0

(This definition is valid only fora € (0,1). For « larger
than 1, one has to replace the teffitt) by a polynomial.
We shall ignore this complication for now, as the wavelet-
based characterization we will use below takes care of it in
transparent manner.)

When there is no risk of confusion, we shall writ)
in place ofa; (t). Let us explain the geometrical meaning of

a. Roughly speaking, saying that a functibrinas exponent
a attp means that, arounty, the graph off “looks like” 3. WAVELET BASED DENOISING WITH

the curvet — f(tp) + c|t —to|* in the following sense: for CONTROL OF THE LOCAL REGULARITY

any positivee, there exists a neighbourhoodtgfsuch that 3.1 Local regularity of hard-thresholded signals
the path off inside this neighbourhood is included in the
envelope defined by the two curves- f(tg) 4 c|t —to|*~¢
andt — f(tp) — c|t —to|*~%, while this property is no longer
true for any negative (see figure 4). A “large’a means
that f is smooth atg, while an irregular behaviour df attgy
translates int@x close to 0.

_imint min ©9/CF: Vi)
l/2+a9(f)_“?l'2fr£'£_7j

Whena} (t) = a4 (t), the above result may be “localized”
y considering only those coefficients lying “above’one
en gets that the pointwise Holder exponent aft is given
by a liminf similar to the one in (2.1), except that only rele-
vant coefficients are considered. See [5, 10] for more details.

In the first section, we saw that hard-thresholding wavelet
coefficients produce the visual impression of oversmoothing
irregular signals (figurel). In this section, we shall give a
precise mathematical meaning to this fact.

A difficulty arises since we are working on discrete sig-
nals: indeed, the very definition of Hélder exponents requires
to let the scale tend to 0, which cannot be done here. We thus
b N\ Al need a modified definition ak that both makes sense at fi-
N nite resolution and allows to capture the visual impression of

Y regularity on sampled signals, such as on figure 3. In view of
the fact that the perceived regularity depends on the consid-
| , ered range of scales, it seems natural to define an “exponent
Figure 4: Graphical interpretation of the Holder exponent. between two scales” as follows:

log|(f,yik)|

The pointwise Hélder exponent is not the only way to 0g(j1,j2, )= min min
measure the local regularity of a function. Many other ex- J€[j1,j2] keZ

ponents exist, that give complementary information. In th§y, 5 ygition to reflecting the regularity of a function at the con-

following, we shall assume that the considered signal satisfy;jeeq scales, this definition has adequate asymptotic prop-
a technical assumption to the effect that its pointwise eXPOgties: it is not hard to prove that, for a given function

nent is equal to itéocal Holder exponentdefined as: ag(h(n),n, f) tends toag(f) whenn tends to infinity, pro-
1£(x)— f(y)| } vided the functiorh tends sufficiently slowly to infinity. In
=0;.

1/2

addition, this property still holds (with minor additional con-

o} (t) =supq a,limsup sup
straints) if one replaces with its sampled approximation at

h—0 (xy)lt—x<hji—yl<h  X—Y|*

Such an assumption is for instance verified by the Weier.§Calen [5]. The exponent between two scales thus approx-

strass function and by many fractal, multifractal and multi-'m‘r’ltes.the genuine regqlarlj[y for large enough Further-

fractional signals (see [10]). In addition, our method may bqo?;e’s'it 22?6‘\/85 in an intuitive way when computed on a

generalized to functions that do not verify it. This however y signat:

requires lengthy developments which cannot be describetheorem 3.1. Let f belong to & (R) for somegp > 0. Let

properly here. See [5] for details. on be a sampling or2" points of f+ B, where B is a white
When as = al, their common value may be estimated Gaussian noise. Then, for any increasing functign)h< n

in a simple way with the help of wavelet analysis, as we retending to+, ag(h(n),n,gn) tends almost surely t0.

call now. In the following, we shall assume for simplification In other words, for anyf with minimal regularity, the ex-
that all the considered func_tions are compactly supported o onent between s’calbsn) andn will tend to O for a{ny sen-
[0.1]. We shall always_cgnsm_ier awavelgsuch thatthe set  gj e starting scalb. This result and all subsequent ones are
of functionsy; (t) = 2//2y(2it — k), for (j,k) € Z,forman  proved in [5]. The following theorem gives a precise mean-
orthonormal basis of?(R)). Finally, v is supposed to have ing to the statement that “hard thresholding tends to over-
the necessary number of vanishing moments and required demooth signals”:

cay properties. Theorem 3.2. Let f belong to @ (R) for somegp > 0. Let

Recall that  functiorf is said to belong to the global On be the signal obtained by sampling at scale n a version of
3y . . n

Holder spac€” (R) if there eX|sI,3ts a constagisuch that, for f corrupted with standard white Gaussian noise. fgbe
all x,y, [f(x) — f(y)| < C[x—y|”. The supremum of those he signal denoised by hard-thresholding using the universal
B such thatf belongs taC?(R) is called the global Holder threshold, = 2-/2/2nIn2, i.e.:
exponent off, and is denotedq(f).

The most basic results relating global regularity and P (an, wijk) if [{gn, Wik
wavelet coefficients is: =h>=1 0 if {(0n, Wik

> An
< An




Let 6 be an increasing function such thaty(f) =  considered point. Remark also that this procedure may be

limn_e 0g(0(n),n, f). seen as a location-dependent shrinkage of the coefficients.
1. Assume the function h verifies: One can prove the following property, which essentially
says that the above method does a good job in recovering the
) _ n regularity of the original signal, provided that one is able to
Je>0,yneN,JieN:0(i) € h(n)"’m(l —€)| estimate with good accuracy its Holder exponent at any given
pointt:
thenag(h(n),n, fn) tends in probability taxg(f). Proposition 3.3. Let f belong to @ (R) for somegy > 0,
2. Assume h verifies: and leta denote its Holder exponent at point t.
Let (sn)n be a sequence of real numbers tending almost
Je>0:YneN:h(n) > (1+¢) surely (resp. in probability) tax. Let on) = ;% Let f be
1+204(f) defined as above.

Then, fgr any function h tending to infinity witfirt) <n,
ag(h(n),n, fn) tends almost surely (resp. in probability) to

Intuitively, this results means that, when one observes thé-

signal from *far away”, .e. for h(n) smaller thang 7). For our method to be put to practical use, there thus re-

the denoised signal has the same perceived regularity as th&ins to estimate the critical scale and Holder exponent from

one of the original signal, while when one looks at fine detailghe noisy observations. This is the topic of the next section.

(case 2), one sees an infinitely smooth signal. This is exactly

what figure 1 suggests. 4. ESTIMATING THE LOCAL REGULARITY OF A
SIGNAL FROM NOISY OBSERVATIONS

%/2 A denoising scheme that maintains the local regular Our main result concerning the estimation of the critical scale
is the following one.

Our aim is to modify the hard-thresholding scheme so that o

the regularity of the denoised signal, as measured by the extheorem 4.1. Let (X )ien denote the wavelet coefficients of

ponent between two scales, matches the one of the origindle C®(R) “above” (i.e such that k= [271]) a point t where

signal. As we have seen in the case of the Weierstrass funtie local and pointwise Holder exponent of f coincide. Let

tion, the problem is that, below a critical scalewhich is g = liminfi_. M Assume that there exists a decreas-

such that 2¢**%5) is of the order of the standard deviation jng sequencee,) such thate, — 0(2) when n— e and

of the noiseo, hard-thresholding will put to O informative _jogx . " . '

coefficients. While this is not a serious problem for signals 1~ = B — & for all i. Let (y;) denote the noisy coeffi-

with a sparse wavelet representation (for which the metho@i€NtS corresponding to the.x

thenog(h(n),n,gn) tends in probability to+co.

was originally conceived), it becomes so for “fractal” signals. Let: 1 n
We thus want to maintain some information at small scale. Zh(p) = —_— z yiz’
This cannot be done using only the observed coefficients, (n—p+1)*%

since, forj > ¢, in most cases, their value will be strongly in- y . )
fluenced by the noise. Following the paradigm explained ir?nd denote p= p*(n) an integer such that:
the introduction, we will rather extrapolate those coefficients 2 (p") = min @
from the large, robust, ones at larger scales. More precisely, n(p) = p;lgpgn'_bbg(n) n(P),
we follow the steps below;

e Estimate the critical scale,, defined as the one where Where b> 1 is a fixed number. Let finally(q) =
the coefficients of the white noise become predominanfnen, aimost surely:
as compared to the ones of the signal.

e Estimate the regularits, of the original signal at the con- va>1, p“(n)<q(n)+alog(n), n— o 2
sidered point, using coefficients at scales larger than - _ - .

e Assign to the small scale coefficients a value that is “codn addition, if the sequence;) verifies the following con-
herent” with the ones of the coefficients at larger scales:dition: there exists a sequence of positive inted®s such

that, for all n large enough and al > 6;:

n

28-%)"

{fn, i) = min <’<gn7 Vi) | 72K”7j(5“+1/2>> sgn({gn, Vik)))

(6N 1 2 2 B
for j > ¢y, whereK, ands, are estimated from the 5i7q279>9 > boy (1_%)2’

wavelet coefficients at scalg¢s< ¢, (see section 4).

This means that, at small scales, we do not accept too lar 1 I
coefficients, that is ones which would not be compatible Witf?’%?rrﬁg’;]ea%?ﬁgg&rhdrg|y.e (2:B)-
the estimated Holder regularity of the signals (statistically, ' '
there will always be such coefficients, since the noise has ya >~ 1. p*(n) > q(n) — max(alog(n), 6,)
no regularity: its coefficients do not decrease with scale). -

On the other hand, “small” coefficients (ones not exceeding  In other words, when the conditions of the theorem are
2kn=i(1+1/2)) are left unchanged. Note that both the esti-met, any minimizer of¢ is, within an error of @log(n)),
mated regularitys, and the critical scale, depend on the approximately equal to the searched for critical scale. This

n—oo (3)

)
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Figure 6: Estimated Hoélder exponents. Top curve: signal
obtained through hard-thresholding. Middle curves: origi-
nal Weierstrass function and version denoised using the pro-
Figure 5: Top: original Weierstrass function. Middle: noisy posed scheme. Bottom curve: Noisy signal.

version. Bottom: signal obtained with the regularity preserv-

ing method.

1

Codes for replicating all the experiments displayed in this
work are freely available in theracLabtoolbox [6].

allows in turn estimation of the Holder exponent through the. As a final note, we remark that our method works rela-
next corollary: tively well on signals with sufficiently many samples: more

Corollary With the same notations and assumptions agremsely, a reliable estimation of the Hoélder exponent re-

in the theorem above, with the additional condition thats itgIlroe;z;rri]t&rl]tr;h?/\?rlmjig222:1);Isecsa:febseoiglrmrﬁgrnetzrl:?oergx32
not larger tharblog(n) for all sufficiently largen, define: in applications such as biomedicine, finance or Internet traf-

fic analysis, it is not the case for image processing. Though
our method has a straightforward extension in higher dimen-
sions, practical implementation would only give good results

A n 1
PO = 20

Then the following inequality holds almost surely for all
large enoughm:

1B(n)— Bl §2bﬁ2%, 1]

We thus set, = (n) + 3 in (1). Ky is estimated as the [2]
offset in the linear least square regression of the logarithm of
the absolute value of the wavelet coefficients with respect to
scale, at scales larger thah(n).

5. NUMERICAL EXPERIMENTS [41
We show the result of the denoising scheme described above
on the Weierstrass function considered in the first sectior®]
Figure 5 shows the original, noisy and denoised versions.

As a further evaluation of the behaviour of the method 6]
we have estimated the regularization dimension of the vari-
ous signals involved. The regularization dimension is a kind?]
of fractal dimension that is well adapted to signal processing,
and which is equal to the more familiar box dimension for the
(noise-free) Weierstrass function. Here are the results:

e Original function: 1.50 (theoretical dimension: 1.5).

e Noised version: 2.47 (theoretical dimension: 2.5).

e Denoising using hard-thresholding with threshold opti-
mized for best.“ reconstruction: 1.08.

e Denoising using the proposed method: 1.57.

Finally, we plot on figure 6 the estimated Hdélder exponent
of the same functions, using an estimator based on oscilla-

9]

tions. One clearly sees that the proposed denoisng scheme

on extremely high resolution images.
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