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ABSTRACT

We present a denoising method that is well fitted to
the processing of extremely irregular signals such as
(multi)fractal ones. Such signals are often encountered in
practice,e.g., in biomedical applications. The basic idea
is to estimate the regularity of the original data from the
observed noisy ones using the large scale information, and
then to extrapolate this information to the small scales. We
present theoretical results describing the precise properties of
the method. Numerical experiments show that this denoising
scheme indeed performs well on irregular signals.

1. INTRODUCTION AND MOTIVATIONS

Signal/image denoising is an important task in many appli-
cations including biology, medicine, astronomy, geophysics,
and many more. For such applications and others, it is impor-
tant to denoise the observed data in such a way that the fea-
tures of interest to the practitioner are preserved. In several
cases, local irregularity has been shown to be such a feature
of interest. A particular example is provided by the study of
RR intervals from ECG. It has been showne.g. in [7, 8] that
such signals are multifractal,i.e. everywhere irregular with
an irregularity that varies rapidly in time. More importantly,
the degree of multifractality is strongly correlated with the
condition of the heart. For this and other applications, de-
noising should clearly be performed in such a way that the
local regularity is controlled through the process.

A popular set of denoising methods is based on decom-
posing the corrupted signal in a wavelet basis, processing the
wavelet coefficients, and then going back to the time domain.
In the case of additive white noise, this is justified by two fun-
damental facts: first, many real-world signals have a sparse
structure in the wavelet domain,i.e. a few coefficients are
significant, and most are small or zero. Second, an orthonor-
mal wavelet transform turns white noise into white noise, so
that all wavelet coefficients of a white noise are statistically
equal. Denoising in the wavelet domain thus allows to sep-
arate in an easy way “large”, significant coefficients, from
“small” ones due mainly to noise.

The first and simplest methods for denoising based on the
above principles are the so-called hard and soft-thresholding
[2, 3]. Since the time these methods were introduced, a
huge number of improvements have been proposed, ranging
from block thresholding [11] to Bayesian approaches [12]
and many more.

A limitation of most of these methods is that they are not
well adapted to highly textured or everywhere irregular sig-
nals, in particular (multi)fractal or multifractional ones with
possibly rapidly varying local regularity, as are RR intervals
alluded to above. It is in particular well-known that, when the

original signal is itself irregular, most wavelet-based denois-
ing methods will typically produce an oversmoothed signal
and/or so-called “ringing” effects. Indeed, as recalled above,
the basic idea behind wavelet thresholding is that many real-
world signals have a sparse wavelet representation, with few
large wavelet coefficients. Putting small coefficients to 0 in
the noisy signal will then in general do no harm, since these
are mainly due to noise. Everywhere irregular signals, on the
other hand, have significant coefficients scattered all other
the time-frequency plane. At high frequencies, these signif-
icant but relatively small coefficients in the signal crucially
determine the local irregularity. Zeroing small coefficients
will thus typically destroy the regularity information. As a
consequence, it is no surprise that a specific method has to
be designed for such signals.

To be more precise, let us consider a simple example
where the kind of effect we are talking about occurs. We
shall consider a noised version of a Weierstrass function. Re-
call that the Weierstrass function is defined as:

W(x) =
∞

∑
n=0

λ
−nhsin(λ nx),

whereλ ≥ 2,h∈ (0,1). This function is often considered in
fractal analysis, and it has also been used in various applica-
tions,e.g. as a model for the sea surface [13]. It has Hölder
exponenth at each point (see below for definitions), so that,
the smallerh is, the more irregular the graph ofW looks
like. On figure 1 is displayed a Weierstrass function sampled
on 218 points and withh = 1/2. This function is then cor-
rupted with additive white Gaussian noise (not shown here).
The noisy version is processed with hard-thresholding of the
wavelet coefficients, where the threshold is chosen so as to
minimize theL2 error with the (known) original signal. On
the bottom of the figure is displayed the denoised function.
The wavelet coefficients of the original, noisy, and denoised
signals are shown on figure 2.

One sees on these graphs that the signal is oversmoothed.
This is easily explained if one looks at the wavelet coeffi-
cients: at each scalej = 1. . .n, the wavelet coefficients of
W are of the order of 2− j(h+0.5) or smaller. Whenj gets
large, i.e. at small scales, they thus become negligible, on
average, with respect the ones of the noise. More precisely,
there exists a scalej0, depending on the standard deviation
of the noise, such that, forj > j0, the structure of the sig-
nal at these scales is lost because of the noise (see below
for a mathematical statement). Optimizing the threshold for
bestL2 reconstruction will typically lead to putting the coef-
ficients at scalesj > j0 to zero. This is apparent in the bot-
tom parts of the figures. The denoised signal will thus have
no high-frequency structure, in contrast to the original one.
But it is precisely the small-scale coefficients that produce



Figure 1: Weierstrass function withh = 0.5 sampled on 218

points (top) and denoised version using hard-thresholding
(bottom). Here and below we use Daubechies 4.

Figure 2: Logarithms of wavelet coefficients for the Weier-
strass function: original(f ), noisy (fn), and denoised (gn) sig-
nals (each column corresponds to a scale). Coefficients equal
to 0 are not represented. Threshold is indicated by the hori-
zontal line.

the impression of texture, or irregularity, as is exemplified
on figure 3, where we have represented graphs of functions
whose wavelet coefficients differ on specific ranges of scale.

Our approach to tackle this problem is based on a recent
paradigm where one tries to usea priori information on the
signal to enhance the result of denoising through threshold-
ing. A clear statement of this paradigm is given in [1]:

"Given an imperfectly described signal, it is often the
case that a few of its parameters are given with good pre-
cision whereas other parameters are known only vaguely or
area priori essentially unknown. If one believes, however,
that the unknown parameters are somehow correlated with
the known ones, then it is reasonable to try to extrapolate the

Figure 3: Left: two functions with wavelet coefficients dif-
fering only at large scales. These two functions display the
same aspect in term of regularity. Right: Two functions with
wavelet coefficients differing only at small scales. These two
functions display different aspects in term of regularity.

unknown parameters from the available ones. This involves
exploitation of additional, external principles of our choice,
the ones that are believed to express relations between the
two groups of parameters."

When a signal is corrupted by white noise, the informa-
tion carried by a wavelet coefficient of the original signal
whose absolute value is smaller than the standard deviation
of the noise is essentially lost. Instead of setting to zero
“small” coefficients in the noisy signal as is done in hard-
thresholding, one tries to extrapolate their value from the ro-
bust “large” ones. Several authors have put this paradigm
to use. For instance, in [4], denoising is performed in two
steps: a) Apply a classical denoising method, such as hard
thresholding. The non-thresholded coefficients are stored in
a setM. b) Estimate the original coefficients from the thresh-
olded noisy ones by minimizing the total variation under the
constraint that the coefficients inM are left unchanged.

In other words, instead of putting the small coefficients
to 0, the method adjusts them in such a way that the total
variation is minimized. This approach does suppress most
of the “ringing”, but it tends to be slow and to oversmooth
textured parts.

Coifman et Sowa [1] have proposed a general formula-
tion that applies not only to thresholding, but also to other
kinds of processing such as quantification often present in
compression applications. It may be described as follows:
Let J be the set of indices for which the wavelet coefficients
are smaller than the threshold, and letI be the complemen-
tary set. The resulting signal̃fn will verify the following
global constraints: the coefficients off̃n whose indices be-
long to I will remain unchanged. The other ones are cho-
sen in such a way that they remain smaller in absolute value
than a given constant (typically, the threshold), and that an
“energy” Φ( f̃n) is minimized. The functionalΦ must verify
certain properties, and depends on the specific application.

In contrast to the two methods just described (and to most
other approaches), our implementation of the above para-
digm consists in extrapolating the unknown, small, coeffi-
cients by imposing alocal constraint rather that aglobalone.
More precisely, we set the small coefficients in such a way
that the local regularity at each point of the denoised signal
matches the one of the original one. Of course, since the
original signal is unknown, so is its regularity. We will thus
show how to estimate the local regularity of the original sig-
nal from the noisy observations. Although local in time (i.e.
specific to each point), this information has some robustness,
as it is global in scale (it is computed from coefficients at sev-
eral scales). It is precisely through these regularity estimates
that one uses the information present in large coefficients to
extrapolate the small ones.

The remainder of this paper is organized as follows. In
the next section, we recall some basic facts concerning the
connection between local regularity and wavelet coefficients.
In section 3 we describe our denoising scheme. For this
method to work, we need to estimate the local regularity of
the original signal from the noisy observations. Section 4
explains how to do this. Finally, numerical experiments are
displayed in section 5.

2. WAVELETS AND LOCAL REGULARITY

We shall measure the local regularity in terms ofpointwise
Hölder exponents. This exponent is defined at each point of



a locally bounded functionf as:

α f (t) = sup

{
α, limsup

h→0

| f (t +h)− f (t)|
|h|α

= 0

}
.

(This definition is valid only forα ∈ (0,1). For α larger
than 1, one has to replace the termf (t) by a polynomial.
We shall ignore this complication for now, as the wavelet-
based characterization we will use below takes care of it in a
transparent manner.)

When there is no risk of confusion, we shall writeα(t)
in place ofα f (t). Let us explain the geometrical meaning of
α. Roughly speaking, saying that a functionf has exponent
α at t0 means that, aroundt0, the graph off “looks like”
the curvet 7→ f (t0) + c|t − t0|α in the following sense: for
any positiveε, there exists a neighbourhood oft0 such that
the path of f inside this neighbourhood is included in the
envelope defined by the two curvest 7→ f (t0)+ c|t− t0|α−ε

andt 7→ f (t0)−c|t− t0|α−ε , while this property is no longer
true for any negativeε (see figure 4). A “large”α means
that f is smooth att0, while an irregular behaviour off at t0
translates intoα close to 0.

Figure 4: Graphical interpretation of the Hölder exponent.

The pointwise Hölder exponent is not the only way to
measure the local regularity of a function. Many other ex-
ponents exist, that give complementary information. In the
following, we shall assume that the considered signal satisfy
a technical assumption to the effect that its pointwise expo-
nent is equal to itslocal Hölder exponent, defined as:

α
l
f (t)= sup

{
α, limsup

h→0
sup

(x,y):|t−x|<h,|t−y|<h

| f (x)− f (y)|
|x−y|α

= 0

}
.

Such an assumption is for instance verified by the Weier-
strass function and by many fractal, multifractal and multi-
fractional signals (see [10]). In addition, our method may be
generalized to functions that do not verify it. This however
requires lengthy developments which cannot be described
properly here. See [5] for details.

When α f = α l
f , their common value may be estimated

in a simple way with the help of wavelet analysis, as we re-
call now. In the following, we shall assume for simplification
that all the considered functions are compactly supported on
[0,1]. We shall always consider a waveletψ such that the set
of functionsψ j,k(t) = 2 j/2ψ(2 j t−k), for ( j,k) ∈Z, form an
orthonormal basis ofL2(R). Finally, ψ is supposed to have
the necessary number of vanishing moments and required de-
cay properties.

Recall that a functionf is said to belong to the global
Hölder spaceCβ (R) if there exists a constantC such that, for
all x,y, | f (x)− f (y)| ≤ C|x− y|β . The supremum of those
β such thatf belongs toCβ (R) is called the global Hölder
exponent off , and is denotedαg( f ).

The most basic results relating global regularity and
wavelet coefficients is:

Proposition 2.1. [9] Assume f∈Cε(R) for someε > 0 has
bounded support. Then:

1/2+αg( f ) = liminf
j→∞

min
k∈Z

log
∣∣〈 f ,ψ jk

〉∣∣
− j

Whenα l
f (t) = α f (t), the above result may be “localized”

by considering only those coefficients lying “above”t: one
then gets that the pointwise Hölder exponent off att is given
by a liminf similar to the one in (2.1), except that only rele-
vant coefficients are considered. See [5, 10] for more details.

3. WAVELET BASED DENOISING WITH
CONTROL OF THE LOCAL REGULARITY

3.1 Local regularity of hard-thresholded signals

In the first section, we saw that hard-thresholding wavelet
coefficients produce the visual impression of oversmoothing
irregular signals (figure1). In this section, we shall give a
precise mathematical meaning to this fact.

A difficulty arises since we are working on discrete sig-
nals: indeed, the very definition of Hölder exponents requires
to let the scale tend to 0, which cannot be done here. We thus
need a modified definition ofα that both makes sense at fi-
nite resolution and allows to capture the visual impression of
regularity on sampled signals, such as on figure 3 . In view of
the fact that the perceived regularity depends on the consid-
ered range of scales, it seems natural to define an “exponent
between two scales” as follows:

αg( j1, j2, f ) = min
j∈[ j1, j2]

min
k∈Z

log
∣∣〈 f ,ψ jk

〉∣∣
− j

−1/2

In addition to reflecting the regularity of a function at the con-
sidered scales, this definition has adequate asymptotic prop-
erties: it is not hard to prove that, for a given functionf ,
αg(h(n),n, f ) tends toαg( f ) whenn tends to infinity, pro-
vided the functionh tends sufficiently slowly to infinity. In
addition, this property still holds (with minor additional con-
straints) if one replacesf with its sampled approximation at
scalen [5]. The exponent between two scales thus approx-
imates the genuine regularity for large enoughn. Further-
more, it behaves in an intuitive way when computed on a
noisy signal:

Theorem 3.1. Let f belong to Cε0(R) for someε0 > 0. Let
gn be a sampling on2n points of f+ B, where B is a white
Gaussian noise. Then, for any increasing function h(n) ≤ n
tending to+∞, αg(h(n),n,gn) tends almost surely to0.

In other words, for anyf with minimal regularity, the ex-
ponent between scalesh(n) andn will tend to 0 for any sen-
sible starting scaleh. This result and all subsequent ones are
proved in [5]. The following theorem gives a precise mean-
ing to the statement that “hard thresholding tends to over-
smooth signals”:

Theorem 3.2. Let f belong to Cε0(R) for someε0 > 0. Let
gn be the signal obtained by sampling at scale n a version of
f corrupted with standard white Gaussian noise. Letf̃n be
the signal denoised by hard-thresholding using the universal
thresholdλn = 2−n/2

√
2nln2, i.e.:

< f̃n >=
{ 〈

gn,ψ jk
〉

if
∣∣〈gn,ψ jk

〉∣∣ > λn

0 if
∣∣〈gn,ψ jk

〉∣∣≤ λn



Let θ be an increasing function such thatαg( f ) =
limn→∞ αg(θ(n),n, f ).
1. Assume the function h verifies:

∃ε > 0,∀n∈N,∃i ∈N : θ(i)∈
[
h(n)...

n
1+2αg( f )

(1− ε)
]

thenαg(h(n),n, f̃n) tends in probability toαg( f ).
2. Assume h verifies:

∃ε > 0 :∀n∈ N : h(n)≥ n
1+2αg( f )

(1+ ε)

thenαg(h(n),n,gn) tends in probability to+∞.

Intuitively, this results means that, when one observes the
signal from “far away”, (i.e. for h(n) smaller than n

1+2αg( f ) ),
the denoised signal has the same perceived regularity as the
one of the original signal, while when one looks at fine details
(case 2), one sees an infinitely smooth signal. This is exactly
what figure 1 suggests.

3.2 A denoising scheme that maintains the local regular-
ity

Our aim is to modify the hard-thresholding scheme so that
the regularity of the denoised signal, as measured by the ex-
ponent between two scales, matches the one of the original
signal. As we have seen in the case of the Weierstrass func-
tion, the problem is that, below a critical scalec, which is
such that 2−c(α+0.5) is of the order of the standard deviation
of the noiseσ , hard-thresholding will put to 0 informative
coefficients. While this is not a serious problem for signals
with a sparse wavelet representation (for which the method
was originally conceived), it becomes so for “fractal” signals.
We thus want to maintain some information at small scale.
This cannot be done using only the observed coefficients,
since, forj > c, in most cases, their value will be strongly in-
fluenced by the noise. Following the paradigm explained in
the introduction, we will rather extrapolate those coefficients
from the large, robust, ones at larger scales. More precisely,
we follow the steps below;
• Estimate the critical scalecn, defined as the one where

the coefficients of the white noise become predominant
as compared to the ones of the signal.

• Estimate the regularitysn of the original signal at the con-
sidered point, using coefficients at scales larger thancn.

• Assign to the small scale coefficients a value that is “co-
herent” with the ones of the coefficients at larger scales:〈

f̃n,ψ jk
〉

= min
(∣∣〈gn,ψ jk

〉∣∣ ,2Kn− j(sn+1/2)
)

sgn(
〈
gn,ψ jk

〉
))
(1)

for j > cn, where Kn and sn are estimated from the
wavelet coefficients at scalesj < cn (see section 4).

This means that, at small scales, we do not accept too large
coefficients, that is ones which would not be compatible with
the estimated Hölder regularity of the signals (statistically,
there will always be such coefficients, since the noise has
no regularity: its coefficients do not decrease with scale).
On the other hand, “small” coefficients (ones not exceeding
2Kn− j(sn+1/2)) are left unchanged. Note that both the esti-
mated regularitysn and the critical scalecn depend on the

considered point. Remark also that this procedure may be
seen as a location-dependent shrinkage of the coefficients.

One can prove the following property, which essentially
says that the above method does a good job in recovering the
regularity of the original signal, provided that one is able to
estimate with good accuracy its Hölder exponent at any given
point t:

Proposition 3.3. Let f belong to Cε0(R) for someε0 > 0,
and letα denote its Hölder exponent at point t.

Let (sn)n be a sequence of real numbers tending almost
surely (resp. in probability) toα. Let c(n) = n

1+2sn
Let f̃n be

defined as above.
Then, for any function h tending to infinity with h(n)≤ n,

αg(h(n),n, f̃n) tends almost surely (resp. in probability) to
α.

For our method to be put to practical use, there thus re-
mains to estimate the critical scale and Hölder exponent from
the noisy observations. This is the topic of the next section.

4. ESTIMATING THE LOCAL REGULARITY OF A
SIGNAL FROM NOISY OBSERVATIONS

Our main result concerning the estimation of the critical scale
is the following one.

Theorem 4.1. Let (xi)i∈N denote the wavelet coefficients of
f ∈Cε0(R) “above” (i.e such that k= [2− j ]) a point t where
the local and pointwise Hölder exponent of f coincide. Let
β = liminf i→∞

− log|xi |
i . Assume that there exists a decreas-

ing sequence(εn) such thatεn = o
(

1
n

)
when n→ ∞ and

− log|xi |
i ≥ β − εi , for all i. Let (yi) denote the noisy coeffi-

cients corresponding to the xi .
Let:

Ln(p) =
1

(n− p+1)2

n

∑
i=p

y2
i ,

and denote p∗ = p∗(n) an integer such that:

Ln(p∗) = min
p:1≤p≤n−blog(n)

Ln(p),

where b> 1 is a fixed number. Let finally q(n) = n
2(β− 1

n)
.

Then, almost surely:

∀a > 1, p∗(n)≤ q(n)+alog(n), n→ ∞ (2)

In addition, if the sequence(xi) verifies the following con-
dition: there exists a sequence of positive integers(θn) such
that, for all n large enough and allθ ≥ θn:

1
θ

q−1

∑
i=q−θ

x2
i > bσ

2
n

1− δ∗
β

(1− δ ∗
β

)2
,

whereδ∗ ∈ (0, 1
2) andδ ∗ ∈ (1

2,β ).
Then, almost surely:

∀a > 1, p∗(n)≥ q(n)−max(alog(n),θn), n→ ∞ (3)

In other words, when the conditions of the theorem are
met, any minimizer ofL is, within an error of O(log(n)),
approximately equal to the searched for critical scale. This



Figure 5: Top: original Weierstrass function. Middle: noisy
version. Bottom: signal obtained with the regularity preserv-
ing method.

allows in turn estimation of the Hölder exponent through the
next corollary:

Corollary With the same notations and assumptions as
in the theorem above, with the additional condition thatθn is
not larger thanblog(n) for all sufficiently largen, define:

β̂ (n) =
n

2p∗(n)
+

1
n
.

Then the following inequality holds almost surely for all
large enoughn:

|β̂ (n)−β | ≤ 2bβ
2 log(n)

n
.

We thus setsn = β̂ (n)+ 1
2 in (1). Kn is estimated as the

offset in the linear least square regression of the logarithm of
the absolute value of the wavelet coefficients with respect to
scale, at scales larger thanp∗(n).

5. NUMERICAL EXPERIMENTS

We show the result of the denoising scheme described above
on the Weierstrass function considered in the first section.
Figure 5 shows the original, noisy and denoised versions.

As a further evaluation of the behaviour of the method,
we have estimated the regularization dimension of the vari-
ous signals involved. The regularization dimension is a kind
of fractal dimension that is well adapted to signal processing,
and which is equal to the more familiar box dimension for the
(noise-free) Weierstrass function. Here are the results:
• Original function: 1.50 (theoretical dimension: 1.5).
• Noised version: 2.47 (theoretical dimension: 2.5).
• Denoising using hard-thresholding with threshold opti-

mized for bestL2 reconstruction: 1.08.
• Denoising using the proposed method: 1.57.

Finally, we plot on figure 6 the estimated Hölder exponents
of the same functions, using an estimator based on oscilla-
tions. One clearly sees that the proposed denoisng scheme
has superior performances in this respect. Note that neither
the regularization dimension nor the pointwise Hölder expo-
nents were estimated through procedures involving wavelets.

Figure 6: Estimated Hölder exponents. Top curve: signal
obtained through hard-thresholding. Middle curves: origi-
nal Weierstrass function and version denoised using the pro-
posed scheme. Bottom curve: Noisy signal.

Codes for replicating all the experiments displayed in this
work are freely available in theFracLabtoolbox [6].

As a final note, we remark that our method works rela-
tively well on signals with sufficiently many samples: more
precisely, a reliable estimation of the Hölder exponent re-
quires that the number of scalesn be significantly larger than
its logarithm. While sample sizes of 215 or more are common
in applications such as biomedicine, finance or Internet traf-
fic analysis, it is not the case for image processing. Though
our method has a straightforward extension in higher dimen-
sions, practical implementation would only give good results
on extremely high resolution images.
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