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Abstract

We analyze the local regularity of RR traces from ECG
through the computation of the so-called Hölder exponents.
These exponents are at the basis of multifractal analysis,
which has been shown to be relevant in the study of RR
data. While multifractal analysis yields a global picture of
the (statistical) distribution of regularity, we focus here on
its time evolution. We show that this evolution is strongly
correlated with the signal itself, a feature that seems to have
remained unnoticed so far. We use this fact to build realistic
synthetic RR traces.

1 Introduction and Motivations

Fractal analysis was developed in view of studying com-
plex irregular objects. Numerous natural phenomena, in
particular in physics, biology and medicine, have been
shown to exhibit a fractal behaviour. The study of associ-
ated models, when available, has lead to significant progress
in the understanding and control of these phenomena, for in-
stance in turbulence analysis, non-linear growth, chemical
catalysis and wave propagation in irregular media.

Fractal analysis has also been applied with some suc-
cess in the biomedical field. An example is provided by the
study of ECG. ECG and signals derived from them, such as
RR intervals, are an important source of information in the
detection of various pathologies, includinge.g. congestive
heart failure and sleep apnea. The fractality of these data
has been reported in numerous works over the past years.
Several fractal parameters, such as the box dimension, have
been found to correlate well with the condition of the heart
in certain situations ([11, 13]).

More precise information than just a fractional dimen-
sion is provided bymultifractal analysis. Multifractal anal-
ysis describes the local regularity at each point, and how it
is distributed, either geometrically (leading to the compu-

tation of the so-calledHaussdorf multifractal spectrum), or
statistically (in this case, one computes thelarge deviation
andLegendremultifractal spectra). The statistical approach
is by far the most common in applied areas, in particular
because the Haussdorf multifractal spectrum is almost im-
possible to estimate from real data.

Multifractal analysis is useful when the local regularity
varies wildly from point to point, and when this irregularity,
or its global distribution, holds relevant information on the
studied phenomenon. A multifractal behaviour (i.e. erratic
variations of the local regularity) often emerges as the result
of the complex interactions of a large number of elements,
each of which acting in a relatively simple way. Such a situ-
ation is frequently encountered in the bio-medical field. Itis
thus no surprise that many studies has been devoted to mul-
tifractal analysis of ECG and related signals. In the specific
case of RR intervals, several studies has shown a ubiqui-
tiuous multifractal behaviour. In addition, the multifractal
spectrum has been found to correlate well with the condi-
tion of the heart ([6, 9, 5]). Roughly speaking, one observes
two main phenomena:

• On average, the local regularity of healthy RR is
smaller than the one in presence of,e.g., congestive
heart failure. In other words, pathologiesincreasesthe
local regularity.

• Healthy RR have much more variability in terms of
local regularity: Congestive heart failurereducesthe
range of observed regularities.

This results may be traced back to the fact that congestive
heart failure is associated with profound abnormalities in
both the sympathetic and parasympathetic control mecha-
nisms that regulate beat-to-beat variability ([5]).

These findings are similar to ones made in other ar-
eas. Indeed, it is worthwhile noticing the following di-
chotomy about multifractal phenomena: “natural” multi-
fractality seems to always be a positive quality that consti-
tutes an efficient answer to some functional constraints. Ex-



amples include the organization of the blood and air flows in
the lungs, the geometry of tree branches and many more. In
contrast, multifractality of artifacts often constitutesan un-
wanted complication: for instance, it worsens the behaviour
of queues in TCP traffic and makes financial assets manage-
ment more complex.

A precise view on the mechanisms leading to multifrac-
tality is important if one wants to understand the purposes
it serves and how it will be modified in response to exter-
nal changes or in case of abnormal behaviour. Multifrac-
tal models are largely yet to be developed for RR intervals
([2]). As a preliminary step toward this goal, we study in
this work the time-evolution of the local regularity. In other
words, instead of estimating, through indirect ways (as is
done in multifractal analysis), the distribution of the local
regularity, we compute it at each point of the signal. As
mentioned above, the local regularity varies rapidly in time.
This may seem to preclude its estimation on sampled data.
However, recent stochastic models and associated identifi-
cation procedures now allow to obtain meaningful results
even on extremely erratic data. Specifically, we will use in
the following themultifractional Brownian motion(mBm)
as a model for RR traces, and use an estimation method
based onGeneralized Quadratic Variations(GQV).

Computing the time evolution of the local regularity
gives far more information than the sole multifractal spec-
trum. Indeed, the latter may be computed from the for-
mer, while the reverse is not true. In addition, inspecting
the variation of local regularity yields new insights which
cannot be deduced from a multifractal spectrum, since all
time-dependent information is lost on a spectrum. In par-
ticular, we find thatthe evolution of the local regularity is
strongly (negatively) correlated with the RR signals. This
fact seems to have remained unobserved so far. It prompts
for the development of new models that would account for
the fact that, when the RR intervals arelarger, the RR sig-
nal is more irregular, and vice-versa. This seems to be a
long-term goal. In this work, we content ourselves with us-
ing our finding to build realistic synthetic RR traces where
the local regularity matches this intriguing correlation.In
that view, we develop a new mathematical model that goes
beyond the usual mBm.

The remaining of this paper is organized as follows. In
section 2, we recall some basic facts about local regularity.
In section 3, we present the mBm and its main properties,
along with the estimation method we shall use. In section
4, we perform the computation of the local regularity of RR
traces (obtained from the PhysioNet database), and show
empirically that they are correlated with the signals. In sec-
tion 5, we explain how to construct an extended mBm al-
lowing a functional relation between the process and its lo-
cal regularity. We use this construction to generate synthetic
RR traces in the last section.

2 Local regularity

There are many ways to measure the local regularity of
a signal. A popular one, which has both firm theoretical
bases and strong intuitive content is to use the the pointwise
Hölder exponent. For a stochastic process whose trajecto-
ries are continuous and nowhere differentiable, this expo-
nent is defined as the stochastic process{αX(t)}t∈R given,
for everyt, by

αX(t) = sup

{

α, lim sup
h→0

|X(t + h) − X(t)|

|h|α
= 0

}

.

Let us explain the geometrical meaning of the statement:
“αX(t) allows to measure the local variations of regular-
ity of X(t).” Roughly speaking, saying that a functionf
has exponentα at t0 means that, aroundt0, the graph off
“looks like” the curvet 7→ f(t0) + c|t − t0|

α in the fol-
lowing sense: for any positiveε, there exists a neighbour-
hood of t0 such that the path off inside this neighbour-
hood is included in the envelope defined by the two curves
t 7→ f(t0) + c|t − t0|

α−ε andt 7→ f(t0) − c|t − t0|
α−ε,

while this property is no longer true for any negativeε (see
figure 1). A “large”α means thatf is smooth att0, while
an irregular behaviour off at t0 translates intoα close to 0.

Figure 1. Graphical interpretation of the Hlder
regularity of a function f at a point t0.

3 Multifractional Brownian motion

A popular model for studying rough signals is provided
by the so-called fractional Brownian motion (fBm), which
was first introduced by Kolmogorov [7] and then studied by
Mandelbrot et al. [8].

The one dimensional fBm is the zero-mean Gaussian
process{BH(t), t ∈ R} with autocorrelation function:

RBH
(t, s) = E {BH(t)BH(s)} =

σ2

2

h

|t|2H + |s|2H − |t − s|2H
i

,

(1)
where0 < H < 1 is called the Hurst parameter. (whenH = 1/2,
this is just the well known Brownian motionB(t)). It admits the



following integral representation:

BH(t) ∝

Z 0

−∞

h

(t − s)H−1/2 − (−s)H−1/2
i

dB(s)

+

Z t

0

(t − s)H−1/2dB(s).

The first order increments of the sampled fBm (thefractional
Gaussian noise (fGn)are defined as:GH(j) = BH(j)−BH(j −
1), j ∈ Z. GH(k) is a stationary process. WhenH = 1/2 (Brow-
nian motion), the increments are independent. The caseH 6= 1/2
is very different, asGH(k) displays strong correlations in these
situations. More precisely, one finds that the autocorrelation func-
tion ρ(k) = E(GH(j)GH(j + k)) is asymptotically of the order
of |k|2H−2 for large lagsk. In particular, for1/2 < H < 1, the

correlations are not summable,i.e.
+∞
X

0

|ρ(k)| = +∞ This prop-

erty is usually referred to aslong-range dependence. Long range
dependence is a crucial feature that makes fBm a good model for
phenomena ranging from TCP traffic traces to financial records,
physiological data, and natural terrain synthesis.

An important property of fBm is related to its local regularity,
as measured by the pointwise Hölder exponentα, whose definition
is recalled in the previous section. One may prove that, for the
fBm, this exponent is with probability one equal toH at all times.
Thus, fBms with large (i.e. close to 1)H are smoother than those
with H close to 0. Finally, recall that the fBm isH−self-similar,

i.e., for all a > 0, BH(ax)
d
= aHBH(x), where

d
= means the

equality of all its finite-dimensional probability distributions.
The stationary-increments property of fBm is useful because it

allows to simplify the analysis. However, most real world phe-
nomena do not share this property. In order to obtain realistic
models, it is necessary to consider more complex processes, which
have non stationary increments of any order. One of the simplest
fractal models that falls into this category in themultifractional
Brownian motion(mBm) [10], which was introduced to overcome
certain limitations of the fBm. The major difference between the
two processes is that, unlike fBm, the almost sure Hölder exponent
of mBm is allowed to depend on time, a useful feature when one
needs to model processes whose regularity varies, as is the case
for most bio-medical signals. More precisely, a functionH(t)
replaces the Hurst exponent in the case of mBm. This is impor-
tant in many situations where one needs a fine modeling. For in-
stance, the long term correlations of the increments of fBm decay
ask(2H−2), resulting in long range dependence whenH > 1/2.
In this respect, fBm is “degenerate” sinceH rules both the high
frequencies related to the Hölder regularity and the low frequen-
cies related to the long term dependence. It is thus not possible
to have at the same time an irregular local behavior (implyingH
close to 0) and long range memory (implyingH > 1/2). fBm
is not adapted to model processes which display both those fea-
tures, such as RR signals or certain highly textured images with
strong global organization, as aree.g. MR brain images. In con-
trast, mBm is perfectly adapted in this case. We give now a formal
definition of mBm.

Definition 3.1. The following random function is called multifrac-
tional Brownian motion with functional parameterH(t), where

H : [0,∞) → [a, b] ⊂ (0, 1) is aC1 function:

WH(t)(t) =

Z 0

−∞

[(t − s)H(t)−1/2 − (−s)H(t)−1/2]dW (s)

+

Z t

0

(t − s)H(t)−1/2dW (s).

The mBm is a zero mean Gaussian process, whose increments
are in general neither independent nor stationary. One can show
that the increments of mBm display long range dependance for all
admissible non-constant regularity functionsH(t) ([3]).

The main feature of mBm is that its Hölder exponent may be
easily prescribed: At each pointt0, it is equal toH(t0) with prob-
ability one. Thus, mBm allows to describe phenomena whose reg-
ularity evolves in time/space.

Another important property of mBm is that it isasymptotically
locally self-similar. Basically, this means that, at eacht, there
exists an fBm with exponentH(t) which is “tangent” to the mBm.
In other words, a path of an mBm can be seen as the lumping of
infinitesimal portions of fBm-s with well-chosen exponents

Figure 2 shows two paths of mBm with a linear function
H(t) = 0.2 + 0.6t and a periodicH(t) = 0.5 + 0.3 sin(4πt).
One clearly sees how the regularity evolves in time.
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Figure 2. mBm paths with linear and periodic
H functions

4 Estimating the local regularity of RR traces

The mBm is, within a multiplicative constant, completely de-
termined by the functional parameterH. Sometimes, it is useful to
consider a slightly more general process defined asG(t)WH(t)(t),
whereG is a deterministic smooth (e.g.C1) function. This allows
to take into account trends, periodic behaviours and various other
features of natural phenomena. In order to use this modified mBm
as a model for time series such as RR intervals, one needs to esti-
mateH andG. This is done in the following way.

The parameterH is estimated through the computation of the
so-called “Generalized Quadratic Variations” (GQV). They are de-
fined as follows. ForN ≥ 1, let

˘

X
`

p
N

´

; p ∈ {0, . . . , N − 1}
¯

denote a discretized trajectory of the process{X (t)}t∈[0,1]. The
GQV are the quantities:

ṼN (t) =
X

p∈ν̃N (t)

„

X
“ p

Nδ

”

− 2X

„

p + 1

Nδ

«

+ X

„

p + 2

Nδ

««2



whereν̃N (t) =
˘

p ∈ N; 0 ≤ p ≤ N − 2 and
˛

˛t − p
Nδ

˛

˛ ≤ N−γ
¯

.

It has been proven in [1] that for any mBmWH(t), under some
technical assumptions onδ andγ, one has almost surely:

lim
n→∞

1

2δ

„

(1 − γ) −
log ṼN (t)

log N

«

= H(t)

.
This leads to a simple estimator

ĤN (t) =
1

2δ

„

(1 − γ) −
log ṼN (t)

log N

«

This is very efficient when ones observes a standard mBm,ie when
G ≡ 1, but presents in general a discrepancy∆G(t):

∆G(t) = −
log G(t)

δ log N

In order to get rid of this bias, a classical approach consists
in using a least squares linear regression oflog ṼN versuslog N .
From the slopeα1 and the interceptα0, one deduces a second
estimator ofH and an estimator ofG

Ĥreg(t) = −
α1(t) − (1 − γ)

2δ

Ĝreg(t) = exp(−α0(t)/2);

This regression effectively eliminates the bias, but at the price
of a noticeable augmentation of the variance. We thus used a hy-
brid method allowing to decrease the variance without increasing
the bias. This technique consists in aligning the temporal mean of
the first estimator on the one of the second and is described in [4].
The bias is then eliminated and the variance remains small.

ĤN_reg = ĤN− < ĤN > + < Ĥreg >

where< Ĥ >= 1
N

N−1
P

i=0

Ĥ (ti)

Finally, we use the discrepancy betweenĤN_reg andĤN to
estimateG

ĜN_reg(t) = Nδ(ĤN_reg−ĤN)

Figure 3 illustrates typical estimations ofH on mBm paths (the
theoretical regularity is in green and the estimated one is in blue).
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Figure 3. Estimation of the local regularity of
mBm paths. Left: linear H function. Right:
periodic H function

5 Regularity of RR traces

We obtained real 24-hour interbeat (RR) interval time series
from the PhysioNet database [12]. These were derived from long-
term ECG recordings of adults between the ages of 20 and 50 who
have no known cardiac abnormalities and typically begin and end
in the early morning (within an hour or two of the subject’s awak-
ening. For each signal, composed of around100, 000 points, we
estimated its Hölder exponent (in green) using the method based
on GQV described in section 4.
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Figure 4. Estimation of the local regularity of
RR interval time series

As one can see it on figure 4, there is a clear negative correla-
tion between the value of the RR interval and its local regularity:
when the blue curves move up, the green ones tend to move down.
In other words, slower heartbeats (higher RR values) are typically
more irregular (smaller Hölder exponents) than faster ones.

6 Improving the mBm-based model by allow-
ing the local regularity to depend on the
amplitude

In order to account for the striking feature that, at time instants
where the RR intervals are larger, the heartbeat is typically also
more irregular, we need to refine the modeling based on mBm.
Indeed, while the mBm allows to tune the regularity at each time,
it does so in an “exogenous” manner. This means that the value of
H and ofWH are independent. In light of the previous paragraph,
a better model for RR time series requires to define a modified
mBm where the regularity would be a function ofWH at each
time. We shall call this process a Self-Regulating Multifractional
Process (SRMP). It is defined as follows. We give ourselves a
deterministic smooth one-to-one functiong ranging in(0, 1), and
we seek a processX such that, at eacht, αX(t) = g(X(t)) almost
surely. It is not possible to write an explicit expression for such a
process. Rather, we rely on a fixed point approach that we now
describe briefly. See [4] for more details. We start from an mBm
WH as given in definition3.1, with an arbitrary functionH (for
instance a constant). At the second step, we setH = g(WH).
We then iterate this process,i.e. we compute a newWH with
this updatedH function, and so on. One may prove that these
iterations will almost surely converge to a well-defined SRMPX
with the desired property, namely the regularity ofX at any given
time t is equal tog(X(t)).



For such a process, there is a functional relation between the
amplitude and the regularity. However, this does not allow a pre-
cise control of the Hölder exponent. Let us explain this on an
example. Take for definitenessg(t) = t for all t. Then, a given
realization might result in a low value ofX at, say,t = 0.5 and
thus high irregularity at this point, while another realization might
give a largeX(0.5) resulting in a path that is smooth at0.5. See
figure 5 for an example of this fact.
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Figure 5. Paths of SRMPs with g(Z) = Z

In order to gain more control, we generalize the definition of an
SRMP as follows. We first define a “shape function”s, which is
a deterministic smooth function. Then, at each step, we compute
WH , and setH = g(WH + ms), wherem is a positive number.
The functions thus serves two purposes. First, it allows to tune
the shape ofX: whenm is large,X ands will essentially have
the same form. Second, because of the first property, it allows
to decide where the process will be irregular and where it will be
smooth. Figure 6 displays an example of SRMP with controlled
shapes.
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Figure 6. Left: SRMP with g(Z) = Z (blue),
and controlling shape function (green).
Right: same SRMP (blue) and estimated
Hlder exponent (green).

7 RR traces synthesis

Our model for RR traces relies on the following ingredients:

• An “s” function, that describes the overall shape of the trace,
and in particular the nycthemeral cycle.

• A g function whose role is to ensure that the correct relation
between the heart rate and its regularity is maintained at all
times.

We estimates from our data in the following way : For each
RRi time series, we plotted histograms of both the signal and its
exponent, and modeled it as a sum of two Gaussians, as repre-
sented on figure 7
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Figure 7. Histogram of RRi time series, mod-
eled as a sum of two Gaussians

We then inferred from theses signals the following shape func-
tion, represented on figure 8, based on splines and parameterized
by :

• Dn, duration of the night:Dn ∈ [6, 10]

• Dm, duration of the beginning of the measure :Dm ∈ [2, 4]

• Ds, duration of the sleeping phase :Ds ∈ [0.5, 1.5]

• Da, duration of the awakening phase :Dr ∈ [0.5, 1.5]

• RRid, mean interbeat interval during the day :RRid ∈
[0.6018, 0.7944]

• RRin, mean interbeat interval during the night :RRin ∈
[0.7739, 1.0531]

randomly chosen in their respective intervals, with uniform prob-
ability.

Theg function is estimated in the phase space. More precisely,
we plot, for each trace, the value ofH as a function of the RR
interval. Representing all these graphs on a single plot, we get a
histogram, as in figure 9.

We then extract the ridge lines of this histogram, seen as a sur-
face in the(RR, α) plane (see figure 9). It is seen that this ridge
line is roughly a straight line, that we fit using least squares mini-
mization in order to obtain an equation of the formα = g(RR) =
aRR + b.



Figure 8. Shape function of RR intervals
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The last step is to synthesize an SRMP with shape function
s and regularity functiong, as explained in the previous section.
Paths obtained in this way are shown on figure 10. Compare with
the graphs shown on figure 4 displaying true RR traces.
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Figure 10. Two forged RR intervals based
on SRMP (blue) and estimated regularity
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8 Conclusion and future work

A fine analysis of the local regularity of RR traces reveals the
intriguing property that the Hölder exponent and amplitude are
typically related in a linear way at each time instant. We have build
a phenomenological model to account for this fact, introducing
a new stochastic process termed Self-Regulating Multifractional
Process.

Further work will concentrate on trying to explain, in physi-
ological terms, the origin of the relation betweenα and the RR

value. We will also try to detect whether this relation is affected
by various pathologies. Finally, the impact of this relation on the
multifractal spectrum of RR intervals will be investigated.
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