Bayesian Pursuit Algorithms

Cédric Herzet 1, 2 Angélique Drémeau 1
1 TEMICS - Digital image processing, modeling and communication
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : This paper addresses the sparse representation (SR) problem within a general Bayesian framework. We show that the Lagrangian formulation of the standard SR problem can be regarded as a limit case of a general maximum a posteriori (MAP) problem involving Bernoulli-Gaussian variables. We then propose different tractable implementations of this MAP problem and explain several well-known pursuit algorithms (e.g., MP, OMP, StOMP, CoSaMP, SP) as particular cases of the proposed Bayesian formulation.
Type de document :
Communication dans un congrès
Proc. European Signal Processing Conference (EUSIPCO), Aug 2010, Aalborg, Denmark. 2010
Liste complète des métadonnées

https://hal.inria.fr/inria-00539109
Contributeur : Angélique Drémeau <>
Soumis le : mercredi 24 novembre 2010 - 09:36:07
Dernière modification le : mercredi 16 mai 2018 - 11:23:05

Identifiants

  • HAL Id : inria-00539109, version 1

Citation

Cédric Herzet, Angélique Drémeau. Bayesian Pursuit Algorithms. Proc. European Signal Processing Conference (EUSIPCO), Aug 2010, Aalborg, Denmark. 2010. 〈inria-00539109〉

Partager

Métriques

Consultations de la notice

181