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J. LOGIC PROGRAMMING 1994:19, 20:1-679

DYNAMIC OPTIMIZATION OF INTERVAL
NARROWING ALGORITHMS

Olivier LHOMME'!, Arnaud GOTLIEB??, Michel RUEHER?

Interval narrowing techniques are a key issue for handling constraints over
real numbers in the logic programming framework. However, the standard
fixpoint algorithm used for computing an approximation of arc consistency
may give rise to cyclic phenomena and hence to problems of slow conver-
gence. Analysis of these cyclic phenomena shows: 1) that a large number of
operations carried out during a cycle are unnecessary; 2) that many others
could be removed from cycles and performed only once when these cycles
have been processed. What is proposed here is a revised interval narrowing
algorithm for identifying and simplifying such cyclic phenomena dynami-
cally. These techniques are of particular interest for computing stronger
consistencies which are often required for a substantial pruning. Experi-
mental results show that such dynamic optimizations improve performance
significantly. <

1. Introduction

Interval narrowing techniques allow a safe approximation of the set of values that
satisfy an arbitrary constraint system to be computed. Lee and van Emden [19]
have shown that the logic programming framework can be extended with relational
interval arithmetic in such a way that its logic semantics is preserved, i.e., answers
are logical consequences of declarative logic programs, even when floating-point
computations have been used. These reasons have motivated the development
of numerous CLP systems based on interval arithmetic (e.g., BNR-Prolog [30],
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CLP(BNR) [2], Interlog [17, 6, 20], Prolog IV [5]). All these systems use an arc
consistency like algorithm [25] adapted for numeric constraints [9, 8]. This “stan-
dard” interval narrowing algorithm (named algorithm IN in the following) has two
main drawbacks:

e the existence of “slow convergences”, leading to unacceptable response times
for certain constraint systems;

e the “early quiescence” [9], i.e., the algorithm stops before reaching a good
approximation of the set of possible values.

The focus of this paper is on the first problem. It shows that there is a strong
connection between the existence of cyclic phenomena and slow convergence. The
main goal is to dynamically identify cyclic phenomena while executing algorithm
IN and then to simplify them in order to improve performance. The second prob-
lem is due to the fact that interval narrowing algorithms only guarantee a partial
consistency. Many alternative approaches [16, 20, 13, 11, 4, 7, 31] have been pro-
posed for tackling this problem. The framework introduced in this paper also leads
to significant gain in speed for some of these approaches that are based on higher
consistencies than arc-consistency. This is due to the fact that achieving higher
consistency filtering (e.g., 3B—consistency filtering [20]) requires numerous compu-
tations of an approximation of arc-consistency.

1.1. A motivating example

Algorithm IN works iteratively: constraints are used for reducing domains until a
fixpoint is reached.

The worst case running time of algorithm IN is bounded below by Q(r x m)
and above by O(r x m X a) where r is the arity of constraints, m is the number of
constraints and a is the number of floating points numbers in the domains ([21]).
Experimental running times of this algorithm are generally well below the upper
bound of the running time. However, slow — or asymptotic — convergence phe-
nomena sometimes occur, and then the experimental running time approaches the
theoretical upper bound (see the example described in figure 1.1).

Intuitively these phenomena are cyclic. In the example of figure 1.1, the cycle is
made up of the five constraints (a, b, ¢, d, ). However, the reduction of Dx induced
by constraint (¢) is stronger than the reduction of Dx induced by constraint (b), so
there is no point in applying constraint (). Only (a), (¢), (d) and (e) are relevant
and the cycle could be simplified to (a, ¢, d, €).

Constraints (d) and (e) only intervene in the cycle to reduce the domains of 7,
and Z3. It would be better to defer applying constraints (d) and (e). Thus, the
cycle would be simplified to (a, ¢) and constraints (d, ¢) would only be applied once,
when the fixpoint has been reached. The number of computations carried out by
algorithm IN at each step would hence be minimized.

The presence of a cycle implies the existence of a series ux = f(ug—1) which
converges towards a fixpoint u such that v = f(u). The equation u = f(u) could
be infered and be solved by a computer algebra system. In the above example,
constraints (a) and (b) are linear and can be solved symbolically. However, a
symbolic solution cannot be computed for arbitrary systems of constraints.



Y=X (a)
Y =1.001% X (b)
Y=2+X (c)
Zi=e¥ (d)
7y =21 €)

(a) & Dx =[0,10] — Dy =[0,10]
(b) & Dy =[0,10] — Dx =[0,9.99]
(¢) & Dy =[0,10] — Dx =]0,5]
(d) & Dy =[0,10] — Dz, =[1,¢']
(€) & Dz, =[1,e'°] — Dz, =[e,e ]
(a) & Dx =0, 5] — Dy =][0,5]
(b) & Dy =0, 5] —  Dx =[0,4.99]
(¢) & Dy =10, 5] — Dx =10,2.5]
(d) & Dy = [0, 5] — Dz, =[1,€%
( [ 765] — DZ2 [6766 ]

FIGURE 1.1. A slow convergence phenomenon

The aim of this paper is to dynamically simplify the evaluation of the terms of
the series up = f(ug—1) in order to accelerate convergence towards the fixpoint
u. Two types of cycle simplifications are proposed: removing the non-relevant
narrowing functions and postponing some other ones. More precisely, given a cyclic
phenomenon (a, b, ¢, d, €) such that:

e b performs a weaker reduction than ¢,
e d and e could be processed only once at the end of the cycle,

the goal is to replace n iterations of (a, b, ¢, d, €) by n iterations of (a, ¢) followed by
one iteration of (d, e).

1.2. Relevance of automatic cycle simplification

At first sight, one could think that slow convergence phenomena do not occur
very often. It is true that early quiescence of algorithm IN is far more frequent
than slow convergence. However, when algorithm IN ends prematurely, a kind of
enumeration interleaved with this algorithm is generally performed (e.g. domain
splitting [8] or stronger consistencies [20, 11, 4, 35, 12]). During this interleaved
process, slow convergence phenomena may occur and considerably increase the
required computing time.

Slow convergence phenomena move very often into cyclic phenomena after a
transient period (a kind of stabilization step). For linear systems of constraints,
slow convergence always entails a cyclic phenomenon. Of course, in this case the
slow convergence phenomenon can be removed by simplifying the linear system
with a linear solver. Cooperation between an interval narrowing solver and a linear
solver is especially worthwhile in this latter case [1, 31, 7, 26, 32]. For arbitrary



non-linear systems, slow convergence very often leads to a cyclic phenomenon too.
As arbitrary non-linear systems cannot be tackled with a symbolic solver, auto-
matic cycle simplification is the only way to accelerate convergence in many real
applications.

1.3. Layout of the paper

Section 2 reviews some basics concepts required for the rest of the paper. In section
3, the concept of propagation cycle is introduced. It is shown that algorithm IN
does not allow cyclic phenomena to be satisfactorily simplified. Thus, a revised
interval narrowing algorithm is proposed in which cyclic phenomena can be signif-
icantly simplified. Simplification of a cycle is described in section 4. In section 5,
experimental results are provided. Finally, in section 6, the limitations and possible
extensions of our approach are discussed.

2. Interval narrowing

In this section, we recall some basic concepts concerning interval narrowing tech-
niques. More complete information on that subject can be found in [16, 20, 13, 4,

35].

2.1. Basic notations

Let be R® = RU{—00, 400} the set of real numbers augmented with the two infin-
ity symbols. I denotes a finite subset of R® containing {—oo, +00}. Practically,
I corresponds to the set of floating-point numbers used in the implementation.
{—00, +00} represents respectively all numbers smaller (resp. greater) than the
smallest (resp. the biggest) floating-point number. Let a € I, at (resp. a™) corre-
sponds to the smallest (resp. largest) number of I’ strictly greater (resp. smaller)
than a.

Definition 2.1. [Interval] An interval [a, b] with a,b € I is the set of real numbers
{reR a<r<b)

Let r be a real number. 7 denotes the smallest (w.r.t. inclusion) interval of IF'
containing r. Z denotes the set of intervals and is ordered by set inclusion (this
kind of intervals are sometimes called floating point intervals in the literature). U (Z)
denotes the set of unions of intervals. C denotes the usual inclusion on vectors of
TF or U(T)".

A CSP [25] is a triple (X, 7_5, C) where X = {x1,...,2,} denotes a set of variables,

7_5: (Dy,...,D,) denotes a vector of domains, D; the ' component of 1_5 being
the interval containing all acceptable values for z;, and C = {C4, ..., C,,} denotes
a set of constraints.

A k-ary constraint C' is a relation over the reals. p(C) denotes the subset of R*
satisfying constraint C'. 5(C) denotes the smallest!(w.r.t. inclusion) subset of Z*

! The term smallest (w.r.t. inclusion) subset must be understood here according to the precision



which contains p(C), i.e.,

l.<ry,...,rg > €p(C)=> < 7y,...,7 > € p(C)
2. < 1, Ik > Eﬁ(C):>E|<T’1,...,T’k >e< i, o Iy > |
Vi€ l.k, ;=1 and <7ry,...,rp > € p(C).
-

- - 5 N
3. TEHCINT'CT NT'#1=T'¢ 5(C)

-+ =
Py denotes an empty CSP, i.e, a CSP with at least one empty domain. D’'CD means
D; C D; for all i € 1..n.

2.2. 2B-consistency

Most of the CLP systems over intervals (e.g., [29, 17, 2, 5]) compute an approxima-
tion of arc-consistency [25] which will be named 2B-consistency [20] in this paper.
2B—consistency states a local property on a constraint and on the bounds of the
domains of its variables (B in 2B—consistency stands for bound). Roughly speaking,
a constraint C' is 2B—consistent if for any variable z in C' the bounds a and b of
the domain D, = [a, b] have a support in the domains of all other variables of C.
However, the bounds may only be floating point numbers whereas constraint C'
may hold for values of z which are not floating point numbers; the formal definition
makes use of semi-open intervals to take this point into account.

Definition 2.2. [ 2B-consistency]
Let (X,B,C) be a CSP and C € C a k-ary constraint over the variables
(z1,...,2). C is 2B—consistent iff:
Vo, € (21,...,25) let Dy, = [a,b]
Jv1 € Dyy, ..., 3v; € [a,at),...,Jvg € Dy, such that (vi,...,vs) € p(C)
and Jv] € Dy, ..., i € (b7,0b],...,v}, € Dy, such that (v, ...,v}) € p(C)

A CSP is 2B—consistent iff all its constraints are 2B—consistent.

Ezample 2.1. Let Py = ({z,y},{D, = [1,4], Dy = [-2,2]},{z = ¥*}). P1 is
2B-consistent because {< 1,1 >,<4,-2> <4,2>} C p(z = y?).

2B—consistency is a weaker consistency than arc consistency. For instance, P; is
2B—consistent but not arc—consistent since there i1s no value in D, which satisfies
the constraint when y = 0.

—
Closure by 2B—consistency of a CSP P = (X,B,C) is a CSP P’ = (X,D',(C)
such that :

e P and P’ have the same solutions;

e P’ is 2B—consistent;

of floating-points operations. In the rest of the paper, we consider —as in [19, 4]— that results of
floating-points operations are outward-rounded to preserve correctness of the computation.



- — -
e D’ C D and domains in D’ are the largest for which P’ is 2B—consistent.

We note ®ap(P) the closure by 2B-consistency of P.

2.3. 3B-consistency

2B—consistency is only a partial consistency, and then it is often too weak for
computing an accurate approximation of the set of solutions of a CSP. In the same
way that arc-consistency has been generalized to higher consistencies (e.g., path
consistency [14]), 2B—consistency can be generalized to 3B—consistency [20].

Definition 2.3. [3B—consistency]| Let P = (X,B,C) be a CSP and z a variable
of X with domain [a,b]. Let also be:

e P; the CSP derived from P by substituting D, in 1_5 by D! = [a,a%];

e P, the CSP derived from P by substituting D, in 7_5 by D2 = [b—,b].
D, 1s 3B—consistent iff:

1. ®up(P)) % Py

2. ®up(P2) £ Py

A CSP is 3B—consistent iff all its domains are 3B—consistent.

It results from this definition that any CSP which is 3B—consistent is also 2B-
consistent. The generalization of the 3B—consistency to kB—consistency is straight-
forward and is given in [21, 22].

Closure by kB-consistency of P is defined in a similar way as closure by 2B-
consistency of P, and is denoted by ®;p(P).

Filtering algorithms for computing 2B—consistency and 3B—consistency closures
use an approximation of the unary projection of the constraints to reduce the
domains of the variables. Next section introduces the narrowing functions used for
computing such projections. Algorithms will be introduced afterwards.

2.4. Narrowing functions

Let C be a k-ary constraint over (x;,,...,%;,), and < I,..., Iy > € T%: for each
jin 1.k, m (C, Iy x ... x I;) denotes the projection of 5(C) on z;; in the part of
the space delimited by I; x ... x I.

Definition 2.4. [projection of a constraint] m; (C, Iy x ... x Iy) : (€, TF) = U(T)
is the projection of 5(C) on x;iff:
ﬂ'l'j(C,Il X ...ka)z{flj |E|<El1,...,£~lk>6p~(0) NI x...x I}

AP;(C,I1 x ... x I;) : (C,I%) — T denotes an approximation of the projection
of a constraint equal to the smallest interval encompassing the projection, i.e.; the
interval [a, b] such that a (resp. b) is the smallest (resp. largest) value of m;(C, I x



...x Ix). For instance, let C be the constraint 1 —22+3 =0, AP, (C, I; x I3) can
be expressed by I; N (I3 — 3) using interval arithmetic [28].

Such an approximation 2 is computed by the evaluation of what will be called a
narrowing function. For convenience, a narrowing function will be considered as a
filtering operator over all the domains, i.e., from Z™ to Z™. For a k-ary constraint
C over (x;,,..., ;) there are k narrowing functions, one for each x;,.

Definition 2.5. [narrowing function] The narrowing function of C' over the vari-

—

able z; is the function f:Z™ — Z™ such that f(”[_)>) =D’ where :
: _ JDj ifj#£i

Vie{l,...,n} Dj= {APZ-(C’DZ.I X ... x D) ifj=i

A narrowing function f reduces the domain of at most one variable (z; in the
previous definition), called left-variable of f and denoted f.y (on the analogy of the
notation y = f(z)). The constraint from which the function f is issued is denoted
f.c and the set of variables whose domains are required for the evaluation of the
domain of f.y is called right-variables set and is denoted f.zs. The three following
properties trivially hold:

« /(DP)CD

e if f and g are narrowing functions of the same constraint (i.e, g.c = f.c)

then f(g(f(D))) = g(F(D))

In this paper, a numeric CSP (X, 1_5, C) will also be denoted by a triple (X, 7_5, F)
where F is the set of narrowing functions corresponding to the constraints in C.
Figure 2.1 shows such a view of a CSP (II;(C') denotes the narrowing function of
C' over the variable z;; e.g., f =1 (21 — 22 + 3 = 0) reduces D by using D»).

Let (X, B,C) be a CSP where C = {z1 —x2+3=0,2z5 = z1 }:

This CSP can be formulated in the form (X, 5, F) where F = {f,g,h,1}
f:H1(.’L‘1—.’L'2-|—3:0) h:H2($1—$2+3:0)
i:H1($3:$1) g:H3(.’L‘3:.’L‘1)

FIGURE 2.1. A CSP in the form (X, 5,]—")

?For most non-linear constraint systems, AP;(Cp,I; X ... X I;) cannot be computes in a
straightforwarm way. However, interval arithmetic [28] allows AP;(Cyp, I X...X I ) to be computea
on a subset of the constraints set, callem basic constraints. Each constraint can be approximatea
by mecomposition in basic constraints. Other approximation of the projection (e.g. [4, 35]) can
also be usem.



2.5. Filtering opemtor%

A set of narrowing functions 7 will be associated to a filtering operator 7N~ that com-
putes the intersection of the domains narrowed by the functions in 7 (all functions

in 7 are applied to the same vector of domains 7_5)
Definition 2.6. [filtering operator ’7N’] Let T={fi...,fp} CF. "72 (7_5) is defined
by:
~ = — —
o If 7 #0then 7 (D)= fi(P)N...N fp(D)

~ 5 o
e If 7 = () then by convention T (D) =D.

2.6. Interval Narrowing Algorithms

Using the above notations, algorithm IN [9, 8] can be written down as in figure 2.2.
IN implements the computation of the closure by 2B-consistency of a CSP P. The
following proposition also characterizes the fixpoint computed by IN.

—
Proposition 2.1. Let P = (X,B,}") be a CSP and P' = (X, D', F) be the closure
by 2B-consistency of P. Then:

~

-
« D'=F (D)

— ~
e D' is the largest fizpoint for F included in B

IN(in F, inout 7_)))
Queue + F ;
while Queue # 0
f + POP Queue;

—+ —
D' f(D);
- _ _ -
if D' # D then D« D';
Queue «Queue U {g € F |g.c# f.cand fy € g.z:}

endif
endwhile

FIGURE 2.2. Algorithm IN

Algorithms for computing higher consistencies can be found in [20, 21, 22]. We
just give here the main idea of a naive 3B—filtering algorithm.
-
Let P = (X,D,C) be a CSP,  be a variable of X with domain [a, b] and D’ = [¢, d]
be the domain of  in the closure by 3B-consistency of P.
In order to find ¢, we try to refute the part [a,¢) of the domain D,. First we try



to prove that CSP P, derived from P by substituting D, in ”1_5 by [a, (a + b)/2] is
inconsistent (i.e., ®ap(P) = Py). If successful, this process is restarted with the
midpoint of the remaining interval, otherwise we try to refute a smaller part on the
left of D, (e.g., [a, (a+ b)/4]). The process stops when the part of D, which could
be removed is smaller than a given value €. The same process could be applied to
find the upper bound d. In fact, the algorithm works in a round-robin way over all
the variables.

The key point is that kB—filtering algorithms make an intensive use of algorithm
IN. Thus, any cycle optimization in IN will dramatically improve kB-filtering algo-
rithms.

3. Towards a characterization of the cyclic phenomenon

When algorithm IN runs into a slow convergence phenomenon a cyclic phenomenon
may occur after a transient period. In this section, we give a precise characterization
of a cyclic phenomenon. Let us outline our approach in very general terms:

1. we show that information about some dynamic dependencies (in place of
static ones) between narrowing functions is required;

2. we show that such information about dynamic dependencies cannot be iden-
tified in the framework of algorithm IN. This is due to the fact that the order
in which the narrowing functions are enqueued plays a major role in IN;

3. we introduce a revised version of algorithm IN in order to get information
about some dynamic dependencies.

Further definitions are now required to formalize such cyclic phenomena.

3.1. Static dependencies

A static dependency between two narrowing functions f and g means that after an
evaluation of f which does modify the domain of f.y, ¢ may reduce the domain of
g.y (the narrowing functions enqueued in algorithm IN are the ones which statically

depend on f).

Definition 3.1. [Static dependency] There is a static dependency between two
narrowing functions f and g, denoted f = g, iff:

e g.c# f.c (f and g are functions not issued from the same constraint)

o fuy € g.xs (the left-variable of f occurs in the right-variables set of g)

We note suces(T) the successors in the static dependency graph of a set of
narrowing functions 7 suce,(T) ={g € F |If € T and f > g}.
Static dependency information may not be sufficient for cycle simplification. For

instance, consider the example in figure 2.1: f = ¢, hence, g(f(B)) may be different
—
from f(7_)>) However, let D'= f(B) and suppose that Dj is included in D}, then
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— —

g(f(D)) = f(P). Such an equality would allow g to be removed from a possible
cycle; unfortunately, f = g does not allow to infer this equality and thus no cycle
simplification can be performed in this case.

What is needed is a dynamic dependency f 4 g that ensures that a modification
induced by f actually implies a modification induced by ¢g. The first idea is to follow
algorithm IN and try to identify such dynamic dependencies.

3.2. Dynamic dependencies

To have a dynamic dependency between function f and function g, the following
conditions are required:

e f was applied before ¢

e f reduced some domain and g reduced some domain

e g statically depends on f : f ¢

—
Algorithm IN computes the terms of a sequence of i*® term f;(fi_1(... fo(D)))
characterizing the order in which the narrowing functions f; are enqueued:

fz(fl_l(fo(j_s))) corresponds to the enqueueing order (fo, fi, ..., fi).
Let us assume that a dynamic dependency holds between f and g if f = ¢ and
— —
9(f(D)) # f(D). Such a definition would lead to several problems:

—
1. g(f(D)) is not always computed by algorithm IN since some narrowing func-
tions may have been enqueued between f and g, e.g., IN may compute

(b (- (hx(F(D)))))-

2. The fact that f = g and g(f(B)) + f(B) does not always imply an effective
dynamic dependency between f and g since g(B) could be different from 7_5
For instance, if g(f(hy ((hk(Bo))))) is computed, then the effective dynamic
dependency may hold between h; and g.

3. The narrowing functions which g dynamically depends on may be dynami-
cally dependent between themselves; this means that the dependencies are
interleaved.

The above three problems are simultaneously illustrated in example 3.1.

Example 3.1. Let (X,B,}") be a CSP where :

o {fgh}CF
° {Il,IQ,d}g,I4,I5} cXx
o D, = [0, 27]

o f=TI(x1 = z5)

® g= HQ(CL‘Q = ;131)

o h =TIz(z3 = 21 + cos(x4 + z2))

Suppose that h(g(f(B))) is computed (according to some enqueueing order of
the narrowing functions). Suppose also that 7_5 verifies:
— — — — — —
e (D) =D and k(D) =D, « 1D) £,
— — — —
* 9(f(D)) # F(D), * h(g(f(D))) # 9(f(D)).
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That is f, g and h perform reductions. The static dependencies are: f = g, f -
h,g = h. According to the above naive definition g % h holds but we cannot

infer that h depends on f since h(f(B)) is not computed. However h actually only
depends on f (the reduction of D3 is only due to the modification of D; computed
by f since one period of cosine is in the domain Dy).

It follows that a stronger definition of the dynamic dependency is required. The
trick is to find a definition that not only avoids the above-mentioned problems but
also allows an efficient computation of these relations. Before giving the definition
used in the paper, we introduce a revised algorithm for interval narrowing that
provides support for identifying relevant narrowing functions.

3.3. Revised algorithm for interval narrowing

Since closure by 2B-consistency is a fixpoint for ;‘, it may be computed by re-

~ -
peatedly applying F over D. When computing the terms of such a sequence, some
narrowing functions cannot reduce any domain. It follows that it suffices to evaluate
the terms of the sequence:

Ta(Tnz1(.. (To(Do)))) where
-+ =
o Do=D,To=F,

o 7, = sucey({f € Ti—1 such that f.y = z; and D; has been reduced by
Ti-1}):

Definition 3.2. BZ denotes the domain vector at the i*? step:
— ~ ~ =
Di= Ti—1(---To(Do))

~ =

Proposition 3.1. ’;Z(BZ) = F (D)

~ ~ = Nl
Corollary 3.1. Ti(...To(Do)) = (F) (Do).
Algorithm Revised-IN (Figure 3.1) computes this sequence: it applies on the

—
same vector P all the narrowing functions which may reduce a domain.

Corollary 3.2. The fizpoint computed by algorithm Revised-IN is identical to the
one computed by algorithm IN.

Using this algorithm to compute the fixpoint would push the upper bound of the
running time to O(’QXTT’ZA) instead of O(r x m x a) for IN where m is the number
of (basic) constraints, n is the number of variables, r is the arity of constraints
and a the size of the largest domain. Thus, it will only be used for computing the
dynamic dependencies.
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Revised-IN(in F, inout 7_)))
T« F;
while 7 # 0

-

D'+D;

- o~ =

DT (D);

§«—{feT|Di# D;and fy=ux};
T « succs(d);

FIGURE 3.1. Algorithm Revised-IN

3.4. Relevant narrowing functions

As outlined in the introduction, when two narrowing functions perform a reduction
of the domain of a given variable, it is possible to remove the narrowing function
which performs the weakest reduction of that domain.

The relevant narrowing functions are those narrowing functions which perform
the strongest reductions of the domains of the variables during the application of

~ —
the operator 7; on P;. Since the domains are intervals, there may be 0, 1 or 2

(one for the lower bound, one for the upper bound) relevant narrowing functions
for each variable. R; denotes the set of those relevant narrowing functions.

Definition 3.3. [relevant narrowing functions] R; C 7; is the minimal® subset of
~ — ~ =

Ti such that R; (Di) =T (Ds).

It follows that:

~ —

Proposition 3.2. Ri (BZ) = F(Di).
~ ~ = Ny
Corollary 3.3. Ri(...Ro(Do)) = (F)' (D).

Computing R; only consists — when applying ’7N’Z in Revised-IN — in keeping,
for each bound of a domain, the narrowing function that leads to the strongest
reduction.

Now assume the relevant narrowing functions are known (as it will be the case in

~ ~ =
a cyclic phenomenon), then it is sufficient to compute R; (D;) instead of T (D;).

3.5. Computing the relevant dynamic dependencies

As the non-relevant narrowing functions will be removed from the cycle, the dy-
namic dependencies have only to be computed for the relevant narrowing functions.
Thus, we are now in position to propose a definition of the dynamic dependencies
such that:

e most of the cycles can be reduced significantly, and

e the set of those dynamic dependencies can be computed in an efficient way.

3If two narrowing functions perform the same reduction on the same bounds, only the first
one according to a lexical order is considered as relevant.
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This dynamic dependency relation is parameterized by the domains of the variables

— —

D and by a set of relevant narrowing functions R (intuitively, R and D define

the context in which a narrowing function is applied). The key point is that all
—

narrowing functions in R are applied on the same domains P.

Definition 3.4. [dynamic dependency] Let (X,B, F) be a CSP such that R C F
be the set of relevant narrowing functions, f € R, ¢ € F. A dynamic dependency

I 4(R.P) g holds iff:
)fER >y,
b) ¢(R (D)) #R (D)

R being the set of relevant narrowing functions, R (P ) C g(D). The second
problem mentioned in section 3.2 does therefore no longer occur. Point (b) means
that the reduction performed by g is due to the domain reduction achieved by
some narrowing function in R. Point (a) means that f could be such a narrowing
function.

Cycle simplifications based on that definition may not be optimal but in practice
this definition is strong enough to significantly reduce numerous cycles.

Computing the dynamic dependencies between the relevant narrowing functions
can be done easily thanks to the following result.

Proposition 3.3. Let f and g be two relevant narrowing functions such that f € R;
and g € Riy1. Then the following pmposz'twn holds:

Rz,D
FU=S g i f Sy
Proof: Since every function in Rz+1 is relevant, g will perform a reduction of a

domain, and thus g(RZ ( i) #Rz (P z)~

Let G be the dynamic dependency graph. The dynamic dependencies are pa-

—
rameterized by R; and D;. The vertices of G are pairs < f,i >, where f is a
narrowing function and ¢ is the index of the inference step. An arc from < f,i >

to < g,1+ 1 > will represent a dynamic dependency f L? ‘)

Let G; be the subgraph of G restricted to the i** step of the algorithm. G; is
a bipartite graph from < R;,7 > to < Rjy1,1+ 1 >, where < R;, 7 > is the set
{< f,i>|feRi}.

The above proposition states that the set of dynamic dependencies represented
by G; is the subset of the static dependencies whose starting functions belong to
R; and the ending ones belong to R;41.

The dynamic dependency graph G is just the union of subgraphs G; at the
different steps. An example of a dynamic dependency graph is given in figure 3.2

(a).
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<f1,0>—> < fr,1 > < f5,2> < 1,05 < fr,i> < f5,2>

< fal>— < f6,2> < f2,0 >

FIGURE 3.2. Dynamic dependency graphs

3.6. Definition of a cyclic phenomenon

A propagation cycle formalizes a cyclic phenomenon:

Definition 3.5. [propagation cycle]
—
A propagation cycle is a quintuplet < X', D, F, p, ArrayR > where:

. (X,B,}') is a CSP; |F| = m;

— -
e IN > m, FN(D) # FN~-1(D) i.e, a slow convergence* occurs;
e pis the period of the cycle;

e Forall i < N,Riy, = R; (the sets of relevant narrowing functions occur pe-
riodically), that is R; = ArrayR[i mod p) if the relevant narrowing functions
are kept in ArrayR.

For instance, a propagation cycle of period 3 means that the subgraph G; is
equal to the subgraph Gj moa 3; thus the dynamic dependency graph is cyclic (see
figure 3.2 (b) where 0 denotes all the steps ¢ such that ¢ mod 3 = 0).

4. Simplifying a cycle
4.1. Pruning the dynamic dependency graph
Two types of simplifications were mentioned in the introduction:
1. Removing the non-relevant narrowing functions;

2. Postponing some narrowing functions.

4The speem of convergence is a relative notion. The revisem algorithm is saim to converge

-
slowly for (X, D, F) when the number of iterations requirem to reach the fixpoint is much greater
than m, the number of narrowing functions of F.
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The first point is now interleaved with the cycle definition: removing the non-
relevant narrowing functions consists in only applying the relevant ones that have
been identified during the cycle detection step.

The second point can now be formulated easily: a vertex < f,7 > which does not
have any successor in the dynamic dependency graph corresponds to a narrowing
function that can be postponed. Such a vertex can be removed from the dynamic
dependency graph. Applying this principle recursively will remove all non-cyclic
paths from the graph. For instance, in graph (b) of figure 3.2, all white arrows will
be pruned.

When a vertex is removed, the corresponding narrowing function is pushed onto
a stack (the removing order must be preserved).

The correctness of cycle simplification can trivially be established:

Proposition 4.1. Let R'; C R; be the sets of relevant narrowing functions whose
corresponding vertices have not been removed from the graph, and let sy, sa, ..., s
be the stacked narrowing functions (s1 being the first one stacked).

~

I (F)* (Do) = (F) (Do), then o
(F)* (Do) C s1(--s1(R'k (R's=1 (- R'0 (Do)

4.2. Algorithm INC

The algorithm proposed for cycle simplification is called INC. INC operates in 4
steps:

1. observe the dynamic behavior and try to detect a cycle;

2. simplify the detected cycle and stack the narrowing functions corresponding
to vertices removed from the dynamic dependency graph,;

3. iterate on the simplified cycle until a fixpoint is reached;

4. when the fixpoint has been reached, evaluate the stacked narrowing func-
tions.

Step 1 boils down to running algorithm IN and observing that it continues to
iterate after k iterations where k depends on the number of variables and the number
of constraints of the problem. Henceforth, the existence of a propagation cycle is
assumed. Then, Revised-IN is started for finding the period of the propagation
cycle and building ArrayR.

To the authors’ knowledge, there exists no efficient algorithm for finding the
period of the propagation cycle in the general case. However, it is always possible
to find the period of a sub-cycle. A history of the relevant narrowing functions just
needs to be kept: when ArrayR[k] is built, ArrayR[k] and ArrayR[0] need to be
compared (implementation is a little more complex since a stabilization step has to
be performed). If they are equal, we have a candidate that could be a sub-cycle of
period p = k. It is then possible to verify that it is repeated during the following
k steps. It is difficult to be sure that this sub-cycle is the propagation cycle as it
could just be a cycle within the actual propagation cycle. Be this as it may, in most
cases it is acceptable to take the first sub-cycle to be encountered.

Step 2 has been described in section 4.1. An upper bound of the running time
for simplifying the cycle is O(g) where ¢ is the number of arcs in the dynamic
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dependency graph. g is generally of the same order of magnitude as m, the number
of narrowing functions®.

Step 3 consists in computing R’; (R';i—1 (... R'o (7_50))), using the fact that
R = ArrayR[i mod p]. An upper bound of the running time of this iteration
procedure is O(a x m') where m' is the number of different narrowing functions
occurring in ArrayR and a is the maximum size of the domain of the variables (note
that a is here a very large number). Since the existence of a propagation cycle leads
to a phenomenon of slow convergence it is reasonable to suppose that the other parts
of the general algorithm represent but a tiny part of the computation time, and
O(a x m') can be compared with the complexity of algorithm IN : O(a x m) where
m is the total number of narrowing functions [24, 34, 20].

Step 4 evaluates the relevant narrowing functions corresponding to the removed
vertices when the fixpoint has been reached. This must be done in reverse order to
their removal. This procedure is in O(l) where [ is the number of removed vertices.

Since it may happen that step 1 has only identified a sub-cycle, algorithm INC
may stop before reaching the fixpoint computed by algorithm IN. To make sure
that the same fixpoint is computed we can either restart INC until no more change
occurs or restart IN after the fourth step of INC.

5. Implementation and experimental results

Algorithm INC has been implemented and integrated in Interlog [6, 17, 21], a
CLP(Intervals) system. To evaluate the proposed framework, we have performed
various experimentations. First subsection reports some experimental results on
small examples which very well illustrate the benefits one can expect. Second sub-
section concerns a real application for which INC has led to significant gain in speed.
Third subsection shows the advantage of INC for computing higher consistencies.

5.1. Fzxamples

The examples in Table 5.1 only differ by an increasing number of narrowing func-
tions that can be postponed. Table 5.2 reports the improvement factor gained with
dynamic cycle simplification. Improvement rate represents the ratio ¢1/ts where ¢;
is the running time of algorithm IN and ¢ is the running time of algorithm INC with
cycle simplification. Note that even for a problem without any cycle simplification
(first problem, for which all enqueued narrowing functions in IN are relevant and
cannot be postponed) the improvement factor is more than 3 times. This is only
due to the fact that using ArrayR is more efficient than the enqueueing/dequeueing
operations.

5.2. A chemical problem

The constraint system described in figure 5.1 comes from a chemical problem. On
this problem, IN enters in a slow convergence phenomenon. INC runs more than 7

5Note that in examples built for this special purpose g could be a very large number. In this
cases, the first step of the algorithm can take into account an upper bound for the number of
vertices in the sub-cycle.



TABLE 5.1. List of Examples

Problem System of Constraints

1 z = sin(y) y=sin(z)

2 r=sin(y) y=sin(z) z1 =xx*y
=x+y

3 r=sin(y) y=sin(z) z1 =xx*y

zo=a+y z3=3%2 z4 = exp(x)
25 =21 %29 Zg =25 2=+ 21
28 =Y Z9=21%23 Zio =Y+ 21

211 =X+ 26 212 = 24+ 21

TABLE 5.2. Computation Results

Problem Postponed narrowing functions Improvement rate

1 0 3.6
2 6 11.7
3 30 27.2

times faster than IN. This result is obtained by postponing 28 narrowing functions.

5.3. Higher order consistencies

The constraint system given in figure 5.2 cannot be solved by a 2-B-consistency al-
gorithm (it is already 2-B-consistent). However, this constraint system can be tack-
led with a 3-B-consistency algorithm. A 3-B-consistency algorithm having to run
a 2-B-consistency algorithm, it may be interesting to compare two 3-B-consistency
algorithms: the first one uses IN while the second one uses INC. The version with
INC runs more than 6 times faster than the 3-B-consistency algorithm with IN.

Other experiments on 3B-consistency have been done. Such an improvement
factor in using INC in place of IN in 3B-consistency is not obtained for all the
constraint systems, but no overhead was observed on any tested example.

6. Further work

The detection of the cycles is based on an approximation of the dynamic depen-
dencies. The approximation used in this paper has the advantage that it can be
computed efficiently. Indeed, both stronger and weaker definitions may allow an
effective pruning of the propagation cycles for some specific problems. A topic for
future research could be to evaluate experimentally different approximations of the
dynamic dependencies on significant benchmarks.

The algorithm suggested here does not detect the propagation cycle but a sub-
cycle. Although, in the vast majority of cases, this sub-cycle corresponds to the
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Dch = Davl + Dt2 + Dt3 + Dul,

Dav2 4+ Davl + Dt2 = Du2 + Dpl,

Dt3+ Dfg= Dp2 + Du3,

Dul + Du2 + Du3 = Df1+ Dfyg,

Dfl+ Dal = Deg + Dch,

Dch * (2.0 % T1 — 4.18 x Tlig + 2400.0) = Pch,

2.0 Dt2 % (T1 — Tt2) = Pt2,

2.0 Dt3x (T1 — Tt3) = Pt3,

Pt2 = 2.0 *x Eta2 x Dt2 % (T'1 4+ 273.0) * (1 — exp(0.25 * log(Prt2/ P1))),
Pt3 = 2.0 *x Eta3 « Dt3  (T'1 4+ 273.0) * (1 — exp(0.25 * log( Prt3/ P1))),
(Davl + Dav2) x (2.0 * Tav 4+ 2400.0) = Davl * (2.0 * T'1 + 2400.0) + Pav,
Pav = (2800.0 + 2.0 * Deltats) * Dav2,

Pul = Dul  (2400.0 + 2.0 * T1 — 422.0 * exp(0.25 * log(P1))),

Pu2 = Du2 + (2400.0 + 2.0 * T2 — 422.0 * exp(0.25 * log(P2))),

Pu3 = Du3  (2400.0 + 2.0 * T3 — 422.0 * exp(0.25 * log(P3))),

Dul % (2.0 % T1 + 2400.0) + Du2 (2.0 * T2 + 2400.0) + Du3 * (2.0 + T3 + 2400.0) —
Pul — Pu2 — Pu3 = Dfl* (4.18 * Tf + 0.3) + D fg * (2.0 + Tf + 2400.0),
Dflx (T'f—20.0) = (Dal + D fl) x (Tlig — 20.0),

Tf =100.0 * exp(0.25 % log( P f /0.965)),

(Davl + Dav2) x Tav + Dt2 * Tt2 = (Davl + Dav2 + Dt2) x T2,
Dt3xTt3+ Dfg+«Tf = (Dt3+ Dfg) «T3.

FIGURE 5.1. Constraint system of a chemical problem

zxy+t—2%xz=4,

r*sinx + y*cost =0,

x —y + cos? z =sin? ¢,

Txy*xz=2xt.

where D, = [0,1000], D, = [0, 1000],
D. = [0,3.1416], D; = [0, 3.1416].

FIGURE 5.2. Constraint system requiring 3B-consistency

cycle, this is not always the case. One way of tackling this problem consists simply
in interrupting the iteration in algorithm INC after a certain number of steps (but
before reaching the fixpoint), and then to run the algorithm again from step 1. This
would also offer two further advantages:

e In an over-constrained problem (which has no solution) the removed vertices
may detect a contradiction. It would therefore be useful to periodically
apply the narrowing functions corresponding to the removed vertices before
reaching the fixpoint.

e Secondly, so far the working hypothesis has been that there is a cyclic phe-
nomenon. In fact, when a phenomenon of slow convergence happens in
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algorithm IN it is usually, but not always a lonely cyclic phenomenon. As
a general rule a phenomenon of slow convergence can be decomposed into a
series of cyclic steps separated by a transient, acyclic one. By periodically
reinitializing the cycle detection process it should be possible to detect a new
cycle and to simplify it.

Using a language with meta-evaluation facilities, table ArrayR could be trans-
formed, before iteration, into explicit code and thus the cycle would really be com-
piled. Algorithm Revised-IN applies the narrowing functions on the same domain
vector whereas in algorithm IN they are applied sequentially. Once a propagation
cycle has been detected and simplified, it is possible to use a sequential iteration pro-
cedure (closer to algorithm IN). Let ArrayR[k] be the set {fi, ..., fy}, the iteration

procedure (step 3) can apply fl(fq(j_s)) instead of T(B) where T' = ArrayR[k].
This leads to another cyclic phenomenon, which could be itself optimized. The
order in which the narrowing functions are evaluated can influence this cyclic phe-
nomenon. However, it seems difficult to find an order that is “better” than all the
others.

Dynamic cycle simplification is not based upon a specific kind of narrowing
functions but on the fixpoint algorithm which is used in almost all interval narrowing
systems. The framework introduced in this paper could be combined with some
recent advances in the field like [4, 35] and [13], which propose other narrowing
functions.

A related work is [36]. Although the problems of cycle detection are quite similar,
the aim is not to optimize an algorithm but to generate an abstraction of repeating
cycles of processes to perform more powerful reasoning in causal simulation.

7. Conclusion

This paper proposes a method for greatly accelerating the convergence of the cyclic
phenomena in algorithm IN which is widely used in CLP systems over intervals.
The first step requires simplifying this cyclic phenomenon by keeping just the rel-
evant narrowing functions (i.e., the narrowing functions that actually perform the
task). The second step consists in removing from the cycle those relevant narrowing
functions that may be deferred.

Experimental results indicate that a dynamic cycle simplification can not only
produce significant improvements in efficiency over standard interval narrowing, but
that it can also boost stronger consistencies algorithms which are often required to
achieve an effective pruning of the domains of the variables.
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