Horizontal Correlation Analysis on Exponentiation

Abstract : We introduce in this paper a technique in which we apply correlation analysis using only one execution power curve during an exponentiation to recover the whole secret exponent manipulated by the chip. As in the Big Mac attack from Walter, longer keys may facilitate this analysis and success will depend on the arithmetic coprocessor characteristics. We present the theory of the attack with some practical successful results on an embedded device and analyze the efficiency of classical countermeasures with respect to our attack. Our technique, which uses a single exponentiation curve, cannot be prevented by exponent blinding. Also, contrarily to the Big Mac attack, it applies even in the case of regular implementations such as the square and multiply always or the Montgomery ladder. We also point out that DSA and Diffie-Hellman exponentiations are no longer immune against CPA. Then we discuss the efficiency of known countermeasures, and we finally present some new ones.
Type de document :
Communication dans un congrès
Juan Hernández-Serrano. Twelfth International Conference on Information and Communications Security, Dec 2010, Barcelona, Spain. Springer, 2010, LNCS
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00540384
Contributeur : Vincent Verneuil <>
Soumis le : lundi 29 novembre 2010 - 14:10:46
Dernière modification le : jeudi 11 janvier 2018 - 06:26:18
Document(s) archivé(s) le : vendredi 2 décembre 2016 - 20:16:36

Fichier

Horizontal_Correlation_Analysi...
Fichiers produits par l'(les) auteur(s)

Licence


Copyright (Tous droits réservés)

Identifiants

  • HAL Id : inria-00540384, version 1

Collections

Citation

Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet, Vincent Verneuil. Horizontal Correlation Analysis on Exponentiation. Juan Hernández-Serrano. Twelfth International Conference on Information and Communications Security, Dec 2010, Barcelona, Spain. Springer, 2010, LNCS. 〈inria-00540384〉

Partager

Métriques

Consultations de la notice

764

Téléchargements de fichiers

330