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Abstract We present a new result that enables inference for the mean vector of a
multivariate normal random variable when the number p of its components is far
larger than the number n of sample units and the covariance structure is completely
unknown. The result turns out to be a useful tool for the inferential analysis (e.i. con-
fidence region and hypothesis testing) of data up to now mostly studied only within
an explorative perspective, like functional data. To this purpose, an application to
the analysis of brain vascular vessel geometry is developed and shown.
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1 Introduction

The advent and development of high precision data acquisition technologies in ac-
tive fields of research (e.g., medicine, engineering, climatology, economics), that
are able to capture real-time and/or spatially-referenced measures, have provided
the scientific community with large amount of data that challenge the classical ap-
proach to data analysis.

Modern data sets (large p small n data sets, i.e. data sets characterized by a num-
ber of random variables that is much larger than the number of sample units) con-
trast traditional data sets (small p large n data sets, i.e. data sets characterized by a
number of sample units that is much larger than the number of random variables)
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that drove the evolution of statistics and data analysis during the last century. This
makes all classical inferential tools nearly useless in many fields at the forefront of
scientific research and raises the demand for new modern inferential tools that suit
this new kind of data. The aim of this paper is to provide statistical tools for the
inferential analysis of large p small n data sets.

An active area of statistical research moving in this direction is functional data
analysis (FDA). Indeed, in FDA each sample unit is represented by means of a
function (e.g. Ramsay and Silverman, 2005; Ferraty and Vieu, 2006). Nowadays,
the typical inferential approach of FDA is the projection of the n functions under
investigation - virtually belonging to an ∞-dimensional functional space - onto a
finite p-dimensional functional subspace with p smaller than n. Roughly speaking,
the original FDA is replaced by a classical multivariate analysis that is expected to
well approximate the former one. Technically, performing this replacement means
implicitly assuming that the image of the random function under investigation (i.e.
the space which the realizations of the random function under analysis belong to)
coincides with a specific finite p-dimensional functional subspace. This paper is a
first attempt to provide inferential tools for the analysis of large p small n data (e.g.
functional data) in a basis-free framework (for functional data this means that there
are no assumptions on the spaces which the mean function and the auto-covariance
function belong to).

The work of Srivastava (2007) moves in the same direction. In this work, some
inferential results non depending on strong assumptions on the covariance structure
are presented. Unfortunately, these results are asymptotic in both p and n (i.e. large p
large n data). This makes them non suitable to perform inferential statistical analysis
of large p small n data.

For clarity of exposition, in Section 2 we recall a few well known results about
inference for the mean of a multivariate normal random variable; in Section 3, our
new results about inference for the mean when the number p of random variables
is far larger than the number n of sample units are presented, while in Section 4 an
application of the previous results to the inferential analysis of the local radius of
the internal carotid artery is reported.

2 Inference for the Mean: State of the Art

The classical approach to inference for the mean µp of a p-variate normal random
variable with unknown covariance matrix Σp relies on a famous corollary of the
Hotelling’s Theorem that holds when the number n of sample units is larger than the
number p of random variables.

Theorem 1 (Hotelling’s Theorem). Assume that (i) X ∼ Np(µp,Σp), (ii) W ∼
Wishartp( 1

m Σp,m), (iii) X and W are independent, then for m≥ p:

m− p+1
mp

(X−µp)′W−1(X−µp)∼ F(p,m− p+1) .
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Corollary 1 (Hotelling’s Corollary). Assume that (i’) {Xi}i=1,...,n∼ iid Np(µp,Σp),
then, for n > p:

(n− p)n
(n−1)p

(X−µp)′S−1(X−µp)∼ F(p,n− p) ,

where X and S−1 are the sample mean and the inverse of the sample covariance
matrix, respectively.

Corollary 1 makes possible the development of inferential tools for the estimate
of the mean value of a p-variate normal random variable (e.g. confidence ellipsoidal
regions or hypothesis testing) when the number n of sample units is larger than the
number p of random variables; there are no assumptions on the covariance matrix
Σp that is only required to be positively definite. Proofs of the previous results can
be found, for instance, in Anderson (2003).

In more and more applications, the number p of random variables is far larger
than the number n of sample units and the covariance matrix is unknown. Thus,
Corollary 1 cannot be used to make inference for the mean in these cases. In the
following section we provide a theorem and a corollary that can be used to make
inference for the mean when n is finite, p goes to infinity, and the covariance matrix
is unknown.

3 Inference for the Mean of Large p Small n Data

Given a real positively semi-definite p× p matrix A with {λi}i=1,...,p and {ei}i=1,...,p
being its eigenvalues and eigenvectors respectively, A+ = ∑i:λi 6=0

1
λi

eie′i is called the
Moore-Penrose inverse of A (e.g Rao and Mitra, 1971). Moreover, we indicate with
χ2

1−α
(m) the (1−α)-quantile of a random variable with distribution χ2(m).

Theorem 2 (Generalized Hotelling’s Theorem). Assume that:

(i) X∼ Np(µp,Σp);
(ii) W ∼Wishartp(Σp,m) ;
(iii) X and W are independent;

then, for m≥ 1:

lim
p→+∞

P

[
(trΣp)2

trΣ 2
p

(X−µp)′W+(X−µp)≤ χ
2
1−α(m)

]
= 1−α .
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Corollary 2 (Generalized Hotelling’s Corollary). Assume that:

(i’) {Xi}i=1,...,n ∼ iid Np(µp,Σp);

then, for n≥ 2:

lim
p→+∞

P

[
n(trΣp)2

(n−1) trΣ 2
p
(X−µp)′S+(X−µp)≤ χ

2
1−α(n−1)

]
= 1−α ,

where X and S+ are the sample mean and the Moore-Penrose inverse of the
sample covariance matrix, respectively.

The proof of Theorem 2 and of Corollary 2 can be found in Secchi et al. (2010).
This proof is quite technical and - at the moment - it requires some specific regularity
assumptions about the asymptotic behavior of Σp.

Note that Corollary 2 is based on the univariate statistics n(X−µp)′S+(X−µp).
We named this statistics Generalized Hotelling’s T 2 since it can be proven (Secchi
et al., 2010) that it generalizes Hotelling’s T 2 = n(X− µp)′S−1(X− µp) that ap-
pears in Corollary 1. Indeed, Hotelling’s T 2 is defined only for n > p≥ 1 while the
Generalized Hotelling’s T 2 is defined for any n and p such that n ≥ 2 and p ≥ 1,
and it coincides with the former when n > p. Strong connections with the univariate
t statistic are discussed in Secchi et al. (2010).

Corollary 2 turns out to be a useful tool for the construction of confidence regions
and hypothesis tests for the mean in all practical situations where the number p of
random variables is far larger than the number n of sample units (e.g. genetics) or
even virtually infinite (e.g. functional data).

A Confidence Region for the mean µp can be defined as follows:

CRγ(µp) :=

{
mp :

n(trΣp)2

(n−1) trΣ 2
p
(mp−X)′S+(mp−X)≤ χ

2
γ (n−1)

}
, (1)

with γ being the asymptotic confidence level.

Equivalently, an Hypothesis Test for H0 : µp = µ0p versus H1 : µp 6= µ0p
with asymptotic significance level α has the following rejection region:

Reject H0 in favor of H1 if:
n(trΣp)2

(n−1) trΣ 2
p
(X−µ0p)′S+(X−µ0p) > χ

2
1−α(n−1) . (2)
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In practice, the use of Corollary 2, requires the computation of the coefficient
(trΣp)2/trΣ 2

p . Two different scenarios may occur:

• The coefficient (trΣp)2/trΣ 2
p is known even if Σp is not completely known. This

occurs, for instance, in any situation where Σp is known up to a multiplying
constant (e.g. if Σp = σ2Ip with unknown σ2, (trΣp)2/trΣ 2

p turns out to be equal
to p, or if [Σp]i j = σ2 min(i, j) with unknown σ2, i.e. a discrete time brownian
motion, (trΣp)2/trΣ 2

p turns out to be equal to 3/2).
• The coefficient (trΣp)2/trΣ 2

p is unknown. In this case we proceed by replacing it
with an estimate while the confidence level in (1) and the significance level in (2)
become approximate; for instance, in Section 4 the estimator (n−2)(n+1)

(n−1)2
(trS)2

trS2− 1
n−1 (trS)2

suggested in Secchi et al. (2010) is used.

The case Σp = σ2Ip with unknown σ2 is widely discussed in Srivastava (2007); in
that work the distribution of the statistic (p−n+2)n

n−1 (X− µp)′S+(X− µp) is detected
for any p > n under the assumption Σp = σ2Ip. The results presented in Srivas-
tava (2007) are consistent with Corollary 2. Indeed, when Σp = σ2Ip, for p→+∞,
the difference between the statistic (p−n+2)n

n−1 (X− µp)′S+(X− µp) and the statistic
n(trΣp)2

(n−1) trΣ2
p
(X− µp)′S+(X− µp) converges a.s. to 0, and the limit distribution of the

former statistic is a χ2(n−1), as expected by Corollary 2.
Before showing an application of our results within the context of functional

data analysis (e.g. the analysis of the local radius of 65 Internal Carotid Arteries),
we want to point out some peculiar features of confidence region (1) and of test (2).

Because S+ is positive semi-definite, the confidence region CRγ(µp) - which
for n > p is a p-dimensional ellipsoid in a p-dimensional space - turns out to be
a cylinder belonging to a p-dimensional space generated by an n− 1-dimensional
ellipsoid. Its graphical visualization is of course non trivial. Nevertheless, knowing
if a given vector mp of interest belongs to CRγ(µp) is always trivial. Moreover it can
be shown that CRγ(µp) is bounded in all directions belonging to the random space
Im(S) and thus all projections onto these directions can be used to partially visualize
CRγ(µp). For instance, one may use the n− 1 sample principal components (PCs)
as natural directions onto which project and visualize CRγ(µp).

Due to the non-null dimension of the random space ker(S) and to the orthogonal-

ity between ker(S) and Im(S), we have that the statistics n(trΣp)2

(n−1) trΣ2
p
(X−µ0p)′S+(X−

µ0p) in the hypothesis test (2) does not change if µ0p is replaced by µ0p + µker(S)
with µker(S) being any vector belonging to ker(S). This means that it might happen
that H0 is not rejected even for values of the sample mean X that are “really very
far” from µ0p in some direction within ker(S). This is not surprising, because the
use of S+ implies an exclusive focus on the space Im(S), neglecting all p− n + 1
directions associated to ker(S).
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4 An Application to the Radius of Brain Vascular Vessels

We present here an application of the results introduced in Section 3 to the analysis
of a functional data set: the local radius of 65 internal carotid arteries (ICA). Details
about the origin and elicitation of these data can be found in Sangalli et al. (2009a)
and Sangalli et al. (2009b). The 65 patients are divided into two groups according to
the presence and location of a cerebral aneurysm in their brain vascular system: the
Lower group (made of 32 patients having an aneurysm along the ICA or healthy)
and the Upper group (made of 33 patients having an aneurysm downstream of the
ICA). For both groups, a 95% confidence region for the mean radius function and a
test for the constancy of the mean radius function are computed.

From a numerical point of view, functional data have been discretized on a suf-
ficiently fine grid and the values of the 65 functions in correspondence of the grid
points have been used as realizations of the random variables. The grid size (in this
case made of 258 points) has been chosen large enough to make the value of the
terms on the left of inequalities (1) and (2) stabilize towards their limit values. In
practice, we are dealing with two data sets characterized by n = 32 and p = 258,
and n = 33 and p = 258, respectively, and the p-asymptotic approximation is going
to be used.

In Figure 1, for the two data sets (first row of Figure 1), projections of the radius
functions (colored curves) and of the 95% confidence region for the mean function
(black dotted curves) along the 1st and 2nd PCs are reported (second and third row
of Figure 1, respectively); in the language of multivariate statistics, we would refer
to these bounds as the extremities of the T 2-simultaneous confidence intervals along
the direction indicated by the 1st and 2nd PCs. Similarly to the multivariate case, this
representation is not exhaustive, indeed an infinite number of other directions can
be explored by means of similar graphics to help the visualization of the confidence
region. Note that the fact that a given function lyes within the confidence bounds
shown in Figure 1 does not imply that this function belongs to the confidence region
(the correct procedure to know if a given function belongs to the confidence region
remains using equation (1) directly).

Moreover, note that the bounds in Figure 1 appear to be extremely large com-
pared to the variability presented by the data; this is not surprising in a framework
where p >> n. To this purpose, in the fourth row of Figure 1, the projection of
the 95% confidence region (black dotted ellipse) onto the subspace generated by
the 1st and 2nd PCs is compared with the confidence ellipse based on the classical
Hotelling’s T 2 with p = 2 (black full ellipse); this is the confidence region that one
would have used if he had projected functional data onto the subspace generated
by the 1st and 2nd PCs and had performed - therein - a classical bi-variate statisti-
cal analysis neglecting the randomness of the bi-dimensional space onto which the
data are projected (i.e. assuming it as deterministically chosen instead of data de-
pendent). It is evident that in the framework p >> n, ignoring this randomness can
make the actual confidence (or test significance) drift away from its nominal value.

Finally, we perform for the two populations a test for checking the constancy of
the mean radius, i.e. H0 : E[R(s)] = constant versus H1 : E[R(s)] 6= constant. This
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Fig. 1 First row: radius functions (colored curves). Second and third rows: projections of the radius
functions (colored curves) and of the 95% confidence region (black dotted curves) along the 1st
and 2nd principal components respectively. Fourth row: projections (by means of PC scores) onto
the subspace generated by the 1st and 2nd principal components of the radius functions (colored
points) and of the 95% confidence region (black dotted ellipse); for comparison the confidence
ellipse based on the classical Hotelling’s T 2 with p = 2 is reported (black full ellipse). Lower
group on the left and Upper group on the right.
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test is equivalent to the test H0 : E[R′(s)] = 0 versus H1 : E[R′(s)] 6= 0 that can be
performed by applying test (2) to the first derivatives of the radius functions. In par-
ticular, the 65 first derivatives have been estimated by means of free-knot regression
splines (Sangalli et al., 2009b) and the same grid used to build the confidence regions
for the radius functions have been used to perform the test. At the significance level
5%, the null hypothesis of constancy of the mean radius is rejected for the Upper
group (p-value < 0.001) and it is not for the Lower group (p-value = 0.076). Thus,
a strong statistical evidence for the non-constancy of the mean radius within the last
30 mm of the ICA of patients with an aneurysm downstream of the ICA is found.
This conclusion is coherent with the results illustrated in Sangalli et al. (2009a).
But - differently from the latter work, where this conclusion is heuristically derived
by means of subjective interpretations of functional principal components - in the
present work the same conclusion is reached from an inferential perspective where
the hypotheses of constancy and non-constancy of radius are formally defined and
quantified by means of an hypothesis test procedure.

References

Anderson, T. W. (2003), An introduction to multivariate statistical analysis, Wiley
Series in Probability and Statistics, John Wiley and Sons Inc, 3rd ed.

Ferraty, F. and Vieu, P. (2006), Nonparametric functional data analysis, Springer
Series in Statistics, Springer, New York.

Ramsay, J. O. and Silverman, B. W. (2005), Functional Data Analysis, Springer
New York, 2nd ed.

Rao, C. R. and Mitra, S. K. (1971), Generalized inverse of matrices and its applica-
tions, Wiley Series in Probability and Statistics, John Wiley and Sons Inc.

Sangalli, L. M., Secchi, P., Vantini, S., and Veneziani, A. (2009a), “A case study in
exploratory functional data analysis: geometrical features of the internal carotid
artery,” Journal of the American Statistical Association, 104, 37–48.

— (2009b), “Efficient estimation of three-dimensional curves and their derivatives
by free-knot regression splines applied to the analysis of inner carotid artery cen-
trelines,” Journal of the Royal Statistical Society, Ser. C, Applied Statistics, 58,
285–306.

Secchi, P., Stamm, A., and Vantini, S. (2010), “Large p Small n: Inference for the
Mean,” Tech. rep., MOX, Dip. di Matematica, Politecnico di Milano, work in
progress.

Srivastava, M. (2007), “Multivariate theory for analyzing high dimensional data,”
Journal of Japan Statistical Society, 37, 53–86.


