
HAL Id: inria-00540650
https://inria.hal.science/inria-00540650

Submitted on 29 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Diagnosability verication with Petri net unfoldings
Agnes Madalinski, Farid Nouioua, Philippe Dague

To cite this version:
Agnes Madalinski, Farid Nouioua, Philippe Dague. Diagnosability verication with Petri net unfoldings.
International Journal of Knowledge-Based and Intelligent Engineering Systems, 2010, 14 (2), pp.49-55.
�inria-00540650�

https://inria.hal.science/inria-00540650
https://hal.archives-ouvertes.fr

Diagnosability veri�cation with Petri net
unfoldings

Agnes Madalinski1?, Farid Nouioua2? and Philippe Dague3

1Faculty of Engineering Science, Univ. Austral de Chile, Valdivia, Chile
2Laboratoire des sciences de l'information et des systèmes, Marseille, France

3LRI, Univ. Paris-Sud, CNRS/INRIA Saclay, Orsay, France

Abstract Complex systems increasingly require safety and robustness
w.r.t faults occurrences, and diagnosability is a key property to ensure
this at design stage. This paper demonstrates how Petri net unfoldings,
which have been proven to elevate the state explosion problem, can be
applied to verify diagnosability by adapting the twin plant method.

1 Introduction

Studying diagnosability of systems represents an important domain which has
drawn in the last years the attention of many researchers in both arti�cial intel-
ligence and control theory communities. Diagnosability is an important property
that determines the ability of a system to detect faults occurrences given only
observable sequences (the system has observable events and unobservable events
including faults). If a system is diagnosable the diagnosis will �nd an accurate
explanation for any possible set of observations from the system, otherwise the
diagnosis will give an ambiguous and useless explanation.

The seminal work in [12] has introduced a formal framework for analysing
the diagnosability properties of discrete event systems (DES) represented by
�nite automata. The proposed method for diagnosability veri�cation is based
on the construction of a diagnoser : an automaton with only observable events
which allows one to estimate states of the system after observation of sequences.
Improvements based on the twin plant method has been proposed in the cen-
tralised framework [5,14] and in the distributed one [13]. The basic idea is to
build a veri�er from a diagnoser by constructing the synchronous product of
the diagnoser with itself on observable events. The veri�er compares every pair
of paths in the system that have the same observable behaviour. [13] uses the
modularity of the system to compute local twin plants and to test diagnosability
by gradually combining local twin plants (in the worst case building the global
twin plant). Other interesting advances in this domain include the use of model
checking [11] and process algebra [1] to test diagnosability, and the adaptation
of the diagnosability de�nition to deal with enriched models such as stochastic
automata [10].

Most of the previous approaches operate on variants of �nite state machine-
based models. Naturally, these models su�er from the state space explosion
problem. To alleviate this problem Petri net (PN) unfolding techniques appear
? This work was done while the authors performed a post-doc at LRI, Orsay, France.

promising. A �nite and complete pre�x of a PN unfolding [2,7] gives a compact
representation of all behaviours and reachable markings of this PN in a partial
order. Executions are considered as partial ordered set of events rather than se-
quences, which results in memory savings. The unfolding pre�x has been used in
various applications (see e.g. [6]) such as distributed diagnosis, model checking,
synthesis of asynchronous circuits or planning problems. Also diagnosability has
been studied in this context from a purely theoretical point of view: [4] proposes
a de�nition of diagnosability based on observable partial orders and, opposed to
such quantitative criteria, a qualitative notion speci�c to partial orders has been
introduced in [3]. The main di�erence between their de�nition and that pro-
posed in this paper lies on the granularity level of observations. In the de�nition
proposed in [4] any execution of a partial order corresponds to the same observa-
tion, whereas in this work the di�erent executions of a partial order correspond
to di�erent observations.

The objective of this paper is to use PN unfolding pre�xes to verify diagnos-
ability by adapting the twin plant method [14]; with the long term objective to
develop an approach to verify diagnosability in a distributed way in the frame-
work of modular complete pre�xes [8]. The used model is a labelled Petri net,
where transitions are labelled with observable and unobservable events. Diag-
nosability is tested using a �nite and complete pre�x of a veri�er. The veri�er is
obtained by the synchronous product of a diagnoser (the system enriched with
information about the occurrence of faults). A necessary and su�cient condition
for diagnosability is given. In addition, two algorithms are given to test diagnos-
ability; moreover, two improvements are presented, which exploit the symmetry
and �interesting' behaviour of the veri�er to reduce its size. An extended version
of this paper in form of a technical report, with the algorithms and the detailed
proofs of lemmas 1, 2 and proposition 1, can be found in [9].

2 Petri nets and their unfoldings
Petri nets A Petri net is a quadruple N = (P, T, →,M0) such that P and T
are disjoint sets of places and transitions, respectively,→⊆ (P × T)∪ (T × P) is
a �ow relation, and M0 is the initial marking, where a marking is a function P →
N = {0, 1, 2, ...} which assigns a number of tokens to each place. A transition t
is enabled under a marking M (denoted by M [t 〉) and yields M´ when �ring
(denoted by M [t 〉M´). A transitions sequence σ = t1, ..., tk ∈ T is a �ring
sequence from M1 to Mk+1, denoted by M1 [σ 〉Mk+1 or M1 [σ 〉, i� a set of
markings M2, ...,Mk+1 exit such that Mi [ti 〉Mi+1, 1 ≤ i ≤ k. A net N is safe
if for every reachable marking M and every place p ∈ P , M (p) ⊆ {0, 1}.

Canonical pre�xes A �nite and complete unfolding pre�x PrefN of N is a �nite
acyclic net which implicitly represents all the reachable states of N together
with transitions enabled at those states. Intuitively, it can be obtained through
unfolding N , by successive �rings of transitions, under the following assumptions:
(a) for each new �ring a fresh transition (called an event) is generated; (b) for
each newly produced token a fresh place (called a condition) is generated.

Due to its structural properties (such as acyclicity) the reachable markings
of N can be represented using con�gurations of PrefN . A con�guration κ is a

downward-closed set of events (it means that if e ∈ κ and f is a causal predecessor
of e, then f ∈ κ) without structural con�icts . Intuitively, a con�guration is a
partial-order execution, i.e. an execution where the order of �ring of concurrent
events is not important. The basic con�guration of an event e, denoted by [e],
is the smallest (w.r.t set inclusion) con�guration containing e (it consists of e
and its causal predecessors); Mark(κ) denotes the corresponding marking of N ,
reached by �ring a transition sequence corresponding to the events in κ.

The unfolding is in�nite whenever N has an in�nite run; however, if N has
�nitely many reachable states then the unfolding eventually starts to repeat
itself and can be truncated (by identifying a set of cut-o� events) without loss
of information, yielding a �nite and complete pre�x. Intuitively, an event e is a
cut-o� event if the already build part of the pre�x contains an event f (called the
corresponding event of e) such that Mark([f]) = Mark([e]), where [f] is smaller
than [e] w.r.t. some well-founded partial order on con�gurations of the unfolding
called an adequate order [2]. We denote by C, E and Ecut the sets of conditions,
events and cut-o� events of the pre�x, respectively, and by h : E ∪ C → T ∪ P
the mapping from the nodes of the pre�x to the corresponding notes of N .

3 Diagnosability
System model The system is modelled with a safe labelled Petri net N =
(N, O, U, `), which is a Petri net N extended with sets of observable and un-
observable transition labels O and U , respectively, and a labelling function
` : T → O ∪ U on transitions. The observable transitions correspond to con-
troller commands, sensor readings and their changes, and in contrast, unobserv-
able transitions correspond to some internal events that cause changes in the
system not recorded by sensors. The set of fault transition labels F ⊆ O ∪ U
and it is assumed that F ⊆ U since it is trivial to diagnose fault transitions
that are observable. Moreover, F = F1 ∪ ...∪Fn is partitioned into disjoint sets,
where Fi denotes the set of fault transitions corresponding to a fault type i such
that 1 ≤ i ≤ n and n is the number of fault types. This allows one to handle
subsets of faults if it is not necessary to detect uniquely every fault transition.
The labelled Petri net N inherits the operational semantics of the underlying
net N . One has M [` (t) 〉M ′ if M [t 〉M ′. Moreover, a �ring sequence σ ∈ O ∪U
is called a trace of N if M [σ 〉. An example of a system is illustrated in Figure
1(a) with highlighted set of observable transitions labelled with O = {a, b, c},
and the set of unobservable transitions labelled with U = {u, f1, f2} including
F = F1 ∪ F2, where F1 = {f1} and F2 = {f2}.

Informally, a system is diagnosable if an occurrence of a fault can be detected
with certainty in a bounded time. For a system with �nite state space this can
be expressed as the absence of two in�nite traces having the same observable
transitions, where one of them contains a failure and the other one does not (see
[9] for a formal de�nition).

Diagnoser In the diagnoser only observable transition are visible and unobserv-
able transitions can be seen as silent transitions. Thus, in order to keep track
of the occurrences of faults an additional piece of information is needed. Each
marking M of N is associated with a fault label function ν : F → {0, 1}. The

 1p 2p

 3p 4p

 7p 6p

 8p

 2f

 5p

 1f

 3t 4t 5t

 6t 7t

 8t

 1t
 2t

u

a

b

c

b a

(a)

 1p 2p

 1f

 3e 4e

 1e
 2e

 8p

 8p

 7e

 8p

 6p

 5p
 4p 3p

 9e

 8p

 6e 2f

 5e

 8e

 5p

 7p

 10e

 5p

 7p

 2f 11e

u

a b

b

a

a

10

10

10

00

00 00

01

01

01

0010

c

c

(b)

������������ ������������

������
������
������
������

������
������
������
������

p 1
 8 p 2

 8

c

p 2
 5

p 2
 7

p 2
 2

u 2

p 2
 4

p 1
 2

p 1
 4

u 1

p 1
 7

f 1
 2

p 1
 5p 2

 3p 1
 3

p 2
 6p 1

 6

p 1
 1 p 2

 1

f 1
 1

b

a aa

b b b

a

(c)

p 1
 3

f 2
 2

p 2
 7

p 2
 5 p 1

 8 p 2
 8

p 1
 8 p 2

 8

p 1
 6

p 2
 4p 2

 5

p 2
 2p 1

 1 p 2
 1

f 1
 1

1 0, 00
1F non−

diagnosable

p 1
 2

e 1 u 2 e 2

e 3

e 4 e 5

e 6

a

10,00 00,00

10,00

10,01 10,00

b

c

(d)

Figure 1: The system N (a), the canonical pre�x of the diagnoser D (b) Petri net of
the veri�er V (c) and part of its pre�x showing non-diagnosable traces (d).

initial marking M0 is the zero vector; each marking M such that M0 [σ 〉M is
associated with ν as follows: if a fault type occurred in σ then its label is set to
′1′ and otherwise to ′0′. Hence, a diagnoser state of N is a pair (M, ν), where M

is a marking of N and ν is its fault label. Let Fault((M, ν)) df= ν. The diagnoser
can be represented as D = (N , ν0) with (M, ν) [` (t) 〉(M ′, ν′) if M [` (t) 〉M ′ and
ν, ν′ are the fault labels associated to M and M ′, respectively. Note that the
number of states of a diagnoser grows by 2n compared with N .

A canonical pre�x of N is PrefN augmented with additional labelling of its
events `◦h : E → O∪U . The function �Fault� is extended to con�guration of the
unfolding of D with Fault(κ) df= Fault(Mark(κ)). Figure 1 (a) and (b) depicts
the diagnoser D and its canonical pre�x PrefΘ

tot

D with the total adequate order
[2] (in �gures the cut-o� events are drawn as double boxes, and dotted lines
indicate the corresponding events of cut-o� events; in addition, to each event
e is associated a fault vector of [e], which is shown next to events). Observe
that in a canonical pre�x of N the event e8 would be a cut-o� event with the
corresponding event e2 since only the relation on marking is considered. However,
their codes are di�erent and therefore e8 cannot be designated as a cut-o� event
of a diagnoser; the pre�x has to be extended until the cut-o� event e11, which
has a corresponding event e8.

Synchronous product The synchronous product N = N1×N2 of two labelled
Petri nets N1 and N2 is de�ned on common observable events. Intuitively, the
product merges transitions having a common observable label and preserves the
remaining transitions and all places of each components (see [9] for formal de�ni-
tion). Figure 1(c) shows the product of the running example with itself (a super-
script is used to indicate the component of the non-synchronised nodes). Observe
that there are four transitions labelled with a (and also with b). This is due to

the fact that t3 and t5 are labelled with a in the original net, and in the product
they synchronise to (t3, t3) , (t3, t5) , (t5, t3) and (t5, t5) (and similar applies to
transitions labelled with b). Note that the �ring (M1, M2) [` ((t3, t3)) 〉(M ′

1,M
′
2)

of N corresponds to �rings M1 [`1 (t3) 〉M ′
1 in N1 and M2 [`2 (t3) 〉M ′

2 in N2.

Veri�er In order to check the diagnosability property a veri�er is build from
the synchronous product of the diagnoser with itself. The veri�er V = D ×
D =

(N ×N ,
(
ν0, ν0

))
, where D = (N , ν0) is a diagnoser, N is the system

model and
(
ν0, ν0

)
is the synchronised fault label. In the sequel V is denoted as(N ,N , ν0, ν0

)
for the sake of simplicity. Thus, V can be regarded as a diagnoser

net (it has the same dynamics as a diagnoser net). The canonical pre�x of the
veri�er V , Pref⊂V with the adequate order ⊂.
Condition for diagnosability A trace σ in V forms a cycle if there exists a
trace σ′ within σ such that

(
M1,M2, ν1, ν2

)
[σ′ 〉(M1,M2, ν1, ν2

)
and σ′ 6= ∅.

Let e ∈ EcutV be a cut-o� event in Pref⊂V then κe = {κ : [e] ⊆ κ}.
Lemma 1. The following holds.
1. for each cycle in the veri�er V there is a con�guration κ ∈ κe s. t. e ∈ EcutV
2. for each κ ∈ κe, where e ∈ EcutV , there exists a cycle in the veri�er V

It is assumed that there are no cycles of unobservable events; however, if this
assumption is dropped it can be easily checked while building the canonical pre�x
(by checking whether an observable event occurs between the cut-o� events and
their corresponding events; note that the corresponding event of a cut-o� event
is always in the history of its cut-o� event since ⊂ is used as adequate order).
Lemma 2. Let q =

(
M1,M2, ν1, ν2

)
and q′ =

(
M ′1,M ′2, ν′1, ν′2

)
be two states

in a cycle in V then ν1 = ν′1 and ν2 = ν′2.
The veri�er compares every pair of traces which have the same observables. Thus,
if a cut-o� event e occurs this means that there exists a cycle (between e and
its corresponding event). Furthermore, if there exist di�erent local fault labels
of Fi, i.e. ν1

i 6= ν2
i with Fault([e]) =

(
ν1, ν2

)
, the system is not diagnosable

w.r.t. Fi. This is illustrated in Figure 1(d), where a part of Pref⊂V is shown.
The cut-o� event e6 and its corresponding event e5 form a cycle since their
basic con�gurations reach the same marking

{
p1
2, p

1
8, p

2
7, p

2
8

}
. It is evident that

the system is not diagnosable w.r.t. F1 since their corresponding fault labels are
di�erent. Thus, there exist two equivalent observable traces in the system one
with an occurrence of F1 (f1

1 , a, b, c) and the other without any occurrence of F1

(u2, a, b, c). They can never be distinguished since they are within a cycle.
However, it is not enough to check the basic con�guration of a cut-o� event

e since its concurrent events can in�uence the decision. This is also illustrated in
Figure 1(d) with the fault type F2. The fault label of [e6] indicates that there is
no ambiguity, yet the occurrence of the concurrent event e4, which corresponds to
F2, changes one of the fault label of F2 and the system becomes not diagnosable
w.r.t. F2. One has f1

1 , a, b, c and u2, a, b, c with the occurrence of f2
2 .

Proposition 1. Let Pref⊂V be the canonical pre�x of the veri�er V with its set
of cut-o� events EcutV . Then V is called Fi-diagnosable w.r.t. O and Fi if
∀e ∈ EcutV ∀κ ∈ κe, ν1

i = ν2
i , where Fault(κ) =

(
ν1, ν2

)
. Moreover, the system

N is diagnosable w.r.t. O and F if it is Fi-diagnosable for all Fi ∈ F .

4 Veri�cation of diagnosability

The canonical pre�x Pref⊂V can be built by using the algorithm presented in
[7]. To test diagnosability it su�ces to examine the cut-o� events and their
concurrent events for ambiguous fault labels. For a non-diagnosable system a set
of con�gurations can be extracted from Pref⊂V to show ambiguous explanations.

A depth-�rst approach as opposed to the breadth-�rst one can be also em-
ployed to test diagnosability. It is advantageous if simply an answer about the
system's diagnosability is needed. The depth-�rst search tries to extend a branch
of a pre�x before considering other branches. To do that the diagnosability check
has to be extended, not only cut-o� events are candidates but also their concur-
rent events are. (See [9] for algorithms).

To reduce complexity of the veri�er one can consider one fault type at a time
and perform the diagnosability check n times w.r.t. to the fault type set F1, ..., Fn

as in [5] (by setting other faults as non-fault unobservables). The complexity is
then linear in the number of faults (the state space reduces by 2n−1).

Contracted veri�er It would be advantageous to exploit the symmetry of the
veri�er. Recall that the veri�er compares every pair of equivalent observable
traces corresponding to the diagnosers, D1 and D2. There are four cases: (1) a
fault f¹ occurs in D1 but its counterpart f² does not occur in D2 and (2) visa
verse (showing that the system is not diagnosable if occurring in a in�nite trace),
and (3) the occurrence of both f¹ and f² and (4) the inverse case (indicating
that the considered trace is diagnosable). Due to the symmetry it is su�cient
to consider either Case 1 or 2 (e.g. let consider Case 1). Moreover, the Case 4
can be made redundant by removing from the veri�er V the fault transitions
F 2 corresponding to the diagnoser D2 together with their arcs resulting in a
contracted veri�er Vc. By doing this the traces containing a fault of F 2 are not
reachable leaving only Case 1 and 3. Thus, the diagnosability check is reduced:
the system is not diagnosable if there exists an in�nite trace containing a fault
corresponding to D1. The veri�er in Figure 1(c) becomes a contracted one if
the fault transitions F 2 =

{
f2
1 , f2

2

}
and their arcs are removed. The transition

marked black correspond to transitions which are not reachable due to the re-
moval. This is evident on the canonical pre�x depicted in Figure 2(a). Note that
the fault vector corresponding to D1 is only important for the diagnosability
check since the other fault vectors are always zero. There are two cut-o� events,
e8 and e10; it is immediately evident from the fault vector of e10 that the system
is not diagnosable w.r.t. F1, and it is later evident that there exist a con�gura-
tion in κe8 (containing e8 and its concurrent event e9, which correspond to f1

2)
that shows that the system is also not diagnosable w.r.t. F2.

Reduced veri�er w.r.t a fault One can go a step further and consider a
veri�er built out of the product of a diagnoser containing only fault occurrences
and a diagnoser containing only non-fault occurrences. This is especially inter-
esting for the case where one fault type at a time is considered due to the size
reduction. Given a diagnoser D in which one fault type Fi is considered (i.e.
F \ Fi is set to non-fault unobservables) one has w.r.t. the fault fi the reduced
veri�er Vfi = Dfi ×Df̄i

, where fi is any fault in Fi, 1 ≤ i ≤ n, and the reduced

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�����
�����
�����

�����
�����
�����

�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������

������
������
������
������

�
�
�
�

�
�
�

�
�
�

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

���
���
���
���

p 1
 3

p 2
 7 p 1

 6

p 2
 4p 2

 5

p 2
 2p 1

 1 p 2
 1

f 1
 1 e 1 u 2

e 4

e 2

e 7

p 1
 8

p 1
 2

p 1
 4 p 1

 5

p 2
 7

e 8

p 2
 8

p 2
 8p 1

 8 p 1
 8 p 2

 8

p 1
 8 p 2

 8

e 5 e 6

p 1
 5

p 1
 7

e 3u 1

f 1
 2 e 9

e 10

a

10

b

c

b

c

a

00 00

10 00 00

0010

10

01

(a) Pref⊂Vc

run with f 1

run without f 1

 1p 2p

 1f

 3e 4e

 1e
 2e

 8p

 8p

 7e

 8p

 6p

 5p
 4p 3p

 9e

 8p

 6e 2f

 5e

 8e

 5p

 7p

u

a b

b

a

c

c

(b) Pref⊂N

 3p

 6p

 1f

 3t

 6t

 1t

 1p

 8p

 8tc

 2p

a

b

(c) Df1

 2p

 4p

 2f

 5p

 4t 5t

 7t

 2t

 1p

 8t

 8p 7p

u

b a

c

(d) Df̄1

p 2
 4

u 2

p 2
 7

f 2
 2

p 2
 5p 1

 3

p 1
 6

f 2
 1

p 2
 2p 1

 1
p 1
 2

p 2
 8p 1

 8

p 2
 1

a

b

c

(e) Vf1=Df1×Df̄1

Figure 2: Reducing the veri�er's complexity.

diagnoser Dfi
(Df̄i

), which corresponds to the part of D containing (non-)fi-
fault occurrences. Extracting fault and non-fault occurrences at the level of the
diagnoser is not straightforward due to the cyclicity of the net. However, it is
possible to extract this information from the canonical pre�x of the underlying
system of the diagnoser Pref⊂N (with ⊂ as adequate order) by examining maximal
con�gurations w.r.t. set inclusion, called runs.

Let Ω be the set of runs in PrefΘN . Then, Ωfi = {ω ∈ Ω/∃e ∈ ω : ` ◦ h (e) ∈ Fi}
and Ωf̄i

= {ω ∈ Ω/∀e ∈ ω : ` ◦ h (e) /∈ Fi}, where e is an event in PrefΘN . In other
words Ωfi (Ωf̄i

) is the set of runs where faults from type Fi (not) occur. By def-
inition, Ωfi (Ωf̄i

) corresponds to all the possible executions of the reduced un-
derlying system model representing the reduced diagnoser Dfi (Df̄i

). Hence, the
projection of Ωfi and Ωf̄i

onto the diagnoser D (via its underlying system model
N) correspond to Dfi and Df̄i

, respectively. For each fault the reduced veri�er
is constructed from Pref⊂N , which is unchanged, only the extracted information
di�ers. Thus, it has to be build only once.

The process of obtaining Vf1 applied to the running example is illustrated in
Figure 2(b)-(e). There are two runs in Pref⊂N , one with the fault f1 and the other
without f1. From the runs the reduced diagnosers Df1 and Df̄1

are obtained by
projecting them on D; (Pref⊂Vf1

corresponds to the one in Figure 1(d) with the
fault vector corresponding to F1). Incidentally, the reduced veri�er w.r.t. F2,
Vf2 , is similar to Vf1 , they only di�er in the fault vectors; Df2 corresponds to
the run in Figure 2(c) and Df̄2

correspond to the run in Figure 2(b).

Complexity A canonical pre�x PrefV can be exponentially smaller than the
reachability graph of V , especially if V exhibits a high degree of concurrency
combined with a moderate number of branching behaviour. However, in worst
case PrefV can be exponential in the size of V . In spite of that, the proposed
improvements o�er a size reduction of PrefV . In particular, when taking into
account the symmetry of the veri�er or considering one fault type at a time
the size reduction can be signi�cant when building PrefV from the contracted

and/or reduced veri�er. Moreover, the depth-�rst approach together with the
improvements may o�er a more e�cient way that the breath-�rst one.

5 Conclusion
An approach is proposed to verify diagnosability in the framework of PN un-
foldings based on the twin plant method. It consists in constructing a veri�er,
which compares pairs of paths from the initial model sharing the same observ-
able behaviour. In the canonical pre�x of the veri�er the diagnosability test is
reduced to the comparison of binary vector pairs of con�gurations associated
with cut-o� events. Each con�guration is linked with a pair of binary vectors
containing information about fault occurrences in two executions sharing the
same observables. This is further reduced in a contracted veri�er where only
binary vectors of one con�guration instead of the pair is examined while consid-
ering a reduced reachable space. Moreover, other proposed improvements can be
applied to reduce the complexity.

Acknowledgements
Many thanks to Stefan Haar and Victor Khomenko for interesting discussions.

References
1. L. Console, C. Picardi, and M. Ribaudo. Diagnosis and diagnosability analysis

using pepa. In Proceedings 14th European Conference on AI - ECAI00, 2000.
2. J. Esparza, S. Römer, and W. Vogler. An Improvement of McMillan's Unfolding

Algorithm. Form. Methods Syst. Des., 20(3):285�310, 2002.
3. S. Haar. Unfold and Cover: Qualitative Diagnosability for Petri Nets. In Proceed-

ings CDC, 2007.
4. S. Haar, A. Benveniste, E. Fabre, and C. Jard. Partial Order Diagnosability of

Discrete Event Systems using Petri Nets Unfoldings. In Proceedings CDC, 2003.
5. S. Jiang, Z. Huang, V. Chandra, and R. Kumar. A polynomial algorithm for testing

diagnosability of discrete event systems. In IEEE Trans. on Aut. Cont., 2001.
6. V. Khomenko and E. Fabre (Eds.). Proceedings of the Workshop on UnFOlding

and partial order techniques (UFO). Siedlce, Poland, 2007.
7. V. Khomenko, M. Koutny, and W. Vogler. Canonical pre�xes of petri net unfold-

ings. Acta Informatica, Volume 40, Number 2, pages 95�118, 2003.
8. A. Madalinski and E. Fabre. Modular construction of �nite and complete pre�xes.

In Int. Conf. on Application of Concurrency to System Design, 2008.
9. A. Madalinski, F. Nouioua, and P. Dague. Diagnosability veri�cation with Petri

net unfoldings. LRI technical report no 1516, 2009.
10. F. Nouioua and P. Dague. A probabilistic analysis of diagnosability in discrete

event systems. In Proceedings 18th European Conference on AI - ECAI08, 2008.
11. C. Pecheur, A. Cimatti, and R. Cimatti. Formal veri�cation of diagnosability via

symbolic model checking. In 18th International Joint Conference on AI, 2003.
12. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis.

Diagnosability of Discrete Events Systems. IEEE Trans. on Aut. Cont, 1995.
13. A. Schumann and Y. Pencolé. Scalable diagnosability checking of event-driven

systems. In 20th International Joint Conference on AI, 2007.
14. Yoo T. and S. Lafortune. Polynomial-Time Veri�cation of Diagnosability of Par-

tially Observed Discrete-Event Systems. IEEE Trans. on Aut. Cont., 2002.

