
HAL Id: inria-00540738
https://inria.hal.science/inria-00540738v1

Submitted on 7 Dec 2010 (v1), last revised 5 Jan 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Logical time and temporal logics: Comparing UML
MARTE/CCSL and PSL

R. Gascon, Frédéric Mallet, Julien Deantoni

To cite this version:
R. Gascon, Frédéric Mallet, Julien Deantoni. Logical time and temporal logics: Comparing UML
MARTE/CCSL and PSL. [Research Report] RR-7459, 2010. �inria-00540738v1�

https://inria.hal.science/inria-00540738v1
https://hal.archives-ouvertes.fr

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
74

59
--

F
R

+
E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Logical time and temporal logics:
Comparing UML MARTE/CCSL and PSL

Régis Gascon — Frédéric Mallet — Julien DeAntoni

N° 7459

December 7, 2010

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Logial time and temporal logis:Comparing UML MARTE/CCSL and PSLRégis Gason , Frédéri Mallet , Julien DeAntoniThème COM � Systèmes ommuniantsProjet AOSTERapport de reherhe n° 7459 � Deember 7, 2010 � 22 pagesAbstrat: The UML Pro�le for Modeling and Analysis of Real-Time and Embedded sys-tems (MARTE) provides a means to speify embedded systems. The Clok ConstraintSpei�ation Language (CCSL) allows the spei�ation of ausal, hronologial and timedproperties of MARTE models. Due to its purposedly broad sope of use, CCSL has anexpressiveness that an prevent formal veri�ation. However, when addressing hardwareeletroni systems, formal veri�ation is an important step of the development. The IEEEProperty Spei�ation Language (PSL) provides a formal notation for expressing temporallogi properties that an be automatially veri�ed on eletroni system models.We want to identify the part of MARTE/CCSL amenable to support the lassial analysismethods from the Eletroni Design Automation (EDA) ommunity. In this paper, we on-tribute to this goal by omparing the expressiveness of CCSL and the Foundation Languageof PSL. We show that none of these languages is subsumed by the other one. We identifythe CCSL onstruts that annot be expressed in temporal logis and propose restritions ofthese operators so that they beome tratable in temporal logis. Conversely, we also iden-tify the lass of PSL formulas that an be enoded in CCSL. We de�ne translations betweenthese fragments of CCSL and PSL using automata as an intermediate representation.Key-words: High-level design, Linear temporal logi, Language equivalene, Automatonbased approah

Temps logique et logiques temporelles:Comparaison de UML MARTE/CCSL et PSLRésumé : Le pro�l UML MARTE (Modeling and Analysis of Real-Time and Embeddedsystems) permet la spéi�ation de systèmes embarqués. Le langage assoié CCSL (ClokConstraint Spei�ation Language) est o�re la possibilité de spéi�er des propriétés au-sales, hronologiques et temporelles sur les modèles MARTE. En raison de son large spetred'appliations, CCSL a une grande expressivité qui empêhe l'appliation de ertaines teh-niques de véri�ation formelle. Cependant, la véri�ation formelle est une étape importantedu développement dans le domaine des �hardware eletroni systems�. Pour e faire, lestandard IEEE PSL (Property Spei�ation Language) fourni des notations formelles pourl'expression de propriétés en logique temporelles qui peuvent être automatiquement véri�éesur le modèle du système életronique.Nous voulons identi�er le fragment de MARTE/CCSL suseptible de supporter les mé-thodes d'analyses lassiques utilisées dans la ommunauté EDA (Eletroni Design Auto-mation). Dans e papier, nous ontribuons à e but en omparant l'expressivité de CCSLet du fragment de PSL orrespondant à la logique temporelle linéaire. Nous montronsqu'auun de es langages n'est inlus dans l'autre. Nous identi�ons les onstruteurs deCCSL qui ne peuvent être exprimés par les logiques temporelles propositionnelles et propo-sons en onséquene des restritions de es opérateurs de manière à les rendre exprimabledans PSL. Réiproquement, nous identi�ons la lasse de propriétés de PSL qui peuvent êtreodées dans CCSL. Nous dé�nissons des tradution entre es deux fragment utilisant desautomates omme représentation intermédiaire.Mots-lés : Coneption haut niveau, Logique temporelle linéaire, Équivalene de langages,Approhe à base d'automates.

Logial time and temporal logis: Comparing UML MARTE/CCSL and PSL 31 IntrodutionThe UML Pro�le for Modeling and Analysis of Real-Time and Embedded systems (MARTE [8℄)provides a mean to speify several aspets of embedded systems, ranging from large soft-ware systems on top of an operating system to spei� hardware designs. The Clok Con-straint Spei�ation Language (CCSL [1℄) o�ers a general set of notations to speify ausal,hronologial and timed properties on these models and has been used in various subdo-mains [6, 5, 2℄. From this spei�ation, it is possible to simulate the behavior of a CCSLspei�ation at the model level. CCSL has been formally de�ned; however, due to its broadsope of use CCSL has an expressiveness that an prevent formal veri�ation, sine thespei�ed system an be, by intention, non-deterministi, in�nite, unbound. Very wide spe-i�ations at the system level should be progressively re�ned into more preise desriptionsdown to a point where ode generation, shedulability, formal analysis beome possible.MARTE/CCSL o�ers a support at all the re�nement steps.In the domain of hardware eletroni systems, whih one of the subdomains targetedby MARTE, formal veri�ation is an important step of the development. To allow simu-lation and formal veri�ation of suh systems, the IEEE Property Spei�ation Language(PSL [10℄) provides a formal notation for the spei�ation of eletroni system behavior,ompatible with multiple eletroni system design languages (VHDL, Verilog, SystemC,SystemVerilog).Even though a MARTE/CCSL spei�ation overs a broad sope and several sub-domains, the intent remains to o�er exhaustive veri�ation apabilities when fousing on spe-i� aspets within a subdomain. When fousing on hardware eletroni systems, MARTEprovides a support to apture strutural or behavioral, funtional or non-funtional aspets.Its time model and CCSL , as part of MARTE, are natural andidates to express safety prop-erties on MARTE models. Two questions arise. Is MARTE expressive enough to apturean abstrat view of hardware systems ? Is CCSL expressive enough to express propertiesusually modeled in PSL ? Some e�orts has been made to answer the �rst question [9, 13℄.We are addressing here the seond question.The main ontribution of this paper is then the omparison of PSL and CCSL expressive-ness. The �rst result is that none of these languages subsume the other one. Consequently,we identi�ed the CCSL onstruts that annot be expressed in temporal logis and proposedrestritions to these operators so that they beome tratable in temporal logis. Conversely,we also identify a lass of PSL formulas that an be enoded in CCSL . Then, We de�netranslations between these fragments of CCSL and PSL using automata as an intermediaterepresentation. These transformations make possible the ombined use of both formalismsto adequately address the right level, CCSL at the model level and PSL at the implemen-tation level. They also o�er a way to provide an exhaustive analysis support for a lass ofCCSL spei�ations.The remaining of this paper is organized as follows. In Set. 2 we introdue CCSL andPSL and determine whih kind of properties annot be expressed in eah language. Wede�ne in Set. 3 the lass of Boolean automata whih is used in Set. 4 to de�ne translationsbetween fragments of CCSL and PSL. Set. 5 ontains onluding remarks and future work.RR n° 7459

4 R. Gason , F. Mallet , J. DeAntoni2 De�nitions of the languagesWe de�ne here the languages that we onsider in this paper and give �rst omparisonsrelated to their expressive power.2.1 Clok Constraint Spei�ation LanguageCCSL is the ompanion language of MARTE UML pro�le for the design of embedded sys-tems. It ombines onstruts from the general net theory and from the synhronous lan-guages. CCSL o�ers a set of ausal and timed patterns lassially used in embedded systems.More formally, the language CCSL is based on the notion of loks whih is a general nameto denote a totally ordered sequene of event ourenes, alled the instants of the lok.Instants do not arry values. CCSL de�nes a set of lok relations :
r ::= c1 ⊂ c2 | c1 # c2 | c1 ≺ c2 | c1 4 c2.where c1, c2 represent loks of the system. Informally, c1 ⊂ c2 means that c1 is a sublokof c2, c1 # c2 that the instants of the two loks never our at the same time and c1 ≺ c2that the nth ourrene of c1 stritly preedes the nth ourrene of c2 for every n ∈ N

∗.The relation c1 4 c2 is the non strit version of the preedene relation.CCSL is a high level multilok language and the original semantis does not requiretotally ordered models. However, at lower level or for simulation purposes, one needs torepresent the exeution as a totally ordered sequene. In this ontext, a possible semantis,introdued in [1℄, identi�es loks with Boolean variables evolving along time . In theremaining, we will onsider that c belongs to a set of propositions VAR and CCSL modelsare �nite or in�nite sequenes of elements in 2VAR. The set of instants of the lok corresponds to the set of positions where the variable c holds.Let σ be a CCSL model. For suh a sequene, we denote in the following by |σ| the lengthof σ and we assume that |σ| = ω when σ is an in�nite word. We also use the notations σ(i)for the ith element of σ and σi for the su�x of σ starting at the ith position. To evaluate thesatisfation of preedene relations, we need to know the number of ourrenes of the loksat eah position of σ. We de�ne the funtion χσ suh that for every i ∈ N and c ∈ VAR wehave
χσ(c, i) = |{j ∈ N s.t. j ≤ i and c ∈ σ(j)}|.The satisfation of CCSL relations is de�ned by:� σ |=ccsl c1 ⊂ c2 i� for every 0 ≤ i ≤ |σ|, if c1 ∈ σ(i) then c2 ∈ σ(i). We also de�nethe oinidene relation = suh that σ |=ccsl c1 = c2 i� σ |=ccsl c1 ⊂ c2 and

σ |=ccsl c2 ⊂ c1.� σ |=ccsl c1 # c2 i� for every 0 ≤ i ≤ |σ| we have c1 6∈ σ(i) or c2 6∈ σ(i).
INRIA

Logial time and temporal logis: Comparing UML MARTE/CCSL and PSL 5� σ |=ccsl c1 ≺ c2 i� for every 0 ≤ i ≤ |σ| suh that χσ(c1, i) > 0 and χσ(c2, i) > 0 wehave χσ(c1, i) > χσ(c2, i).� σ |=ccsl c1 4 c2 i� for every 0 ≤ i ≤ |σ| we have χσ(c1, i) ≥ χσ(c2, i).CCSL an also express more ompliated relations between loks by using lok de�ni-tions. CCSL lok de�nitions allows one to de�ne a lok by ombination of other loksgiven as arguments. A lok de�nition is of the form c , e where c ∈ VAR and e is a lokexpression de�ned by the following grammar:
e := c | e + e | e ∗ e | e e | e e | e e | e H bw | e $e n | e ∧ e | e ∨ ewhere c ∈ VAR, n ∈ N

∗ and bw : N
∗ → B is a binary word. The expressions e1 + e2and e1 ∗ e2 represent respetively the union and intersetion of e1 and e2. The strit andnon strit sample expressions are denoted respetively by e1 e2 and e1 e2. The delayoperation e1 $e2 n is a variation of sampling that samples e1 on the nth ourrene of e2.The expression e1 e2 is the preemption (e1 up to e2), e H bw represents the �lteringoperation. Finally, e1 ∧ e2 (resp. e1 ∨ e2) represents the fastest (resp. slowest) of the loksthat are slower (resp. faster) than both e1 and e2. This orresponds to greatest lower boundand lowest upper bound.Given a lok expression e and a CCSL model σ we note σ, i |=ccsl e i� the expression eholds at position i of σ. To de�ne this relation, we extend the funtion χσ to expressions ina natural way:

χσ(e, i) = |{j ∈ N s.t. j ≤ i and σ, j |=ccsl e}|.The satisfation relation for expressions is de�ned by:� σ, i |=ccsl c i� c ∈ σ(i).� σ, i |=ccsl e1 + e2 i� σ, i |=ccsl e1 or σ, i |=ccsl e2.� σ, i |=ccsl e1 ∗ e2 i� σ, i |=ccsl e1 and σ, i |=ccsl e2.� σ, i |=ccsl e1 e2 i�� σ, i |=ccsl e2,� there is 0 ≤ j < i suh that σ, j |=ccsl e1 and for every j < k < i we have
σ, k 6|=ccsl e2.� σ, i |=ccsl e1 e2 i�� σ, i |=ccsl e2,� there is 0 ≤ j ≤ i suh that σ, j |=ccsl e1 and for every j < k < i we have
σ, k 6|=ccsl e2.RR n° 7459

6 R. Gason , F. Mallet , J. DeAntoni� σ, i |=ccsl e1 $e2 n there is a position 0 ≤ j ≤ i suh that� σ, j |=ccsl e1 and� there are exatly n distint positions i1, . . . , in (in = i) suh that for every
k ∈ {1, . . . , n} we have j < ik ≤ i and σ, ik |=ccsl e2.� σ, i |=ccsl e1 e2 i�� σ, i |=ccsl e1,� for every j < i we have σ, j 6|=ccsl e2.� σ, i |=ccsl e H bw i�� σ, i |=ccsl e� bw(χσ(e, i)) = 1.� σ, i |=ccsl e1 ∨ e2 i� either� χσ(e1, i) > χσ(e2, i) and σ, i |=ccsl e1,� or χσ(c1, i) < χσ(c2, i) and σ, i |=ccsl e2,� or χσ(e1, i) = χσ(e2, i) and σ, i |=ccsl e1 and σ, i |=ccsl e2.� σ, i |=ccsl e1 ∧ e2 i� either� χσ(e1, i) > χσ(e2, i) and σ, i |=ccsl e2,� or χσ(e1, i) < χσ(e2, i) and σ, i |=ccsl e1,� or χσ(c1, i) = χσ(c2, i) and we have σ, i |=ccsl e1 or σ, i |=ccsl e2.A CCSL spei�ation is a list of de�nitions and relations seen as a onjuntion of on-straints. We an represent it by a triple 〈C,Def ,Rel〉 suh that� C ⊆ VAR is a set of loks,� Def is a set of de�nitions,� Rel is a set of relations.A model σ over 2C satis�es the spei�ation i�� for every de�nition c , e in Def we have c ∈ σ(i) i� σ, i |=ccsl e, INRIA

Logial time and temporal logis: Comparing UML MARTE/CCSL and PSL 7� every relation in Rel is satis�ed by σ.From the basis CCSL language, one an de�ne other expressions and relations. Forinstane, the following expressions will be useful in the following:� c1 − c2 is the di�erene of loks c1 and c2. The de�nition c , c1 − c2 an beenoded with the de�nition c1 , c + c2 and the relation c # c2.� c $c n is a partiular ase of delay expression that we denote c $ n. This expressionrepresents the usual synhronous delay operation. The resulting expression starts atthe nth ourrene of c and then oinides with c.� Alternane relation c1 ∼
=
c2 is de�ned by the relations c1 4 c2 and c2 ≺ c′1 where

c′1 , c1 $ 1. Similarly, c1 =
∼ c2 is de�ned by c1 4 c2 and c2 ≺ c′1.2.2 Property Spei�ation LanguageThe IEEE standard PSL [10℄ is a textual language to build temporal logi expressions. PSLassertions are used for instane in hadware design and they an be validated by model-heking or equivalene heking tehniques. Compared with the lassial linear temporallogi LTL, PSL provides sugaring onstruts to build expressions in an easier and moreonise way. However PSL is as expressive as LTL. As it would be tedious to onsider thedi�erent sugaring operators of PSL in formal reasoning, we use in this paper the minimalore language de�ned in [3℄.Let VAR be a set of propositions (Boolean variables) that aims at representing signalsof the system. PSL atomi formulas are alled Sequential Extended Regular Expressions(SERE). SEREs are basially regular expressions built over the Boolean algebra:
b ::= x | x | b ∧ b | b ∨ bwhere x ∈ VAR is a Boolean variable. We also onsider the standard operators ⇒ and ⇔that an be de�ned from the grammar above1. The set of SEREs is de�ned by:
r ::= b | r · r | r ∪ r | r∗where b is a Boolean formula. The operators have their usual meaning: r1 · r2 is theonatenation, r1 ∪ r2 the union and r∗ is the Kleene star operator. From these regularexpressions, PSL linear properties2 are de�ned by:

φ ::= r | φ ∧ φ | ¬φ | Xφ | φUφ | r φ.1
x ⇒ y is equivalent to x ∨ y and x ⇔ y to (x ⇒ y) ∧ (y ⇒ x).2PSL standard also de�nes a branhing time part that we do not onsider here.

RR n° 7459

8 R. Gason , F. Mallet , J. DeAntoniwhere r is a SERE. The operators X (next) and U (until) are the lassial temporal logioperators. We also use the lassial abbreviations Fφ ≡ ⊤Uφ (eventually) and Gφ ≡ ¬F¬φ(always). The formula r φ is a �su�x onjuntion� operator meaning that there mustexist a �nite pre�x satisfying r and that φ must be satis�ed at the position orrespondingto the end of this pre�x.The semantis of PSL is de�ned in suh a way that properties an be interpreted overin�nite words as well as �nite or trunated words. This is important for some appliationdomains of PSL suh that simulation or bounded model-heking. Similarly to CCSL, themodels of PSL are �nite or in�nite sequenes over elements of 2VAR that represents the setof variables that holds at eah position.For every X ∈ 2VAR and p ∈ VAR, we note X |=b p i� p ∈ X and X |=b p i� p 6∈ X .The remaining of the Boolean satisfation relation |=b is obvious. SEREs refer to a �nite(possibly empty) pre�x of the model. So σ is supposed to be �nite in SERE satisfationrelation (whih is not the ase in PSL satisfation relation). The SERE satisfation is de�nedby indution as following:� σ |=re b i� |σ| = 1 and σ(0) |=b b,� σ |=re r1 · r2 i� there exist σ1, σ2 suh that σ = σ1σ2 and σ1 |=re r1 and σ2 |=re r2.� σ |=re r1 ∪ r2 i� σ |=re r1 and σ |=re r2.� σ |=re r
∗ i� either σ = ǫ or there exist σ1, σ2 suh that σ1 6= ǫ, σ = σ1σ2, σ1 |=re rand σ2 |=re r

∗.Finally, the satisfation of PSL properties is de�ned as following.� σ |=psl ¬φ i� σ 6|=psl φ,� σ |=psl φ1 ∧ φ2 i� σ |=psl φ1 and σ |=psl φ2,� σ |=psl Xφ i� |σ| > 1 and σ1 |=psl φ,� σ |=psl φ1Uφ2 i� there is 0 ≤ i < |σ| suh that σi |=psl φ2 and for every 0 ≤ j < i wehave σj |=psl φ1,� σ |=psl r φ i� there is a �nite pre�x σ1 of σ and σ2 suh that σ = σ1σ2, σ1 |=re rand σ2 |=psl φ,� σ |=psl r i� for every �nite pre�x σ1 of σ there is a �nite word σ2 suh that σ1σ2 |=re

r ⊤.The addition of SEREs in PSL does not add expressiveness to the lassial temporal logiLTL. Indeed, SEREs an be translated into LTL formulas. However, this would imply anexponential blowup of the size of the formulas.
INRIA

Logial time and temporal logis: Comparing UML MARTE/CCSL and PSL 92.3 Comparing PSL and CCSLSine CCSL and PSL share ommon models, we an ompare their expressive power. Let Sbe a CCSL spei�ation over a set of variables VS ⊆ VAR and φ a PSL formula over a setof variables Vφ ⊆ VAR. We will say that S is enoded by (or simulated by) φ i� VS ⊆ Vφand every model of φ is also a model of S.The onverse simulation relation is a bit di�erent. CCSL models have the propertiesthat one an add an unbounded amount of empty states between two relevant states andleft the satisfation unhanged. This an easily be proved by indution on the struture ofa CCSL spei�ation.Lemma 1. Let S be a CCSL spei�ation. For every model σ satisfying S and every 0 ≤
i ≤ |σ| the model σ′ de�ned by

σ′(j) = σ(j) for every j < i

σ′(i) = ∅
σ′(j) = σ(j − 1) for every i < j ≤ |σ| + 1also satis�es S.This property is a onsequene of the multilok aspet of CCSL. Even with the semantiswe have introdued, it is not possible to ompletely link the exeution of a CCSL spei�ationto a global lok. However, the states where no loks hold are irrelevant in CCSL point ofview as they do not make the system evolve. So it is not really a problem to disard them.Atually, this is what is done in the CCSL simulator TimeSquare. We will say that φ issimulated by S i� Vφ ⊆ VS and every model of S with no irrelevant states is also a modelof φ.By examining the de�nitions PSL and CCSL, we an already make the following obser-vations. Some CCSL relations or expressions impliitly introdue unbounded ounters. Forinstane, one have to store the number of ourrenes of the loks c1 and c2 (or at least thedi�erene between them) to enode the preedene relation c1 4 c2. The orrespondinglanguage is made of all the words suh that every �nite pre�x ontains more ourrenesof c1 than c2. Suh a language is neither regular nor ω-regular and annot be enoded inPSL whih is as expressive as LTL and regular expressions. The same remark holds for theexpressions c1 ∨ c2 and c1 ∧ c2.On the other hand, the di�erent CCSL relations and expressions only states safety on-straints. As a spei�ation is a onjuntion of suh onstraints the result is always a safetyproperty. CCSL annot express liveness like the reahabily property Fp. A similar problemours for the next operator in ase of �nite exeutions. There is no way to express thatthe model must have a next position whih an be stated by X⊤ in PSL. To summarize, thepreliminary omparison of expressiveness of CCSL and PSL gives the following results.Lemma 2. (I) There are PSL formulas that annot be enoded in CCSL.(II) There are CCSL spei�ations that annot be enoded in PSL.

RR n° 7459

10 R. Gason , F. Mallet , J. DeAntoniIt is now lear that PSL and CCSL are not omparable in their whole de�nition. How-ever, we will see in the remaining of this paper that we an de�ne large fragments of theselanguages that an be enoded in eah other. To that aim we will �rst introdue a interme-diate lass of automata well �tted to de�ne translations between these fragments.3 Boolean automataTranslating diretly PSL properties into CCSL is not obvious. For example, let us onsiderthe following PSL formula:
G(p0 ⇒ ¬(p1Up2)).One an try to translate this property by onsidering its general meaning whih is �there isalways p1 in an interval starting with p0 and ending with p2�. It is more di�ult to de�ne amodular approah by omposing atomi translations from PSL operator to CCSL. We use anautomaton based approah. We introdue in this setion a lass of automata manipulatingBoolean variables that we will use to establish relations between PSL and CCSL fragments.3.1 De�nitionWe onsider automata that handle propositional variables in VAR. The transitions of theseautomata are labeled by Boolean formulas interpreted like guard. Formally, a Booleanautomaton is a struture A = 〈Q, q0, F,A, V, δ〉 suh that:� Q is a set of states and q0 ∈ Q an initial state,� F ⊆ Q and A ⊆ Q are respetively the set of �nal and aepting states,� V ⊆ VAR is a set of propositions,� δ : Q × Bool(V) × Q is a transition relation where Bool (V) is the set of Booleanformulas over VAR.We use the de�nitions of Set. 2.2 for Boolean formulas. A Boolean automaton is determin-isti i� for every state in Q there do not exist two outgoing transitions labeled with φ and

φ′ suh that φ ∧ φ′ is satis�able.A on�guration of A is a pair 〈q,X〉 omposed of a state in Q and a subset of V . Wenote 〈q,X〉
φ
−→ 〈q′, X ′〉 i� there is a transition q φ

−→ q′ suh that X |=b φ. A run of A is asequene σ : N → (Q × 2V) suh that σ(0) is of the form 〈q0, X0〉 (one starts in the initialstate) and for every i ∈ N, there exists φi suh that σ(i)
φi

−→ σ(i+1). A �nite run is aeptingi� it ends in a �nal state. An in�nite run is aepting i� it visits in�nitely often an aeptingstate (Bühi ondition). The language aepted by A in made of the words on the alphabet
2V orresponding to aepting runs.Boolean automata an be omposed as following. Consider two automataA1 = 〈Q1, (q0)1, F1, V1, δ1〉and A2 = 〈Q2, (q0)2, V2, δ2〉. The produt automaton A = A1 × A2 is the struture
〈Q, q0, V, δ〉 suh that: INRIA

Logial time and temporal logis: Comparing UML MARTE/CCSL and PSL 11� Q = Q1×Q2×{0, 1} where the last omponent of eah state (in {0, 1}) is only neededfor the Bühi aeptane ondition,� q0 = 〈(q0)1, (q0)2, 0〉,� F = F1 × F2 × {0, 1} and A = Q1 ×A2 × {1},� V = V1 ∪ V2,� For every 〈q1, q2, i〉 and 〈q′1, q
′
2, i

′〉 in Q we have 〈q1, q2, i〉 φ
−→ 〈q′1, q

′
2, i

′〉 i�� there exist q1 φ1

−→ q′1 and q2 φ2

−→ q′2 s.t. φ is equivalent to φ1 ∧ φ2,� if i = 0 then i′ = 1 i� q1 ∈ A1,� if i = 1 then i′ = 0 i� q2 ∈ A2.Note that the last omponent of eah state is not needed when every state is aepting(A1 = Q1 and A2 = Q2), whih will be the ase in the following.3.2 CCSL and Boolean automataSine CCSL express only safety, the aeptane ondition of automata annot be enoded.However, if every run is aepting we an enode a deterministi Boolean automaton into aCCSL spei�ation.Lemma 3. Every deterministi Boolean automaton suh that every exeution is aeptingan be simulated by a CCSL spei�ation.Proof. Consider a Boolean automaton A = 〈Q, I, V, δ〉. The sets of aepting and �nalstates are not needed sine every exeution is aepting. So, we forget them here.We de�ne the set of loks C = V ⊎ Q. To enode A, we need the following CCSLde�nitions. We de�ne a global lok and a lok orresponding to the set of states Q asfollowing:
(1) Glob , c

∑

c∈C

and cQ ,
∑

q∈Q

qwhere ∑

c∈X c is the CCSL union of all the loks in X . Similarly, we will note ∏

c∈X c theCCSL intersetion of all the loks in X . For ease of presentation, we note q X
−→ q′ i� thereis a transition q φ

−→ q′ in A suh that X |=b φ. For every state q ∈ Q \ {q0}, we de�ne thelok Iq orresponding to the inoming transitions of q:
(2) Iq ,

∑

q′
X−→q

(

q′ ∗ (
∏

p∈X

p) − (
∑

p6∈X

p)
)

.

RR n° 7459

12 R. Gason , F. Mallet , J. DeAntoniNow we build the set of CCSL relations. First we express that at every position in therun, exatly one state of the automaton holds. This orrespond to the relations
(3) cQ = Glob and q # q′ for every q, q′ ∈ Q (q 6= q′).We also impose that the global lok always oinides with a valid transition in order toavoid unexpeted behaviours:

(4) Glob =
∑

q∈Q

IQ.The transition relation is suh that every state alternates with its inoming transitions. Thismeans that for every q ∈ Q

(5) q0 ∼
=

Iq0 and Iq
=
∼ q.The relation is symmetri for q0 sine the exeution starts in this state. The alternane isnot strit on the side of the inoming transition sine it is allowed to return to the samestep (loops).We have to show that a model σ satis�es the CCSL spei�ation obtained i� there is arun ρ of A suh that for every i ∈ N, for every c ∈ V we have c ∈ σ(i) i� ρ(i) = 〈qi, Xi〉 and

c ∈ Xi.First we observe that for any model σ satisfying the CCSL spei�ation, if Iq ∈ σ(i) then
q ∈ σ(i + 1) for every i ∈ N. The alternane relations allows a lok q to our only if Iqhas oured between the last ourene of q and the urrent position (f (5)). However, thede�nitions of the di�erent Iq are de�ned w.r.t. transition relation of A whih is deterministiand omplete (f (2)). This implies that exatly one Iq belongs to σ(i) for every i ∈ N. So,if Iq ∈ σ(i) the only element of Q that an belonb to σ(i + 1) is q. By (3), exatly oneelement of Q must hold at eah position. This onlude the demonstration.We proeed by indution on the position of the sequenes. Suppose that we are given σ(resp. ρ). For every i ∈ N we note ρ(i) = 〈qi, vi〉. We show for every i ∈ N that for everyposition j < i and variable c ∈ VAR we an build ρ (resp. σ) suh that� c ∈ σ(j) i� c ∈ Xj ,� and qi + 1 ∈ σ(i+ 1) i� qi + 1 is the state of ρ(i+ 1).At the begining of any model, the only lok in Q that an belong to σ(0) is q0. Indeed,no lok Iq has oured whih prevent the other q ∈ Q from ouring beause of alternanerelations (see (5)). Similarly, the initial sate of A is always q0.Now let σ be a model of the CCSL spei�ation. We suppose that the property holdsuntil position i and that we have qi ∈ σ(i) and the state of ρ(i) is qi. Sine the transitionrelation is omplete and deterministi, there is a unique q′ ∈ Q suh that q φ

−→ q′ and
σ(i) |= φ. As a onsequene, Iq ′ ∈ σ(i) whih implies that q′ ∈ σ(i+ 1) as we shown before.We an do the orresponding move in A by hoosing the transition q φ

−→ q′ and setting c ∈ XiINRIA

Logial time and temporal logis: Comparing UML MARTE/CCSL and PSL 13i� c ∈ σ(i) ∩ V . By indution, one an build a run ρ of A suh that for every i ∈ N, forevery c ∈ VAR we have c ∈ σ(i) i� c ∈ ρ(i).Conversely, let ρ be a run of A. We suppose that the property holds until position i,
ρ(i) = 〈qi, vi〉 and qi ∈ σ(i). The demonstration is symmetrial. There is a unique transition
qi

φ
−→ qi+1 suh that vi |= φ beause the transition relation is deterministi and omplete.Let set σ(i) suh that for every c ∈ VAR we c ∈ σ(i) i� ρ(i) = 〈qi, vi〉 and vi(c) = ⊤. Byonstrution, we must have Iq i+1 ∈ σ(i) and so qi+1 ∈ σ(i + 1). Thus, one an build byindution σ verifying the property.The onverse translation is not possible. CCSL spei�ations annot be enoded byBoolean automata for the same reasons that prevent enoding CCSL spei�ations into PSLproperties. Some relations or operators like preedene annot be enoded by using �nitestate systems (see Set. 2.3).3.3 PSL and Boolean automataIt is well known that one an build a �nite automaton or a Bühi automaton that aeptsrespetively the �nite and in�nite models of a given PSL formula. Given a PSL formula φ,the onstrution de�ned in [3℄ an easily be adapted to build a Boolean automata aeptingthe set of models of φ. This onstrution itself is a slight extension of the automaton for LTLoriginally de�ned by [12℄. We do not develop this onstrution now sine the onstrutionin the proof of upoming Lemma 6 will follow the same main steps.Lemma 4. From any PSL properties φ one an build a Boolean automata Aφ suh that thelanguage aepted by A is exatly the set of models of φ.The onverse translation is easy sine the de�nition of LTL is inluded in PSL. By usingthe onstrution in [11℄ one an enode the behaviour of a Boolean automaton into a LTLformula.Lemma 5. From any Boolean automaton A, one an build a PSL formula φA suh that theset of models of φA is exatly the set of runs of A.4 Translations between CCSL and PSL fragmentsWe de�ne in this setion large fragments of CCSL and PSL that an be simulated in eahother. We de�ne the translations between these fragments using intermediate Booelan au-tomata enoding.4.1 From PSL to CCSLLemma 3 states that Boolean automata an be enoded in CCSL when every run is aepting.Thus we restrit ourselves to the lass of PSL formulas that an be translated into thissublass of Boolean automata. We onsider the safety fragment of PSL de�ned similarlyto [4℄ by restriting the use of negations. A PSL formula belongs to safety PSL formulasRR n° 7459

14 R. Gason , F. Mallet , J. DeAntonii� (S1) subformulas of the form φ1Uφ2 and r φ never our under an even number ofnegations, and (S2) SEREs never our under an odd number of negations. Note that onean de�ne safety fragments of PSL by restriting temporal modalities but this one is moregeneral. For the �nite ase, we also have to restrit the de�nition of the next operator to itsweak variant (s.t. the formula is satis�ed also if the model has no next position).Lemma 6. For every property in safety PSL, one an build an automaton suh that everyexeution is aepting.Proof. In [3℄ is desribed a way to build automata from PSL properties. We reall belowthe main steps of this onstrution and show that the restritions we have made allow us toobtain an automaton suh that every run respeting the transition relation is aepting.First, one an easily build a �nite automaton aepting the set of �nite words thatorresponds to a given SERE. Indeed, SERE are essentially regular expressions. So weassume that for every SERE r there is a �nite automaton Af
r = 〈2VAR, Qr, Ir, Fr, δ

f
r 〉 suhthat σ ∈ L(Ar) i� σ |=re r. From this automaton one an build a Bühi automaton

Ar = 〈2VAR, Qr, Ir, Qr, Qr, δr〉 suh that σ ∈ L(Ar) i� σ |=psl r. The transition relation δris obtained by adding the following rules to δfr :
〈qf , X, qf〉 ∈ δr for every qf ∈ Fr and X ∈ 2VAR.This automaton has only aepting and �nal states. Indeed, aording to PSL satisfationrelation, every pre�x that an be extended to an expression satisfying the SERE must beaepted.Then we proeed by indution on the struture of the formula. The result of the on-strution is an alternating automata. This allows running automata for the SERE atomiformulas in parallel of the temporal logi part. Then, it is known that an alternating Bühiautomaton an be translated into a standard Bühi automaton [7℄.The base ase is given above. So we suppose that for every subformula ψ of φ we an buildan automaton Aψ = 〈2VAR, Qψ, Iψ , Aψ, Fψ, δr〉 suh that suh that every run is aeptingand σ ∈ L(Aψ) i� σ |=psl ψ. There are atually two onstrutions beause the ase wherethe formula φ is of the form ¬(r ψ) must be treated separately. In that ase, Aφ is builtfrom the �nite automaton Af

r = 〈2VAR, Qr, Ir , Fr, δ
f
r 〉 and Aψ = 〈2VAR, Qψ, Iψ, Qψ, Qψ, δψ〉as follows.� the set of states is the union of Qr and Qψ and an additional state qt,� the set of initial states is Ir,� the set of �nal states is the union of qt, Qr and F¬ψ , so Fφ = Qφ beause F¬ψ = Q¬ψ,� the set of aepting states is the union of qt, Qr and A¬ψ, so Aφ = Qφ beause

A¬ψ = Q¬ψ,
INRIA

Logial time and temporal logis: Comparing UML MARTE/CCSL and PSL 15� For every qf ∈ Fr and X ∈ 2VAR we have
δ(qf , X) =

∧

q′∈δr(q,X)

q′ ∧ δ¬ψ(q0, X)where q0 is the initial state of A¬ψ .� For every q ∈ Qr \ Fr and X ∈ 2VAR� if δr(q,X) is de�ned then
δ(q,X) =

∧

q′∈δr(q,X)

q′,� otherwise δ(q,X) = qt,� for every q ∈ Q¬ψ the transition relation oinides with δ¬ψ,� �nally δ(qt, X) = qt for every X ∈ 2VAR.Note that we only have to onsider negated ourrenes of r ψ by de�nition of the safetyfragment.For the other ases, A is de�ned as follows. The set of states is omposed of� the set of states of the automata Ar for every SERE r ourring in φ,� the set of states of the automata A¬(rψ) for every subformula r ψ ourring in φ,� the set of subformulas of φ and their negation (we identify ¬¬ψ with ψ).The initial state is φ. The transition relation δ is de�ned reursively:� δ(p,X) = ⊤ i� p ∈ X .� δ(r,X) = δ(qr0 , X) where qr0 is the initial state of Ar.� δ(φ1 ∧ φ2, X) = δ(φ1, X) ∧ δ(φ2, X).� δ(φ1 ∨ φ2, X) = δ(φ1, X) ∨ δ(φ2, X).� δ(¬φ,X) = δ(φ,X).� δ(Xφ,X) = φ.� δ(φ1Uφ2, X) = δ(φ2, X) ∨ (δ(φ1, X) ∧ φ1Uφ2).Where the overlined expressions are interpreted as follows:RR n° 7459

16 R. Gason , F. Mallet , J. DeAntoni� a ∧ b = a ∨ b,� a ∨ b = a ∧ b,� δ(q¬r0 , X) = δ(qr0 , X) where qr0 is the initial state of the automaton Ar,� δ(qrψ
0 , X) = δ(q

¬(rψ)
0 , X) where q¬(rψ)

0 is the initial state of A¬(rψ),� ψ = ¬ψ, for every subformula (we still identify ¬¬ψ with ψ).Note that beause we onsider the safety fragment the ases δ(qr0 , X) and δ(qrψ
0 , X) neverour (see restritions of negation).In the general onstrution, the aepting states would be those of the form ¬φ1Uφ2 orthe states of the automata A¬(rψ) and Ar. However, for formulas in the safety fragmentthe onstrution above is partiular. For every run of the automaton obtained it annot bethe ase that an in�nite branh does not enounter one of those �nal states.We proeed by indution. If we are in a state of the form p, the branh is �nite. Similarly,in the ases r or ¬(r ψ) we are done sine all the states of the orresponding automataare aepting. Now we suppose that every subformula of φ and its negation satisfy theproperty. In almost all ases, the di�erent branhes of δ(φ,X) goes to states labeled bystrit subformulas of φ. In that ases we an use the indution hypothesis to onlude. Theonly remaining ase is when φ is of the form φ1Uφ2 or ¬φ1Uφ2. The �rst ase annot arisesine we are in the safety fragment. In the seond ase the transition rule is the follows:

δ(¬φ1Uφ2) = δ(φ1Uφ2) = δ(¬φ2, X) ∧ (δ(¬φ1, X) ∨ ¬(φ1Uφ2)).We an use the indution hypothesis on the branh orresponding to φ2. For the otherbranh, we an prove by indution that� either we reah a position when ¬φ2 and ¬φ1 hold and then we an use the indutionhypothesis,� or ¬(φ1Uφ2) is visited in�nitely often. Sine this state is aepting we are also done.So we an set Aφ = Fφ = Qφ.By onstrution, every state of the alternating Bühi automaton obtained is �nal andaepting. If we use the powerset onstrution of [7℄ to build an equivalent non-alternatingautomaton, the sets of �nal and aepting states are also equal to the whole set of states.So every run of the resulting automaton is aepting.The proof is given in Appendix ?? is a variant of the onstrution in [3℄. We just haveto ensure that every exeution is aepting. By Lemmas 6 and 3 we an enode every safetyPSL formula into CCSL spei�ations.Lemma 7. Every safety PSL formula an be enoded by a CCSL spei�ation.
INRIA

Logial time and temporal logis: Comparing UML MARTE/CCSL and PSL 17
q0 q1

p
0

p0 ∧ p1

p0 ∧ p
1
∧ p

2

p1

p
1
∧ p

2

Figure 1: Boolean automaton for G(p0 ⇒ ¬(p1Up2))For instane, Figure 1 represents the automaton orresponding to the formula G(p0 ⇒
¬(p1Up2)) after simpli�ations. This automaton orresponds to the CCSL spei�ation
〈V,Def ,Rel〉 suh that V = {p0, p1, p2} and

Def =

Q , q0 + q1 , Glob , Q + p0 + p1 + p2,

Iq0 ,
(

(q0 − p0) + (q0 ∗ p0 ∗ p1) + (q1 ∗ p1)
)

,

Iq1 ,
(

((q0 ∗ p0) − (p1 + p2)) + (q1 − (p0 + p1))
)

,

Rel =

{

Glob = Q , q0 # q1 , Glob = Iq0 + Iq1,

q0 =
∼ Iq0 , Iq1 ∼

=
q1

}

.4.2 From CCSL to PSLTo obtain a fragment of CCSL that an be enoded in PSL, we restrit the preedenerelations and the operators c1 ∨ c2 and c1 ∧ c2. We de�ne a preedene relation suh thatthe advane of the fastest lok is bounded. We denote these relations ≺n and 4n where
n ∈ N. A model σ satis�es c1 ≺n c2 i� for every i ∈ N we have χσ(c2, i) < χσ(c1, i) ≤

χ(c2, i) +m. The relation 4n is de�ned similarly with non strit inequalities. We de�nesimilar variants c1 ∧n c2 and c1 ∨n c2 that restrit the di�erene of the loks c1 and c2 tobe bounded by n. Suh expressions are partiular sine they also imposes impliit onstraintson the parameters. However, this is the most onvenient way of de�ning a syntati fragmentof CCSL that an be translated into CCSL.We all bounded CCSL the language obtained by replaing in CCSL the preedenerelations, greatest lower bound and lowest upper bound operators by their bounded variants.This language is a fragment of CCSL. Indeed, the operators an be de�ned in full CCSL:� c1 ≺n c2 is equivalent to c1 ≺ c2 and c2 4 c′1 where c′1 , c1 $ n. Non stritpreedene ase is similar.
RR n° 7459

18 R. Gason , F. Mallet , J. DeAntoni� c , c1 ∧n c2 is equivalent to the onjuntion of c , c1 ∨ c2 with the relations
c1 4 c′2 and c2 4 c′1 where c′1 , c1 $ n and c′2 , c2 $ n. This equivalenemake lear the relations impliitly imposed on the parameters of the expression. Theoperator c1 ∨n c2 an be de�ned similarly.These restritions allow us to establish the following results.Lemma 8. (I) Every bounded CCSL spei�ation an be enoded by a Boolean automata.(II) Every bounded CCSL spei�ations an be enoded by a PSL formula.Proof. (I) We proeed by indution on the struture of CCSL spei�ations. As every statein the resulting automata are �nal and aepting, we do not mention them. First, let usonsider CCSL relations. For every Boolean formula φ we denote by Bφ the single stateBoolean automaton with a self loop labeled by φ.� The subloking relation c1 ⊂ c2 an be enoded by B(c1∨c2).� Similarly, the exlusion relation c1 # c2 an be enoded by B(c1∨c2).� The bounded preedene relation c1 ≺n c2 an be enoded by an automaton with
n states. These states simulate the inrementation and derementation of a ounterthat store the advane of c1 on c2. So one needs to move to the next state when c1 istrue, to move bak when c2 is true and to stay in the same state when both (or none)are true. Fig. 2 is the automaton for n = 3.

0 1 2 3

c1 ∧ c2

c1 ∧ c2

c1 ∧ c2

c1 ∧ c2

c1 ∧ c2

c2 ∧ c1

c1 ∧ c2

c1 ∧ c2

c1 ∧ c2

c2 ∧ c1

c1 ∧ c2

c1 ∧ c2Figure 2: Boolean automaton for c1 ≺3 c2� The onstrution for the relation c1 4n c2 is similar an additional loop labeled c1∧c2on state 0 and a transition from state 1 bak to state 0.A de�nition of the form c , e an be enoded by the produt automaton Ae × Bc⇔ewhere Ae is de�ned below.� If e is of the form e1 + e2 then Ae an be obtained by making the produt of Ae1 , Ae2and B((e1∨e2)⇔e).� The automaton for e1 ∗ e2 is built similarly by replaing the third automaton by
B((e1∧e2)⇔e). INRIA

Logial time and temporal logis: Comparing UML MARTE/CCSL and PSL 19� The enoding of e1 e2 is a bit more omplex. Consider two opies A and A′ of theprodut automaton Ae1 × Ae2 . We denote by q0, q1 . . . the states of A and q′0, q′1 . . .the states of A′ suh that qi and q′i represent the same state in the di�erent opies.To build the automaton Ae we use A to simulate the part where e1 has not ourredyet and A′ the part where e1 has ourred and we wait for the next ourrene of e2.So, we have to move from A to A′ when e1 is true. Then we move bak to A andset e to true when e2 is true. This automaton is obtained by making the followingtransformations on A and A′.
(⋆) For every transition qi φ

−→ qj in A we replae the label by φ∧ e1 ∧ e and add thetransition qi φ∧e1∧e−−−−→ q′j from A to A′.
(⋆⋆) For every transition q′i φ

−→ q′j in A′ we replae the label by φ∧ e2 ∧ e and add thetransition q′i φ∧e2∧e−−−−→ qj from A′ to A.Obviously if the Boolean formula of a label redues to false then the orrespondingtransition is removed (or not added).� The enoding of e1 e2 is very lose to the ase e1 e2. The di�erene is that whenwe are in the �rst opy and both e1 and e2 are true then e is also true and we stay inthe same opy. We only move to the seond opy when e1 is true and e2 is false. Sothe step (⋆) has to be replaed byFor every transition qi φ
−→ qj in A we replae the label by φ∧ e1 ∧ e and add thetwo transitions qi φ∧e1∧e2∧e−−−−−−→ q′j and qi φ∧e1∧e2∧e−−−−−−→ qj .� The enoding of e1 $e2 n is a generalization of the previous onstrution. When e1holds we have to wait for n positions where e2 holds. This an be done with n + 1opies of Ae1 ×Ae2 . Another point of view is that a ounter is enoded in the states ofthe resulting automaton. In the same way than the onstrution for the ase e1 e2we add transitions between the di�erent opy as following:� from the �rst opy to the seond when e1 ours,� from the ith to the i+ 1th when e2 ours for 2 ≤ i ≤ n+ 1,� from the n+1th to the �rst when e2 ours and this orresponds to the transitionswhere e must our.� Now we onsider the �ltering operation e1 H bw . Suppose that bw = u · vω. Theexpression an also be enoded similarly with |u| + |v| opies of Ae1 . Eah opy isassoiated with positions in bw in a natural way. The transition from a opy to theRR n° 7459

20 R. Gason , F. Mallet , J. DeAntoninext one is done when e1 holds and after the last opy we jump to the (|u| + 1)thone (periodi part). The variable e ours i� e1 ours in a opy whose orrespondingposition in bw is equal to 1.� The automaton when e is of the form e1 e2 an easily be obtained from the produtautomaton A = Ae1 ×Ae2 × B((e1∧e2)⇔e) as following.� We add a sink state qs with a loop qs e
−→ qs.� We replae every transition q φ

−→ q′ in A (q, q′ 6= qs) by q φ∧e2−−→ q′ and we add thetransition q φ∧e2−−→ qs.This operation prevents future ourrenes of e as soon a e2 has oured.� The way of enoding e1 ∧n e2 is lose to the bounded preedene relation sine weneed to store the di�erene between the ourrenes of c1 and c2. To do this weneed here 2n + 1 states. The expression e holds when the variable that has the lessourrenes holds. Fig 3 is the automaton for n = 2. The right part (positive labels)orresponds to positions where the number of ourrenes of c1 is greater than c2. So
c is true in this part when c2 is true. The left part is symmetrial.

−2 −1 0 1 2

c1 ∧ c2 ∧ e

c1 ∧ c2 ∧ e

c1 ∧ c2 ∧ e

c2 ∧ c1 ∧ e

c1 ∧ c2 ∧ e

c1 ∧ c2 ∧ e

c1 ∧ c2 ∧ e

c2 ∧ c1 ∧ e

c1 ∧ c2 ∧ e

c1 ∧ c2 ∧ e

c2 ∧ c1 ∧ e

c1 ∧ c2 ∧ e

c1 ∧ c2 ∧ e

c1 ∧ c2 ∧ e

c2 ∧ c1 ∧ e

c1 ∧ c2 ∧ e

c1 ∧ c2 ∧ e

c1 ∧ c2 ∧ e Figure 3: Boolean automaton for c1 ∧2 c2� The ase e1 ∨n e2 is quite similar. For n = 2 the automaton is obtained by swithing
e and e in the transitions that are not loops in Fig. 3.The global automaton orresponding to a given CCSL spei�ation is the produt of allthe automata orresponding to the di�erent de�nitions and relations. The set of modelsorresponding to suh an automaton is the same than the set of models of the CCSL spei�-ation. A areful analysis of the di�erent steps shows that this onstrution stritly followsCCSL semantis.(II) This seond part is a diret onsequene of (I) and Lemma 5, even if the PSLformula obtained by omposing the two transformations is not minimal. We an de�nea diret translation from bounded CCSL to PSL. However, the result of the translationremains ompliated. We still have to enode the ounters of relations like preedene,�ltering, delay. . . whih is tedious when using only propositional variables. INRIA

Logial time and temporal logis: Comparing UML MARTE/CCSL and PSL 21Here we have arbitrarily hosen to bound the preedene operators. There are exampleswhere the ontext already bounds the di�erene between the arguments of a preedenerelation (see for instane the de�nition of alternane in Set. 2.1). So, bounded CCSL isnot the largest fragment that an be enoded in PSL. Determining whether the state spaeof a CCSL spei�ation is �nite is an open question. Moreover it seems very di�ult todetermine a syntati fragment orresponding to suh CCSL spei�ations.5 ConlusionIn this paper, we have ompared the expressiveness of CCSL and PSL, two formal languagesused for similare purposes but at di�erent levels. We have identi�ed the CCSL onstrutsthat annot be expressed in PSL and the lass of PSL formulas that annot be stated inCCSL . We have also de�ned the ommon fragments between CCSL and PSL so that onean be translated into the other. A su�ient ondition to translate CCSL spei�ations intoPSL is to bound the integer ounters used to ount the number of ourrenes of loks.Preisely, the relative advane of the loks put in relation by these CCSL onstruts mustbe bounded. This translation is an important step towards the formal veri�ation of a CCSLspei�ation and the exploration of its state spae. In the future, we an also take bene�tsof the intermediate translation to automata to establish omparison with other languages.Conversely, we have de�ned the translation of PSL safety properties into CCSL. CCSLannot express the lass of liveness properties. CCSL has not been designed for this purpose.However, it an be interesting to apture all the expressive power of PSL in a higher leveldesription language. A solution to �ll the gap ould be to introdue temporal modalities ina CCSL -like language while keeping the multi-loks aspets. CCSL is indeed a languagethat is still evolving. We are urrently de�ning a minimal kernel from whih all the relationsand expressions introdued in this paper (and possibly others) an be derived. In thisdevelopment, we should maintain the orrespondenes with the other languages involved insystem design suh as PSL.Referenes[1℄ C. André. Syntax and semantis of the lok onstraint speiation language. TehnialReport 6925, INRIA, 2009.[2℄ C. André, F. Mallet, and J. DeAntoni. VHDL observers for lok onstraint heking. InIndustrial Embedded Systems (SIES), 2010 International Symposium on, pages 98�107,July 2010.[3℄ D. Bustan, D. Fisman, and J. Havliek. Automata onstrution for PSL. Tehnialreport, IBM Haifa Researh Lab, 2005.[4℄ R. Lazi¢. Safely freezing LTL. In In FST&TCS'06, pages 381�392. Springer, 2006.
RR n° 7459

22 R. Gason , F. Mallet , J. DeAntoni[5℄ F. Mallet, C. André, and J. DeAntoni. Exeuting AADL models with UML/Marte. InICECCS'09 - UML&AADL'09, pages 371�376, Potsdam, Germany, June 2009. IEEEComputer Press.[6℄ F. Mallet, M.-A. Peraldi-Frati, and C. André. Marte CCSL to exeute East-ADLtiming requirements. In ISORC'09, pages 249�253, Japan, Tokyo, Marh 2009. IEEEComputer Press.[7℄ S. Miyano and T. Hayashi. Alternating �nite automata on ω-words. Theoretial Com-puter Siene, 32(3):321 � 330, 1984.[8℄ OMG. UML Pro�le for MARTE, v1.0. Objet Management Group, November 2009.formal/2009-11-02.[9℄ P. Peil, J. Medina, H. Posadas, and E. Villar. Generating heterogeneous exeutablespei�ations in SystemC from UML/MARTE models. Innovations in Systems andSoftware Engineering, 6:65�71, 2010. 10.1007/s11334-009-0105-4.[10℄ IEEE standard for Property Spei�ation Language (PSL), IEEE std 1850-2005.[11℄ A. Sistla and E. Clarke. The omplexity of propositional linear temporal logi. J. ACM,32(3):733�74, 1985.[12℄ M. Vardi and P. Wolper. An automata-theoreti approah to automati program veri-�ation (preliminary report). In LICS'86, pages 332�344. IEEE, 1986.[13℄ J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, and J.-P. Diguet. A o-design approahfor embedded system modeling and ode generation with UML and MARTE. In DATE,pages 226�231, 2009.

INRIA

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université- ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau- Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

