
HAL Id: inria-00540829
https://inria.hal.science/inria-00540829

Submitted on 29 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-based Decentralized Embedded Diagnosis inside
Vehicles: Application to Smart Distance Keeping

Function
Othman Nasri, Hassan Shraïm, Philippe Dague, Olivier Héron, Mickael

Cartron

To cite this version:
Othman Nasri, Hassan Shraïm, Philippe Dague, Olivier Héron, Mickael Cartron. Model-based De-
centralized Embedded Diagnosis inside Vehicles: Application to Smart Distance Keeping Function.
Conference on Control and Fault-Tolerant Systems Systol’10, Oct 2010, Nice, France. �inria-00540829�

https://inria.hal.science/inria-00540829
https://hal.archives-ouvertes.fr


Model-based Decentralized Embedded Diagnosis inside Vehicles: Application to
Smart Distance Keeping Function

Othman Nasri∗, Hassan Shraim∗, Philippe Dague∗, Olivier Héron† and Mickael Cartron†
∗LRI, Université Paris-Sud 11, CNRS & INRIA Saclay - Île-de-France

Bât 490, 91405 Orsay Cedex France
Emails: othman.nasri@lri.fr, hassan.shraim@gmail.com, philippe.dague@lri.fr

†CEA LIST, Saclay
91191 Gif-sur-Yvette cedex France

Emails: olivier.heron@cea.fr, mickael.cartron@cea.fr

Abstract—In this paper, the deployment of a fault diagnosis
strategy in the Smart Distance Keeping (SDK) system with
a decentralized architecture is presented. The SDK system is
an advanced version of the Adaptive Cruise Control (ACC)
system, implemented in a Renault-Volvo Trucks vehicle. The
main goal of this work is to analyze measurements, issued from
the SDK elements, in order to detect, to localize and to identify
some faults that may be produced. Our main contribution is
the proposition of a decentralized approach permitting to carry
out an on-line diagnosis without computing the global model
and to deploy it on several control units. This paper explains
the model-based decentralized solution and its application to
the embedded diagnosis of the SDK system inside truck with
five control units connected via a CAN-bus using ”Hardware
In the Loop” (HIL) technique. We also discuss the constraints
that must be fulfilled.

Keywords-Smart Distance Keeping (SDK), vehicle modeling,
model-based embedded diagnosis, decentralized architecture,
Hardware in the loop (HIL).

I. INTRODUCTION

In order to respond to the increasing demands of safety
and driving comfort, more and more electronic functions
are embedded in the vehicles such as engine control (to
optimize fuel economy and to reduce pollution), ABS (An-
tilock Braking System), ESP (Electronic Stability Program),
etc. Each global safety or comfort system contains one
or more functions which may be distributed on several
ECUs (Electronic Control Unit). Most of these functions are
modular and respecting some norms (such as AUTOSAR).
They exchange information (for example vehicle speed) with
other functions via communication interfaces. That means, if
the system is not equipped with a certain diagnosis strategy,
any fault generated from a function, may influence all the
functions with are related to it. This fact highlights the
problem of fault propagation and the need of fault diagnosis
in the vehicle.

In this paper, we focus on the sensors fault diagnosis
of the Smart Distance Keeping (SDK) system, which is
an advanced Adaptive Cruise Control (ACC) system imple-
mented in a Renault-Volvo Trucks vehicle to increase safety

by overcoming some ACC limitations [1]. It is composed
of many subsystems (micro controllers, cables, CAN or
FlexRay bus, sensors, actuators, etc.) coming from different
suppliers. That is why, its diagnostic is a challenging task.

Considering the size and the complexity of the SDK
system, a centralized on-board diagnosis is not adequate
because it requires the establishment of a global model of
the system and too much memory resources and prevents
to act immediately each time a diagnosis could be find at
local level. To detect and isolate possible faults in the SDK
system and manage its architectural complexity, we have
chosen the model-based fault diagnosis approach (FDI) in a
decentralized manner. A local diagnoser is associated with
each component of the SDK system based on a modular
modeling of the plant elements. All local diagnosis decisions
are transmitted via CAN-bus and merged by a dedicated
supervisor in order to obtain a global decision and carry out
any recovery action. A strategy for applying this merging
operation was developed in order to be efficient.

The paper is organized as follows. In section II, we present
the decentralized model-based fault diagnosis approach.
Section III explains how to deploy this approach in order
to apply on-line diagnosis for the SDK system. Then, we
evaluate the proposed diagnosis approach in section IV.
Finally, we conclude with a discussion on the related work.

II. DECENTRALIZED DIAGNOSIS

In most automated systems, the command part (which
implements the control of the operative part) is generally
represented through a model to be applied to the operative
part (mechanical components which should be controlled by
means of actuators, such as engines). Realizing a diagnosis
requires also to be able to represent the state of the operative
part using a model that can be integrated to the one of
the command part, separated or mixed. Thus, when a fault
occurs, it is possible to get information regarding the process
and to compare model and process. This is called model-
based diagnosis (Fault Detection and Isolation) [2].



The method of fault detection and isolation (FDI) is
based on the use of analytical redundancy (model-based),
i.e. relations among the measured variables (see figure 1). It
can be divided into several steps [3].

• First, data containing information about the process
states (i.e., the symptoms) are transmitted to the resid-
ual generation module. This module generates a vector
that carries information about a particular fault.

• Second, the generated vectors are evaluated and filtered,
i.e. faults are localized and identified, in order to
extract the primary cause of the observed evolution.
The structured residual approach [4] has been chosen
in order to perform this stage.

Figure 1. Model-based fault diagnosis using residual approach

A. Motivations

A decision-making structure for fault diagnosis must
be defined to face combinatorial explosion and real time
problems and/or communication problems between various
components of a process. The choice of a structure depends
on the distribution of the available information (model and
observation): centralized or distributed, and on the nature of
the process: simple with only one control unit or complex
with several local control units. There are therefore three
main structures of decision-making methods for diagnosis:
centralized, decentralized and distributed.

The centralized structure consists in associating to one
global model of the process a single diagnostic module
(called diagnoser). It collects the different process informa-
tions before making its final decision on the operating status
of the process [7]. Although successful in terms of diagnosis
for simple systems, the centralized structure is difficult to
use for large systems. Indeed, the acquisition of a global
model of the process rises difficulties and often leads to
combinatorial explosion problem.

The decentralized structure is based on several local inde-
pendent diagnosers that are associated to one global model
of the process . Each diagnoser receives the observations
which are specific to it and takes a local decision based
on its local observations. However, this structure involves
problems of indecision when some global specifications
require consistency checking between decisions of local
diagnosers. To solve these cases, each diagnoser sends its
local decision to a coordinator (or supervisor) which will
manage the different problems of ambiguity between these
diagnosers and will take the final decision [8].

In the distributed structure, the process is modeled through
its components (or subsystems) by several local models.
Each one is equipped with a local diagnoser responsible
of it. In the case of global specifications, a communica-
tion protocol allows directly the communication between

the different diagnosers to manage conflict decision [9].
Each diagnoser makes its decision based on its own local
observation and that reported by other local diagnosers as
answers to its queries. This structure permits to throw off
the construction of a coordinator but implies the definition
of a protocol for decision making through communication
between diagnosers, often impractical because without guar-
antee of convergence in bounded time and generating more
important communication traffic and delays.

In this paper we adapt the decentralized/distributed struc-
ture. In other words, a local diagnoser is associated with each
component of the process based on a modular modelling
of the plant elements. All local diagnosis decisions are
transmitted via a communication environment and merged
by a dedicated supervisor in order to obtain a global decision
and carry out any recovery action (see figure 2). This fusion
can be realized by a coordinator based on a set of rules.
The goal of this coordinator is to solve the problem of
decision conflict and/or ambiguity among local diagnosers in
order to obtain a diagnosis performance equivalent to that
of a centralized diagnoser. This approach allows carrying

Figure 2. Model-based decentralized principle with 2 local diagnosers

out on-line diagnosis without computing the global model
and overcoming both the combinatorial and communication
traffic explosion problems.

B. SDK algorithm

Smart Distance Keeping (SDK) or ”enhanced Adaptive
Cruise Control (ACC)” is a system which automatically
controls the vehicle’s longitudinal position, by acting on the
engine, gearbox, retarder and braking system. This requires
the vehicle to be equipped with a radar system linked to
a dedicated control unit as shown in figure 3. The global

Figure 3. Radar installed on the Renault Magnum truck

SDK system may be decomposed into two main parts,
the SDK controller, and the SDK environment model. The
main functions of the SDK controller are to: (i) acquire
the distance between the truck and the front object, (ii)
compute the deceleration (acceleration) needed to realize
the correct functioning of the SDK system (maintaining a
minimal safety distance with the front vehicle), and (iii)
use a control algorithm for acting through engine, braking
system, etc. in order to adjust the velocity of the truck.
From the SDK architecture, we see that the decision of the
SDK controller depends essentially on the data issued from
some sensors (wheels angular velocity sensors, radar, and
transmission sensor), which means that any faulty data will
influence the SDK system decision. That is why, one local



diagnoser is associated with each one of these sensors in
order to diagnose an SDK fault by using the decentralized
model-based approach (see figure 2).

Figure 4. Decentralized model based fault diagnosis of the SDK system

C. Decentralized diagnosis of the SDK

A model of the SDK environment, i.e. the part of the
vehicle required to close the loop, is necessary to perform
diagnosis (see figure 2). So, by applying the laws of dy-
namics, a simplified model of the diesel engine has been
developed (see [5] and [6] for more details). It permits to
identify the angular velocities of the six wheels and the crank
shaft angular velocity in response to an action (on braking
system or accelerator pedal or gearbox).

1) Wheels diagnoser: The six wheels angular velocities
wi are the inputs of a local algorithm able to detect and
isolate any fault that occurs in the wheels velocity sensors.
Indeed, it is possible by using these redundant measurements
to generate a set of structured residuals and afterwards detect
and isolate single or multiple fault. The outputs of this
algorithm are the state (normal/abnormal) si of the wheels
sensors. In addition, it computes the longitudinal speed Vw

of the truck which is approximated based on the non faulty
sensors:

(s1, s2, s3, s4, s5, s6, Vw) = wheels(w1, w2, w3, w4, w5, w6)

2) Transmission diagnoser: Since there is no redundancy
measurement, the algorithm just computes the longitudinal
truck speed Vt by using the value of the crank shaft angular
velocity we (the gear box output) and the transmission rate
number n:

Vt = transmission(we, n)

3) Radar diagnoser: The radar provides the relative dis-
tance RD and velocity RV between the front object and the
truck. To detect locally a radar fault, three scenarios have
been analyzed:

• if the radar is faulty and does not detect any object
then, strictly speaking, without the help of another
device, we can do nothing, but in practice the symptom,
permanently flat signals, is easily identifiable,

• if the radar works but gives incorrect distances (with
a certain shift of x meters): for example (150 m →
150−x m) where x is a constant term, then we cannot
detect this fault,

• if the relative velocity and the distance between the
vehicles are measured separately by the radar, then we
check consistency between them, i.e. at each period
(for example 2 seconds) if the variation in the distance
corresponds to the variation in the relative velocity. If

there is a discrepancy then we conclude that the radar
is faulty.

The output of the local algorithm is the radar state (nor-
mal/abnormal) sr:

sr = radar(RD,RV )

4) Global diagnoser (or Supervisor): It takes as inputs
the outputs of the local diagnosers and its goal is to do
some global consistency checking and to merge the local
diagnosis decisions in order to obtain one global diagnosis
decision and carry out the appropriate recovery action:

(c, TS) = global(s1, s2, s3, s4, s5, s6, sr, Vw, Vt)

c and TS represent the control (recovery action) and the
truck speed respectively.

Several fault scenarios and recovery actions have been
analyzed. The first class of scenarios is composed of wheels
sensors failures and/or sensor failure on the rotation speed
of the shaft engine (transmission fault). The global diagnosis
and recovery actions are described as follows:

(a) if 1 to 3 wheels sensors are faulty out of the 6
(determined by the wheels diagnoser), the recovery
action consists for the SDK function in using the truck
speed Vw calculated as average values provided by the
correct sensors (between 3 and 5). The global diag-
noser compares Vt to Vw and, in case of discrepancy,
concludes also to a faulty transmission sensor,

(b) if 4 wheels sensors are faulty (determined by the
wheels diagnoser), a comparison between the speed
Vw computed from the two ones assumed to be correct
and Vt is performed by the global diagnoser. In case
of consistency, the recovery action decided by the
global diagnoser consists in using the truck speed
calculated as average values provided by the correct
wheel sensors and the transmission sensor (3 out of
7),

(c) in all other cases, i.e. when at most 2 sensors out of 7
provide consistent measurements, the recovery action
decided by the global diagnoser consists in disabling
the SDK function.

The second scenarios category includes the radar failure.
It may pass unnoticed, in particular if RD and RV measure-
ments are not independent, because we cannot provide ana-
lytical redundancies between the truck and the front vehicle.
In absence of such redundancy, the only check we can do is
to verify that the behavior of the front vehicle, in terms of
velocity and acceleration, as deduced by the global diagnoser
from the truck’s behavior (TS) and the radar measurement,
is not physically impossible, i.e. does not violate the laws
of dynamics. In case of physical impossibility detected, then
the recovery action taken by the global diagnoser consists
in disabling the SDK controller.



Obviously both scenarios can combine, allowing multiple
fault diagnosis of the wheels and transmission sensors and
of the radar.

III. DIAGNOSIS DEPLOYMENT

In this section, we propose a deployment solution of
the decentralized model-based fault diagnosis strategy (see
figure 4) in the electronic architecture of a Renault Truck’s
vehicle. The SDK electronic architecture part is composed
of three Electronic Control Units (ECU) that communicate
between them through a bus topology. The ECUs exchange
messages that follow the Control Area Network (CAN)
protocol, which is low-cost and very wide-spread in the
road transport domain. The three ECUs (ECU1, 2 and 3)
are respectively linked to wheels, transmission and radar
(+SDK algorithm) control functions. We also assume that
there is at least another ECU (ECU4) in the vehicle for other
high level control functions, which is a very likely situation
in modern vehicles. ECU4 will be used for embedding the
global diagnoser and recovery functions.

We first list the manufacturing constraints that motivate
the adopted deployment solution. We next present the clas-
sical on-board diagnosis techniques in vehicles. Finally, we
describe the principle of our on-board diagnosis strategy,
based on the above electronic architecture. The next section
will present an integration and validation platform.

A. Motivations

From an end user point of view, breakdowns and mis-
functioning can lead to a loss of safety for the driver and
his environment - a major breakdown which necessitates an
emergency stop and repair - or a company’s performance
penalty, due to the need of a vehicle maintenance. From
the vehicle manufacturer point of view, these risks must be
avoided because they can mostly cause a loss of corporate
image and in-field yield.

Beside that, the road transport industry is a very compet-
itive market and the integration of innovative features, such
as diagnosis, is highly driven by economical considerations.
That is why most of control organs of modern fuel vehicles
are embedded and architectured around a limited number
of ECUs and communication buses. This evolution towards
a very wide use of ECUs was also pushed by the need to
reach new challenges such as environmental, performance,
security and driving assistance requirements.

As a result, the following four major requirements have
driven our diagnosis deployment strategy:

• the number of ECUs has to remain unchanged,
• the number of buses has to remain unchanged and

the same communication protocol should be used if
possible,

• the additional bus load related to diagnosis information
must not affect the current real time performance,

• the diagnosis procedure must be achieved within a
bounded time.

Note that, here, we do not address the problem of ECUs
load sharing and balancing between the control functions
already embedded in them and the diagnosis control ones
that will be embedded. This issue will be addressed in a
future paper. Nevertheless, the response time of a control
function mainly depends on the total communication delay
along the bus lines.

Due to the robustness of the CAN-based bus technology,
it is a good candidate for enabling the deployment of a
decentralized diagnosis strategy. The electronic architecture
remains unchanged (no additional ECU and bus). In order to
achieve the two last requirements, we developed a SW based
diagnosis service that is a SW middleware built on the top of
any ECU operating system. It enables the communication of
diagnosis information between the local diagnosers and the
global diagnoser (as shown in 4) over a loaded CAN bus. It
also processes any alert with a bounded time whatever the
bus load. It enables the message exchanging with a bounded
time while the real time requirements are verified (no more
than 2% of delay time) whatever the bus load.

B. Classical diagnosis approaches

On-board Vehicle diagnosis (OBD) refers to vehicle self-
detection, localization, identification and reporting capa-
bilities [10], [11]. Early OBD versions for fuel vehicle
managed by electronic simply switched-on a malfunction
indicator light in the vehicle if any problem was detected.
The diagnosis was next performed by an operator in a garage
with the aid of a terminal connected to the vehicle electronic.
Efficient diagnosis tools were developped for tracking the
problem such as [12].

Modern OBD provides realtime diagnosis data in addition
to standardized diagnosis trouble codes (DTC) which rapidly
allow the vehicle to self-identify and possibly, self-repair
by itself the problem during the driving. Otherwise, some
vehicles activate a downgraded mode that allows the vehicle
driving in safe conditions even in the presence of problems
[13]. In parallel, the vehicle switches-on a driver indicator
light that points the need of an emergency maintenance (the
driver must reach the closest garage) or stop.

Current SAE1 and ISO2 standards specify the hardware
(connector, network) and communication protocol (Open
System Interconnection model) for exchanging diagnostic
data over the ECUs and external terminals. Some engineer-
ing companies propose tools that allow the ECU original
equipment manufacturers (OEM) implementing the stan-
dardized DTC and customer-specific diagnosis requirements
in their ECU, such as [14] (diagnostic-oriented process
flow).

1Society of Automobile Engineers
2International Standardization Organization



C. Deployment of the decentralized diagnosis

The decentralized diagnosis system, described in section
II, is deployed in an electronic architecture of four ECUs
which communicate over a single CAN based bus.

The local diagnosers only transmit boolean signals, which
take two states: normal or abnormal, to the global diagnoser.
Note that the local diagnosers do not exchange directly
diagnosis information with each other. A local diagnoser
outputs a normal state whenever no fault is detected. During
this normal state, no additional bus load is due to the
diagnosis protocol. Conversely, an abnormal state indicates
that a problem has likely occurred in a sensor and when it
appears, the local diagnoser must immediately send diag-
nosis information to the remote global diagnoser in order
to compute a global diagnosis and, if the need arises, to
perform a recovery procedure.

For enabling this event-based procedure, we insert a Local
Diagnosis Service (LDS) in every ECU that embeds a local
diagnoser. A LDS reads the outputs of the local diagnoser
(normal/abnormal). When an event ’normal → abnormal’
occurs, it virtually creates a high priority communication
channel between the local diagnoser and the global di-
agnoser, so that the former can immediately transmit the
diagnosis information to the latter within a bounded time.
The diagnosis information is embedded in CAN messages.
In addition, a CAN message contains a control header that
especially defines the transmitter and receiver identifiers and
the priority level of the communication. On the opposite
side, a Supervision Diagnosis Service (SDS) is inserted in
the global diagnoser ECU. It monitors the bus load and
gathers the diagnosis information sent by any LDS. It next
triggers the global diagnoser. Note that the LDS and SDS
can periodically check if respectively the SDS or any LDS
is safe and ready.

Figure 5 illustrates the different behavior phases of both
LDS and SDS before and after the occurrence of a problem.

Figure 5. Decentralized diagnosis protocol over a CAN bus

Initialisation phase: The first phase consists in the
establishment of the list of available LDSs. Each LDS sends
to the SDS a specific CAN message for initialization which
includes its identification number. When the SDS has re-
ceived the initialization message from all LDSs, the protocol
enters the monitoring phase. This instant is materialized by
the broadcasting of a specific message from the SDS to all
LDSs.

Monitoring phase: During this phase, no messages are
exchanged between the LDSs and the SDS. This phase corre-
sponds to a situation where the system is operating normally,
without local diagnosis event from the local diagnosers. This

implies that there is not any over traffic due to the diagnosis
during the normal operation of the system.

Alert phase: This phase begins when an abnormal event
is detected by a local diagnoser. At this moment, the LDS of
the concerned ECU sends a specific alert event message to
the SDS. The instant of the first alert event message emission
materializes the beginning of a period when the SDS is
waiting for other alert event messages that would complete
the information for the global diagnosis. At the end of this
period, the SDS gives the order to the global diagnoser to
compute the global diagnosis. When this is done, the SDS
broadcasts a specific message to all LDSs for entering again
in the monitoring phase.

Vivacity check: While the protocol is in monitoring
phase, the SDS can initiate a vivacity check: the SDS
broadcasts a specific CAN message to all LDSs. When the
LDSs receive this message during their monitoring phase,
they send an acknowledgement message for proving that the
on-board diagnosis is correctly running.

IV. EVALUATION OF THE DIAGNOSIS

A. Matlab/Simulink Simulation

We developed a physical simulation model of the SDK
environment in MATLAB/Simulink. We adopted a compo-
nent based modeling paradigm, where parameterized sim-
ulation models of generic components (SDK controller,
radar, wheels, transmission, engine, and supervisor) were
developed within a component library. The different local
models are constructed by instantiating different components
from the library, specifying their parameters, and connecting
the components to each other in the appropriate fashion.

Except the supervisor, each component model includes
its associated fault modes. The fault mode, time of fault
injection, and fault magnitude (where applicable) can all
be specified. In general, each fault mode is mapped to a
change in component mode and a fault-dependent magnitude
parameter. Because each fault mode is parameterized within
the Simulink model, a fault can be injected programmatically
(i.e., the fault mode, injection time, and magnitude are
specified) either at the beginning of the simulation, or while
the simulation is running.

B. Prototypes (Hardware-In-the-Loop (HIL) Simulation)

The proposed HIL scheme is given in figure 6. It shows

Figure 6. General diagram of the prototype of embedded diagnosis of the
SDK function

that the electro-mechanical subsystems (Truck model) and
local diagnosers are emulated (simulated in real time) and



the supervisor is real. The main softwares used are MAT-
LAB/Simulink and CANoe3, while the hardware entity is a
physical card including the supervisor and a HMI (Human-
Machine Interface).

Simulating in real time the ECUs network, observing the
CAN-bus load, and determining the necessary performance
of the hardware which is being developed are the main
reasons to use CANoe.

1) CANoe and Matlab/Simulink Interface: This interface
allows execution of Simulink models inside the CANoe
network simulation environment. It offers various paths for
data exchange between CANoe and MATLAB (see figure 7
(a)). The CANoe simulation and the Simulink models can
communicate directly through a signal interface or through
CANoe environment and system variables.

Figure 7. (a) Data exchange between CANoe and MATLAB/Simulink,
(b) Redirection of a Simulink signal (output of the wheels diagnoser) to a
CANoe signal and CANoe environment variable

In the first step, the simulation of the SDK environment
with its control and its diagnosers has been implemented and
validated with Matlab/Simulink. Then, the interfacing stage
of the local diagnosers with CANoe has been performed. The
difficulty of this stage is to translate continuous Simulink
signals to events in order to activate the treatments and
generate messages in CANoe. To this end, some links
of the Matlab/Simulink simulator have been cut off and
connected to CANoe communication blocks. So, CANoe
and the Simulink models may communicate via signals and
environment variables4. These are computed from Simulink
signals (see figure 7 (b)). In our case, the CANoe signal
has been configured so that its change does not activate
sending CAN message automatically. It also depends on the
environment variables evolution.

As shown in figure 6, the CANoe environment is con-
nected to the physical card through a real CAN-bus. That
is why this interface has been operated in Hardware-In-
the-Loop (HIL) mode and the simulation has been run in
the CANoe execution environment. So, the local ECUs
have been simulated simultaneously within a single CANoe
environment. With the Simulink Real-Time Workshop one
DLL has been generated per network node (or local ECU)
and then loaded in CANoe’s simulation environment. We
can then dispense with Matlab/Simulink and run in real-
time emulation to interact with real platforms via the real
CAN-bus.

3CANoe is an all-round tool of Vector Informatik company for the
development, testing and analysis of entire ECU networks and individual
ECUs.

4A signal is destined to be transported in a CAN-bus message, while a
variable environment does not have this vocation.

2) Supervisor: It is implemented on a physical platform
(see figure 8 (a)) that is an electronic card, DIAFORE-
card, interfaced with the local ECUs via a real CAN-bus,
developed by Serma Ingénierie company. It is developed
around 32-bits RISC micro-controller. An RS232 interface
and a FPGA (Field-Programmable Gate Array) card are
implemented on this DIAFORE-card.

Figure 8. (a) DIAFORE-card including the diagnosis supervisor, (b)
Screenshot of the HMI that indicates the diagnostic messages sent to the
supervisor by the local diagnosers

The global diagnosis function (or algorithm) has been
implemented in C language and then integrated with the
”management engine of the CAN-bus messages” on the
DIAFORE-card. The supervisor’s role is to treat all mean-
ingful CAN messages and retrieve the necessary informa-
tions to perform the global diagnosis. The counter-actions
associated to the verdict of the global diagnosis are then sent
to the concerned other ECUs through the Can-bus network.

To visualize the diagnosis results and the supervisor
activity in a computer linked to the DIAFORE card by a
RS232 link, a Labview HMI has been developed (see figure
8 (b)).

By using the FPGA card the supervisor can also perform
self-test queries on the local ECUs. The query response of
each local ECU is a CAN-bus trame containing several types
of informations about their state. These informations are then
sent to the HMI by the supervisor in order to be visualized.

C. Use cases

This study aims at validating the communication behavior
between the local diagnosers and the global one (supervisor)
under a loaded CAN-bus constraint. The diagnosis latency
is then evaluated to estimate its determinism under some
varying conditions of load and relative priority in relation
to the existing CAN messages. The diagnosis protocol is al-
ways performed with a nominal latency when the diagnostic
messages are configured with highest priority. Conversely, if
there are higher priority messages, then it depends on the
load on the CAN-bus.

D. Evaluation

While the mean period of the broadcasting messages of
the support is greater than or equal to 10 ms, it was observed
that the diagnosis latency remains nominal. When the mean
period of the broadcasting messages of the support has a
value less than 10 ms, then the diagnosis latency increases
on average and is even infinite in some cases. However, the
normal load of a CAN-bus of a truck is well under that
threshold.

While the demonstrators have proven the feasibility and
utility of model-based diagnosis for on-board diagnosis,



more substantial work is needed in order to promote the
application of the technology for a real vehicle:

• Firstly, the identifiers of diagnosis messages should be
adapted in order to coexist with identifiers of other
CAN messages. Indeed, the choice of identifiers defines
not only the content but also the message priority on
the bus. Theoretically, it has an impact on the overall
functioning. The results obtained by the validation
phase of the decentralized algorithm allow us to be
optimistic on this point.

• Furthermore, in a real truck vehicle, the SDK function
must coexist with other distributed functions. That
is why, various parameters must be adjusted as the
diagnosis latency.

V. CONCLUSIONS

In this paper we have developed a diagnosis algorithm of
the SDK system and a software architecture in order to board
it inside truck vehicle in a decentralized manner. The model-
based diagnosis approach has been used because it presents
the advantage that no prior knowledge of possible faults or
symptoms is needed. It relies only on a given model of the
correct functioning of the system and proceeds by comparing
the behaviors of the model and of the actual system (as
known through the observations given by sensors).

The originality of the accomplished work is based on two
contributions. The first one is the distribution of diagnosis
algorithms on several ECUs by using the decentralized
diagnosis approach (the method has only been applied, in the
practical context of industrial applications, in a centralized
manner). This approach uses a set of diagnosers. Each
diagnoser observes a part of the SDK system and takes
a local decision about the occurrence of a fault and its
localisation. The construction of the local diagnosers is
based on a modular modeling of the plant elements. All
local diagnosers decisions must be merged by a dedicated
supervisor in order to obtain one global diagnosis decision
and to take also any recovery action. This fusion can be
realized by a coordinator. The second contribution is the
design and deployment of the decentralized model-based
fault diagnosis approach for the SDK system. The attention
was paid to minimize the additional traffic generated by
the diagnosis function and to respect the real application
constraints (performance, diagnosis latency, etc.). An on-
board diagnosis using Hardware-In-the-Loop scheme under
specifications (contraints) near to a truck ”Renault Trucks”
has been performed.

The decentralized embedded diagnosis for the SDK sys-
tem inside real vehicles is mature from the point of view
of research and of feasibility. However, we should extend
and develop algorithms robustness, take into account the
protocols and details of the hardware architecture and exist-
ing software, conduct tests on many scenarios, and measure
in situ the quality (correctness, precision, time delay) of

the diagnosis and its compatibility with existing functions
(induced traffic on the CAN-bus, transparency). Moreover,
in order to verify a priori that the set of local diagnosers
and supervisor is capable of diagnosing a given set of faults
within a bounded delay, a notion of diagnosability must be
studied.

VI. ACKNOWLEDGMENTS
The work reported in this paper was supported by

the project DIAFORE (Diagnosis for Distributed Func-
tions) which is funded by the French National Research
Agency (ANR) and SYSTEM@TIC PARIS-REGION Clus-
ter, with the support of French Environment and Energy
Management Agency (ADEME) and French Program of
Research, Experimentation and Innovation in Land transport
(PREDIT). Many thanks to industrial partners (RENAULT
TRUCKS/VOLVO SAS and SERMA INGENIERIE) in this
project for their support upon completion of the simulation
platform.

REFERENCES

[1] Davis, L.C., Effect of Adaptive Cruise Control Systems on
Traffic Flow. Physical Review E, 69(6), 2004.

[2] Darkhovski B. and Staroswiecki M., Theoretic Approach to
Decision in FDI. IEEE Transactions On Automatic Control,
48(5), 2003.

[3] Patten R.J., Frank P.M. and Clark R., Issues of fault diagnosis
for dynamic systems. Springer, London, 2000.

[4] Chow E. and Willsky A., Analytic redundancy and the design
of robust failure detection systems. IEEE Transactions on
Automatic Control, 29, 603-614, 1984.

[5] Shraim H., Nasri O., Dague P., Héron O. and Cartron M. ,
Smart Distance Keeping: Modeling and Perspectives for Em-
bedded Diagnosis. In ISMS2010: 1st International Conference
on Intelligent Systems, Modelling and Simulation, Liverpool,
England, 2010.

[6] Peysson F., Noura H. and Younes R., Diagnostic de défauts
sur un moteur diesel. CIFA06, Bordeaux, France, 2006.

[7] Sampath M., Sengupta R., Lafortune S., Sinnamohideen K.
and Teneketzis D., Diagnosability of discrete event systems.
In 11th International Conference on Analysis and Optimiza-
tion of Systems, Sophia-Antipolis, France,1994.

[8] Wang Y., Yoo T.S. and Lafortune S., New Results on Decen-
tralized Diagnosis of Discrete Event Systems. Annual Aller-
ton Conference on Communication, Control and Computing,
2004.

[9] Qiu W., Decentralized / distributed failure diagnosis and
supervisory control of discrete event systems. PhD thesis,
Iowa State University, 2005.

[10] O’Reilly P., An overview of the potential contribution of
diagnostics to improving vehicle safety and reducing vehicle
emissions. IEE Colloquium on Vehicle Diagnostics in Europe,
1/1-1/12, 1994.



[11] Greening P., On-board diagnostics for control of vehicle emis-
sions. IEEE Colloquium on Vehicle Diagnostics in Europe,
5/1-5/6, 1994.

[12] Ressencourt H., Diagnostic hors-ligne à base de modèles :
approche multi-modèle pour la génération automatique de
séquences de tests, application au domaine de l’automobile.
PhD thesis, 2008.

[13] Fromion A., Apparatus for the differential transmission of in-
formation between at least two devices in a vehicle, European
patent EP19960401324, 2003.

[14] Frank H. and Schmidts U., Vehicle Diagnostics - The whole
Story. Vector Informatik, Press article, www.vector.com,
2007.


