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ABSTRACT

Diagnosability is the property of a partially ob-
servable system with a given set of possible
faults, that these faults can be detected with cer-
tainty with a finite observation. Usually, the def-
inition and the verification methods of diagnos-
ability ignore the nature of the system events,
controllable (by the system) or uncontrollable. In
this paper we show the influence of controllability
of events on the diagnosability definition and ver-
ification. We show that the classical diagnosabil-
ity is a special case where we consider the whole
system as controllable. Using Game Structure we
generalize the definition of diagnosability by the
mean of strategies. Then, Alternating-time Tem-
poral Logic is used in order to model check di-
agnosability in the case of uncontrollable events.
We show how the framework is suitable for one
system and also for a set of interacting systems.

1 INTRODUCTION
Diagnosis of systems is concerned by two activities:
(i) fault detection, i.e. ”did a fault happen?” and (ii)
fault identification i.e. ”which kind of fault did hap-
pen?”. In real life the operator in charge of diagnosing
a failed system, can do mainly two activities in order
to figure out what is wrong within a system: (scenario
1) she can try to make the diagnosis by only observing
the current state of the system (measuring) and/or its
history (passive diagnosis); (scenario 2) for some kind
of systems, she may try some commands on the sys-
tem and then she observes its reactions in order to es-
tablish her diagnosis (active diagnosis). According to
these two scenarios, we can classify the systems to be
diagnosed in mainly two categories: closed systems,
that allow only observation and open systems that al-
low some interaction with the system.

An important requirement, when designing a sys-
tem, is how accurate will be the diagnosis of some
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faults. The notion of ”diagnosability” captures that re-
quirement. The system is diagnosable if we can estab-
lish a precise diagnosis for every given possible fault
from finite observation.

Model-based diagnosis aims at automating the pro-
cess of diagnosis and diagnosability checking by ana-
lyzing an abstract representation of the system called
the model.

In 1995,(Sampathet al., 1995) proposed a formal
definition of diagnosability for discrete event systems
modeled using automata. The automata used have two
types of events: observable and unobservable (contain-
ing fault events). This definition considers a system as
nondiagnosable if its model contains two infinite exe-
cutions producing the same observable trace and only
one of them contains the fault. This implicitly sup-
poses that the system has the total control on its exe-
cution making it possible to keep the ambiguity indef-
initely. So, the diagnosability is defined by supposing
that the diagnoser will only observe what happens in
the system with no control in order to try to resolve the
ambiguity (scenario 1).

But actually more and more applications are open
systems where components and devices interact. Di-
agnosability has to deal with this kind of systems.

In this work we generalize the definition of diagnos-
ability for any type of system (open or closed). We call
this active diagnosability. We also propose a method
to verify active diagnosability using a model checking
approach.

In the sequel of the paper, after some preliminar-
ies, we recall the classical definition of diagnosability
and we present the twin plant approach as a method
to check diagnosability. In section 3 we introduce the
notion of open and well-controllable systems, we also
define a suitable game structure for diagnosis and we
give the definition of active diagnosability. In section 4
we propose the use of alternating-time temporal logic
to model check active diagnosability and we give the
correspondent formula. We show also how we can ex-
tend active diagnosability to a set of interacting sys-
tems. Sections 5 and 6 compare our work to the liter-
ature and conclude by some future work. To illustrate
our work a toy example is used.
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2 BACKGROUND ON CLASSICAL
DIAGNOSABILITY

2.1 Preliminaries and notation
When dealing with discrete event systems diagnosis,
systems are most often modeled by the way of Labeled
Transition Systems (LTS).

Definition 1 (LTS) A labeled transition systemA =
〈Q, q0, L, T 〉 is a tuple where

• Q represents a set of states

• q0 ∈ Q a state considered as initial

• L a set of events

• T ⊆ Q×L×Q is the finite branching transition
relation which represents a discrete dynamics of
a system. We note byq

a
→ q′ for (q, a, q′) ∈ T .

The set of eventsL is partitioned into two disjoint
setsLo andLuo, which state for the set of observable
events and the set of non observable events. Moreover
among the setLuo we distinguish a non empty subset,
Lf , which represents the set of failure events.

Definition 2 LetA be a LTS, then

• A path in A is a sequenceπ = q0a0q1 . . . qn,
wheren can be infinite, such that for all0 ≤ i ≤

n−1 we haveqi
ai→ qi+1. We denote bypaths(q)

the set of all paths that start from the stateq ∈ Q
and bypaths(A) the set of all paths inA, i.e.
paths(A) = paths(q0). We writeq ∈ π (resp
a ∈ π) for denoting that the stateq (resp the
action a) belongs to the sequenceq0a0q1 . . . qn.
Moreover, we identify theith state in the pathπ
asπ[i] and by|π| = n+1 the amount of states in
π. We useπ[0...i] to denote the sub-path ofπ that
ends with the stateqi.

• Thetrace σ of a pathπ, denotedtrace(π), is the
sequenceσ = a0a1 . . . an−1 of events inL occur-
ring in π. We writetraces(A) = {trace(π) |π ∈
paths(A)} for the set of all traces inA. In caseσ
is finite, with|σ| we denote the number of events
occurring in the traceσ, i.e. |σ| = n. We use
σ⌈L′, for someL′ ⊆ L, to represent the restric-
tion of the traceσ to the set of actions inL′.

• We extend the transition relation to traces,q
σ
→

q′ if the stateq′ can be reached from stateq via
the traceσ, i.e. if there is a pathπ ∈ paths(q)
ending atq′ such thattrace(π) = σ. We write
q → q′, if there exists a traceσ such thatq

σ
→ q′

andq →, if there exists a stateq′ such thatq →
q′.

• Given any traceσ ∈ traces(A), we denote bŷσ
its prefix-closure, and by̌σ its postlanguage, i.e.
σ̌ = {ρ ∈ traces(A)

∣

∣ σ ∈ ρ̂}. Moreover, for a
given natural numberk ∈ N we denote by̌σk its
postlanguage with only words with length longer
thank, i.e. σ̌k = {ρ ∈ σ̌

∣

∣ |σ|+ k ≤ |ρ|}.

• Given a fault eventf , we denote bytracesf (A)
the set of traces inA that end with af event, i.e.
tracesf (A) = {σ ∈ traces(A)|σ ∈ L∗.f}

• Given a fault eventf and a natural numberk ∈
N we denote bytracesf,k(A), the set of traces
σ′ such that it exists another traceσ that ends
in f and σ′ is an extension ofσ with length
longer or equal to the length ofσ plus k, i.e.
tracesf,k(A) = {σ′ ∈ traces(A)

∣

∣ ∃ σ ∈

tracesf (A) ∧ σ′ ∈ σ̌k}.

We say that a systemA is alive if for any state there
exists a transition initiated in that state, and convergent
if it does not have infinite traces made up of unobserv-
able actions. In the remaining of the paper we consider
only systems which are alive and convergent.

Example 1 figure1 represents a system whereLo =
{a, b, c, d}, Luo = {u1, u2, f}, Lf = {f}

a

b

c

b

c

a

d

u1

u2

q0

q1 q2 q3

q4

q5 q6

f

Figure 1: A system containing one faultf

2.2 Diagnosability definition and verification

The classical diagnosability is a property defined on
the paths of the system. It states that each time a fault
may happen, it exists a finite window of observations
that allows us to decide wether this fault did happen or
not (Sampathet al., 1995).

Definition 3 (Diagnosability) LetA be a system and
fi ∈ Lf , then fi is diagnosable inA (or A is fi-
diagnosable) iff
∃ ni ∈ N : ∀ σ ∈ tracesfi(A) : ∀ ρ ∈ σ̌ni :
∀α ∈ traces(A): ρ⌈Lo = α⌈Lo implies fi ∈ α
Otherwisefi is said nondiagnosable inA (or A fi-
nondiagnosable). A system is said to be diagnosable if
all its faults are so and nondiagnosable otherwise.

If a fault is diagnosable then a diagnostic algorithm
can decide of its occurrence or not with certainty based
on a finite sequence of observations. Diagnosability
checking methods consist in proving that the system is
not nondiagnosable. This requires the search for infi-
nite tracesρ andρ′, with ρ⌈Lo = ρ′⌈Lo such thatf
appears only in one of them. The two tracesρ andρ′
are called a critical pair(Cimatti et al., 2003). Many
algorithms and technics are proposed to check diag-
nosability, we consider here the twin plant approach
(Cimattiet al., 2003) because it is the most appropriate
to present our work. The twin plan approach consists
in two steps: (i) building a diagnoser of the system;
(ii) then comparing two copies of the diagnoser by a
synchronous product. The diagnoser construction is
inspired by the observer of a system(Sampathet al.,
1995), by keeping only the states of the system which
are reachable by at least one observable event. These
states are enriched by the set of fault events encoun-
tered during the reaching process.
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Definition 4 LetA be a system to be diagnosed,its di-
agnoser is also a LTS notedA = 〈Q,L, q0, T 〉 with:

• Q ⊆ Qo × 2Lf , with Qo = {q0} ∪ {q|∃a ∈
Lo, q

′ ∈ Q s.t. (q′, a, q) ∈ T}

• L = Lo

• q0 = (q0, ∅)

• T ⊆ Q × L × Q is the transition set(q,F)
a
→

(q′,F ′) s.t. q
σa
−−→ q′ with σ ∈ L∗

uo , a ∈ Lo,
F ′ = F ∪ {fi|fi ∈ σ}

Example 2 Figure 2 represents the diagnoser of the
system presented in figure 1.

a

b

c

b

c

a

a

a

q0, ∅

q5, ∅q6, ∅

q2, {f}

q3, {f}
d

q4, {f}

Figure 2: The diagnoser of the system in figure 1

The second step of the twin plant method is to build
a machine that compares every pair of paths (ρ, ρ′)
in the system that have the same observable behav-
ior. Such comparison is done by computing the syn-
chronous product of two instances of the diagnoser
A. As in (Schumann and Pencolé, 2007) we denote
these two instances ofA respectively byleft (l : A)
and right (r : A) and we distinguish between their
states by using respectively the prefixesl : and r :.
The synchronous composition used for the twin plant
is the classical synchronous product ofn > 1 au-
tomata, noted(A1...‖...An)\Σ. The states of the re-
sulted automaton form a subset of the cartesian prod-
uct ×

i=1...n
Qi. The transitions of the product are con-

structed by allowing only simultaneous transitions for
events inΣ and individual evolutions otherwise.

Proposition 1 (f-nondiagnosable state, system)
Let A be a system andl : A, r : A two copies of its
diagnoser.
f-nondiagnosable stateA state (l : (qi,Fi), r :

(qj ,Fj)) in the synchronous product
(l : A‖r : A)\Lo is called f-nondiagnosable
iff f ∈ (Fi ∪ Fj) \ (Fi ∩ Fj). Otherwise the
state isf-diagnosable.

f-nondiagnosable systemThe system A is f-
nondiagnosableiff it exists in(l : A‖r : A)\Lo a
cycle composed only byf-nondiagnosablestates.
Otherwise the system isf-diagnosable.

Example 3 Figure 3 represents the twin plant product
of the two instances of the diagnoser of the figure 2.
According to the proposition 1 we can see that the fault
f is nondiagnosable because we observe a cycle[(l :

q6, ∅), (r : q3, {f})]
b
→ [(l : q5, ∅), (r : q2, {f})]

a
→

[(l : q6, ∅), (r : q3, {f})]... of f-nondiagnosable states.
This proves the existence of two infinite paths that have
the same observable trace,(ab)∞, where only one of
them contains the faultf .
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r : q4, {f}
l : q5, ∅

Figure 3: The twin plant of the diagnoser of figure 2

Note that in the example 3 the synchronous product
is finite while the systems are alive. This, as proved in
(Cimatti et al., 2003), does not influence the decision.
In the same paper the authors propose an idea to deal
with these blocking states. We show in this paper that
we can handle this problem in a simple and elegant
way and also by benefiting from the blocking states.

3 DIAGNOSABILITY OF OPEN SYSTEMS

LetA be a system to be diagnosed. We split its actions
L into two disjoint subsets: the controllable actions
Lc and the uncontrollable actionsLuc whereLuo ⊆
Lc. The notion of controllable here is viewed from
the point of view of the system. A system controls an
action if it decides of its occurrences; at the opposite
an action is uncontrollable if the system undergoes its
occurrences. A system withLuc = ∅ is called closed
and open otherwise. We extend the controllability to
the states as followsQc = {q ∈ Q|∃a ∈ Lc s.t. q

a
→}

andQuc = {q ∈ Q|∃a ∈ Luc, q
a
→}. Note that the

two sets are not necessarily disjoint.

Definition 5 (Open and well-controllable Systems)
LetA be a system andLuc, Lc be respectively the set
of uncontrollable and controllable actions. We say
that the system is open, respectively well-controllable,
iff Luc 6= ∅, resp.Qc ∩Quc = ∅

Example 4 The system of the figure 1 is nondiagnos-
able because the environment does not control any ac-
tion. This allows the system to stay in the(ab)∗ trace
with uncertainty about the faultf . By considering
Luc = {b, c}, we can see that the system becomes di-
agnosable. This is because at each time we can take
the system out from its(ab)∗ trace by enforcing it to ex-
ecute the actionc. One can note that after actionc the
system will converge, within a finite set of actions, in a
situation where the fault or the non faultf is certain.
This demonstrates that diagnosability as proposed in
definition 3 does not stand for open systems.
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To cover open systems as well as closed systems
(which can be considered as a degenerated case of
open ones) we propose a generalization of the diagnos-
ability definition. For this purpose we use game struc-
ture to formalize that generalization and an adapted
temporal logic, Alternating-Time Temporal Logic, in
order to check it.

3.1 Game structure for active diagnosability
Let P be a set of propositions. Conceptually, we are
dealing with a setΘ of n players, where each player
is represented by an alive and well-controllable LTS
θi = 〈Qi, qi0, Li, Ti, µi : Qi → 2P 〉. We suppose that
for any playerθi, all its uncontrolled (thus observable)
actions are controlled by at least another player,Luc

i ⊂
⋃

j 6=i

Lc
j .

Definition 6 (Round-based game structure)A
game structure between a set of playersΘ is a tuple
GΘ = 〈C, c0, P,M, δ, µ〉 where:

• C is a non empty set of configurations withC ⊂
×

i=1...n
Qi. We range over it usingci

• c0 ∈ C is the initial configuration, c0 =
〈q10, ..., qn0〉

• P is a non empty set of propositions

• M ⊂ ×
i=1...n

(Li ∪ {ǫ}) whereǫ stands for the

non-event. We range over it usingmi (for moves)

• δ ⊆ C ×M × C

• µ : C → 2P

δ encodes the rules of the game. There are many
dynamics for game structures which differ by the
definition of δ (Alur et al., 1997). We define here a
game structure suitable for open and well-controllable
systems. In the initial configuration all players are in
their initial state. The game consists in a sequence
of rounds where each round is played in three steps.
In [Step 1] all the players that are in a controlled
state (active ones) can choose one among all their
possible transitions from their current states. In [Step
2] all the players which are in an uncontrollable state
(passive ones) determine their reactions by choosing
one of their uncontrolled actions which have been
chosen by at least one of the active players in the
[Step 1]1. [Step 3] consists in computing the next
configuration according to the following rules: (i) an
active player, which action was chosen by at least one
passive player, moves to one of the possible states
reachable by that action, otherwise it remains in the
same state by executingǫ; (ii) if none of the possible
actions of a passive player was chosen in [Step 1] then
it remains in the same state by executingǫ. Let c be a
configuration, the game can move in each round to one
of the possible next configurations allowed by local
choices of each player. For some playerθi we note
byOut(qi) = {(ai, q

′
i) ∈ Li × Qi : qi

ai−→ q′i ∈ Ti}
the set of the successor states ofqi. We note also by

1Note here that the passive players can also have more
than one choice (in some way they are thus active too)

Out(qi, ai) the restriction ofOut(qi) to transitions
labeled withai. We have a transition from a source
configuration cs to a target configurationct by a
labeled moveml i.e.

cs = 〈q1s, . . . , qns〉
ml=〈a1l,...,anl〉
−−−−−−−−−−−→ ct =

〈q′1t, . . . , q
′
nt〉 ∈ δ iff:

• ∀i = 1 . . . n, s.t. qis ∈ Qc
i we have:

– qis = q′it ∧ ail = ǫ if ∄ajl, s.t. qjs ∈ Quc ∧
(qjs, ajl, q

′
jt) ∈ Tj ∧ ail = ajl

– (ail, q
′
it) ∈ Out(qis) otherwise

We note byℓst the set of actions chosen by the
players in a controllable state to move from a
source configurationcs to a targetct.

• ∀i = 1 . . . n, s.t. qis ∈ Quc
i we have:

– qis = q′it∧ail = ǫ if ∀a ∈ ℓst , Out(qis, a) =
∅

– (ail, q
′
it) ∈ Out(qi) for someail ∈ ℓst

Definition 7 (Player strategy) Let θi be one of the
players in a game structureGΘ. A strategy of the
player is composed by two functions:

• ∫ cθi : paths(GΘ) → Li × Qi s.t.
∫ cθi(c0m0 . . .mk−1ck) = (aik, qik+1) where
(aik, qik+1) ∈ Out(qik) if qik ∈ Qc

i and
undefined otherwise.

• ∫ucθi
: paths(GΘ) → Li × Qi s.t.

∫ucθi
(c0m0 . . .mk−1ck) = (aik, qik+1) where

aik ∈ ℓkk+1∧(aik, qik+1) ∈ Out(qik) and(ǫ, qik)
otherwise, ifqik ∈ Quc

i ; undefined ifqik ∈ Qc
i .

We denote by∫θi the function defined onpaths(GΘ)
resulting from these two functions.

A strategy ∫θi of a player θi is a function that,
given an execution of the game, decides about the next
move of the player (either freely chosen when con-
trollable or constrained as reaction when uncontrol-
lable). A computation of a game structureGΘ from
a configurationc ∈ C under the strategy∫θi is a set
of valid paths according to the strategy function, i.e.
Comp(c, ∫θi) = {π ∈ paths(c)|∀k, 0 ≤ k ≤ |π| − 1
we have∫θi(π[0 . . . k]) = (aik, qik+1)}. GivenC ⊂ Θ
and a set of strategies,∫C , one for eachθ ∈ C,
Comp(c, ∫C) =

⋂

∫θ∈∫C

Comp(c, ∫θ). It is easy to see

thatComp(c, ∫Θ) is a unique path inGΘ.

3.2 Active diagnosability definition

Let A be an open and well-controllable system to
be diagnosed and let us consider a systemAE =
〈QE , LE , q0E , TE〉 such that :

• QE is a set of states.

• LE = Lo with Lc
E = Luc andLuc

E = Lc ∩ Lo.

• q0E is the initial state.

• TE ⊆ QE × LE ×QE is a transition relation.

4
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The transition relationTE must be defined in such a
way that the resulted game structure from the two sys-
temsAE andA, GAE ,A, must respect the following
conditions:

• ∀c, c
m
−→ with m 6= 〈ǫ, ǫ〉

• ∀c1 = 〈q1E , q1〉
m=〈a1E ,a1〉
−−−−−−−−→ c2 = 〈q′1E , q

′
1〉 ∈ δ

we havea1 6= ǫ

• c1 = 〈q1E , q1〉
m=〈ǫ,a1〉
−−−−−−→ c2 = 〈q′1E , q

′
1〉 ∈ δ iff

a1 ∈ Luo

The systemAE represents a perfect environment of
the systemA: (i) the game is never blocked (ii) the
environment is always able to observe the observable
reactions of the system and always produces at least
one of the commands waited by the system (iii) the
environment never reacts when an unobservable event
is executed by the system.

For a game structureGAE ,A we naturally ex-
tend, for some faultf , the definitions of traces:
tracesf (GAE ,A) = {σ ∈ traces(c0)|σ ends
with 〈ǫ, f〉} and tracesf,k(GAE ,A) = {σ′ ∈
traces(GAE ,A)

∣

∣ ∃ σ ∈ tracesf (GAE ,A) ∧ σ′ ∈ σ̌k}.
We can now give the generalization of diagnosability
definition for open and well-controllable systems.

Definition 8 (Active Diagnosability) LetA be a sys-
tem to be diagnosed,AE its environment andGAE ,A

the game structure involving both of them. The fault
fi ∈ Lf is actively diagnosable inA iff

∃ ni ∈ N : ∀ σ ∈ tracesfi(GAE ,A) s.t. c0
σ
→ cf :

∃∫AE
: ∀ρ ∈ Comp(cf , ∫AE

) s.t.σρ ∈ σ̌ni :
∀α ∈ traces(GAE ,A) :

σρ⌈(LE × Lo) = α⌈(LE × Lo) implies〈ǫ, fi〉 ∈ α

The definition states the following: for each trace
in the game that ends with a fault event, as a move
of the system, then the environment has a strategy in
such a way that, for any infinite continuation accord-
ing to that strategy, if there is another execution of the
game that produces the same observable moves, this
execution should contain the fault. It is easy to verify
that if Luc = ∅ thenComp(cf , ∫AE

) = traces(cf ).
By renaming each move〈a, b〉 by b we fit exactly the
definition 3.

The next section presents a method and a tool in or-
der to model check active diagnosability.

4 ACTIVE DIAGNOSABILITY
VERIFICATION USING ATL

In this section we use the Alternating-time Temporal
Logic (ATL) in order to check diagnosability of an
open and well-wontrollable system. First we recall the
Alternating-time Temporal Logic and then we give a
logic formula for checking active diagnosability.

4.1 ATL
Alternating-time Temporal LogicATL was designed
to formulate correctness properties for open systems,
which have to be proved correct with respect to an ar-
bitrary environment. The environment can be either
one or more interacting discrete event systems. As we

will show, this problem is very close to the problem
of checking active diagnosability. ATL can be seen as
an extension of the Computational Tree Logic (CTL)
where the universal (A) and existential (E) path quan-
tifiers are parameterized by cooperation modalities be-
tween a set of agents in the system. The syntax of
an ATL formula is defined recursively over a setP of
propositions and a setΘ of players as follows:

ψ ::=
⊺|p|(ψ ∧ ψ)|¬ψ|〈〈C〉〉Xψ|〈〈C〉〉Gψ|〈〈C〉〉(ψUψ)

whereC ⊂ Θ

⊺ stands for True while neXt, Globally, Until are the
path temporal operators of CTL. Unlike CTL, these
operators are parameterized by a set〈〈C〉〉 of players,
called a coalition, which means that the players inC
can cooperate in such a way that the resulted computa-
tion verifies the property considered. The semantic of
an ATL formula is provided based on a game structure,
and the truth of a formulaψ in a configurationc of a
game structureGΘ is defined via the standard clauses
of the Boolean connectors and the following clauses
for the strategized temporal operators:

• (GΘ, c) � ⊺

• (GΘ, c) � p⇔ p ∈ µ(c) for p ∈ P

• (GΘ, c) � ¬ψ ⇔ (GΘ, c) 2 ψ

• (GΘ, c) � (ψ1∧ψ2) ⇔ (GΘ, c) � ψ1∧(G
Θ, c) �

ψ2

• (GΘ, c) � 〈〈C〉〉Xψ ⇔ ∃∫C s.t. ∀π ∈
Comp(c, ∫C) we have(GΘ, π[1]) � ψ

• (GΘ, c) � 〈〈C〉〉Gψ ⇔ ∃∫C s.t. ∀π ∈
Comp(c, ∫C) we have∀i, (GΘ, π[i]) � ψ

• (GΘ, c) � 〈〈C〉〉(ψ1 U ψ2) ⇔ ∃∫C s.t. ∀π ∈
Comp(c, ∫C), ∃i ≥ 0 s.t. ∀j < i we have
(GΘ, π[j]) � ψ1 ∧ (GΘ, π[i]) � ψ2

The CTL duality of temporal operators is still valid
in ATL; 〈〈C〉〉Fψ stands for〈〈C〉〉 ⊺ U ψ; we can also
express the classical CTL path quantifiers Always and
Eventually as follows: AXψ, AGψ, A(ψ1 U ψ2) re-
spectively by〈〈∅〉〉Xψ, 〈〈∅〉〉Gψ, 〈〈∅〉〉(ψ1Uψ2), and
EXψ, EGψ, E(ψ1 U ψ2) respectively by〈〈Θ〉〉Xψ,
〈〈Θ〉〉Gψ, 〈〈Θ〉〉(ψ1 U ψ2). We can also introduce
the parameterized universal path quantifier, by writing
[[C]]Xψ and [[C]]Gψ respectively for¬〈〈C〉〉X¬ψ
and¬〈〈C〉〉F¬ψ. [[C]] expresses the fact that the agent
in C cannot avoid paths that verify a given path for-
mula. This implies that the agent inΘ \ C has a strat-
egy to produce only paths validating the path formula
(e.g. [[C]]Gψ ⇔ ¬〈〈C〉〉F¬ψ).

4.2 Diagnosability checking for one system

Let A be a system to be diagnosed and letA be its
diagnoser according to definition 4. When interacting
with the system, the environment cannot estimate ex-
actly its real state due to the nondeterminism ofA. It
can only have an idea about the minimal set of its ac-
tual possible states. Let us consider an environment
of A, notedAE , as exactly the mirror of the diagnoser
except thatLc

E = Luc
o andLuc

E = Lc
o. As pointed in

5
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(Cimatti et al., 2003), the game structure,GAE ,A, re-
sulting from definition 6, may have finite moves. So
a perfect environment of the system is a system that
can avoid such cases and that can also benefit from the
information of the dead configurations to have an idea
about the real state of the system. We propose here, as
we made in(Melliti et al., 2008), to synthesize a per-
fect environment by extending the transition relation
TE of AE as follows:
TE= TE ∪ {(qiE , a, q′iE)|qiE

a
9 ∧∃w ∈ L∗

E , qjE ∈

QE s.t. i 6= j ∧ q0E
w

−→ qiE ∧ q0E
w

−→ qjE ∧
(qjE , a, q

′
iE) ∈ TE}

The perfect environment enriches its states by tran-
sitions of all the states that are reachable from the ini-
tial states by the same trace. The meaning of this ex-
tension can be interpreted as follows:
• In the case where the system is in a controllable

state, the environment will observe its reaction
among all possible reactions. This reaction of the
system may help the environment to better precise
the estimation about the real state of the system.

• In the case where the system is in an uncontrolled
state (waiting for a command) the environment
will send a command. If the command is not ex-
pected by the system, then the environment re-
mains in the same state and tries another com-
mand until it works. Note that according to our
extension the environment has the minimum set
of commands expected by the system.

We denote byA+
E the extension ofAE .

Example 5 Figure 4 represents the perfect environ-
ment ofA. The extensions are represented using
dashed arcs.

a

b

c

b

c

a

d

a

a

q0E , ∅

q5E , ∅q6E , ∅

q2E , {f}q3E , {f}

q4E , {f}d

a

Figure 4: The extended perfect environmentA+
E

To each faultfi ∈ Lf we associate the propositions
pfi , ¬pfi and♦pfi . They respectively mean a faultfi
did happen, did not happen and did possibly happen.
The set of fault propositions of a LTS is noted∆A.

Consider the game structureGA
+

E
,A. We recall here

that the states ofA, respectively ofA+
E , are of the

form (qi,Fj) (to differentiate them we note them by
(qi,Fj), resp.(qiE ,Fj), alsoqi, resp.qiE , whenFj is
not relevant).
GA

+

E
,A can be interpreted as a game where in each

configuration the environment has an hypothesis about
the states of the system, i.e. the configurationc =
〈(qiE ,F), (qj ,F

′)〉 means that the environment thinks
that the system is in the state(qi,F) while the system
is in the state(qj ,F ′). The diagnosis problem can be
then reduced to the game where the environment wins

〈q0E , q0〉

¬p
f

〈q6E , q6〉

¬p
f

〈q5E , q4〉

♦pf

〈q6E , q3〉

♦pf

♦pf
〈q3E , q6〉

♦pf
〈q5E , q2〉

♦pf
〈q2E , q5〉

〈q2E , q2〉

p
f

p
f

〈q4E , q4〉

p
f

♦pf
〈q4E , q5〉

¬p
f

〈q5E , q5〉〈q3E , q3〉

〈b, b〉

〈b, b〉

〈b, b〉 〈b, b〉

〈a, a〉

〈a, a〉

〈a, a〉

〈a, a〉〈a, a〉

〈a, a〉

〈a, a〉

〈c, c〉

〈c, c〉

〈c, c〉

〈c, c〉

〈d, d〉

〈d, d〉

〈a, a〉

〈a, a〉

Figure 5: The game structureGA
+

E
,A betweenA and

A+
E

by determining the state of the system within a finite
set of moves. This means that active diagnosability
analysis can be reduced to the existence for the envi-
ronment of a universal strategy to determine, within a
finite set of moves, the real state of the system.

We annotate the setC of configurations of the game
GA

+

E
,A using the set of propositions∆A with µ : C →

2∆
A

s.t.µ(〈(qiE ,F), (qj ,F
′)〉) = ∆1∪∆2∪∆3 with:

• ∆1 =
⋃

f∈(F∩F ′)

{pf}

• ∆2 =
⋃

f∈[(F∪F ′)\(F∩F ′)]

{♦pf}

• ∆3 =
⋃

f∈[Lf\(F∪F ′)]

{¬pf}

Example 6 Figure 5 representsGA
+

E
,A annotated

with µ function.

Based on the definition of the environmentA+
E and the

game structure dynamics we can state the following
propositions.

Proposition 2 Let GA
+

E
,A resulting fromA and its

perfect environment. The binary relationR =
{(〈qiE , qj〉 , qj)} is a bisimulation(Milner, 1989) mod-
ulo renaming functionN : M → L with N (〈a, b〉) =

b, i.e.GA
+

E
,A[N ] ∼ A.

Proof 1 Let c = 〈qiE , qj〉 be a configuration andqj ∈
Q.

1 According to the definition ofA+
E we have

Out(qi) ⊆ Out(qiE) i.e. ∀a ∈ L, qi
a

−→ im-

plies 〈−, qi〉
〈a,a〉
−→, so implies〈−, qi〉

a
−→ in

GA
+

E
,A[N ].

2 A movem, s.t. N (m) 6= ǫ, is possible from a con-
figurationc = 〈qiE , qj〉 iff it is possible from the
two states that compose it, i.e.∀(c,N (〈a, b〉) =

b, c′) ∈ δ then ∃(qj , b, q′j) ∈ T . In addition
the reached configurationc′ is of the formc′ =
〈−, q′j〉 and as we have(〈−, q′j〉, q

′
j) ∈ R we con-

clude their bisimulation.

6
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Proposition 3 Let θ1, θ2, θ3 be three players where
θ1 ∼ θ2, then we haveGθ1,θ3 ∼ Gθ2,θ3 i.e. the bisim-
ulation is a congruence for the game structure rules
operator.

Proof 2 The proof is obvious from the definition of the
game rules.

Each configurationc such that♦f ∈ µ(c) means
that there is an uncertainty about the fault occurrence
(same asf-nondiagnosablestate in the twin plant). The
system is diagnosable in that configuration iff the en-
vironment can enforce the system to reveal its truth
about the occurrence of the fault by leading the game
to a configurationc′ with pf ∈ µ(c′) or ¬pf ∈ µ(c′).
This can be expressed for a given faultf using ATL
formulaDiagf as follows:

Diagf
def
≡ AG[♦pf ⇒ 〈〈A+

E 〉〉F(p
f ∨ ¬pf )]

The formula says that each time we reach a configura-
tion where we have a doubt about the occurrence of the
fault f , then from that configuration the environment
can establish a strategy of commands on the system to
enforce it to reveal the truth about the occurrence off .
We can express the same requirement without the need
of the environment as follows:

¨Diag
f def

≡ AG[♦pf ⇒ [[A]]F(pf ∨ ¬pf )]

The system is diagnosable for a faultf iff each time a
doubt aboutf appears, then the system does not have
any strategy to keep that doubt infinitely.
Theorem 1 An open and well-controllable systemA
is actively diagnosable according to definition 8 iff
∀fi ∈ Lf , G

A
+

E
,A |= Diagfi .

This means that a system is actively diagnosable iff its
perfect environment has a strategy to prove it.

Proof 3 LetA be a system and letGA
+

E
,A be the game

structure of the system and its perfect environment.

(if) Let us suppose thatGA
+

E
,A |= Diagf for some

fault f and the system is f-nondiagnosable ac-
cording to definition 8. This means that:

(1) ∃(qi,Fi), (qj ,Fj) ∈ Q, ∃σ ∈ L∗
o with

(q0, ∅)
σ

−→ (qi,Fi) and (q0, ∅)
σ

−→
(qj ,Fj) s.t. f ∈ (Fi ∪ Fj) \ (Fi ∩ Fj).
Let us sayf ∈ Fi andf 6∈ Fj .

(2) traces((qi,Fi)) = traces((qj ,Fj)) and
∀π ∈ paths((qj ,Fj)), ∄(q,F) ∈ π with
f ∈ F .

Following the game structure ofGA
+

E
,A, it exists

a configurationc = 〈qiE , qj〉 s.t. ♦pf ∈ µ(c).
As c is bisimilar to qj , according to the proposi-
tion 2, then all reachable configurationsc′ from
c, c → c′, will be of the formc′ = 〈q′iE , q

′
j〉 with

qiE → q′iE inA+
E andqj → q′j inA, which means,

according to (1) and (2), that♦pf ∈ µ(c′).
We can conclude that:(GA

+

E
,A, c) |= AG♦pf .

Equivalently we have(GA
+

E
,A, c) |= 〈〈∅〉〉G♦pf ,

i.e. (GA
+

E
,A, c) |= ¬〈〈A+

E , A〉〉F(p
f ∨¬pf ). This

implies¬〈〈A+
E 〉〉F(p

f ∨ ¬pf ) which is a contra-
diction.

(only if) This direction of the proof becomes an obvi-
ous opposite running of (if).

Example 7 In the example of the figure 5 we
can see that for each configuration〈q′E , q〉 that
is not issued from a same stateq ∈ Q,

s.t. 〈q0E , q0〉
(〈a,a〉(〈b,b〉〈a,a〉)∗)
−−−−−−−−−−−−−→ 〈q′E , q〉 we have

µ(〈q′E , q〉) = ♦pf . We can also read that for any post-
languageσ ∈ ρ̌n with ρ = (〈a, a〉(〈b, b〉〈a, a〉)∗〈c, c〉)

and n ≥ 1 s.t. 〈q0E , q0〉
σ

−→ 〈q′E , q〉 we have
µ(〈q′E , q〉) = {pf} or µ(〈q′E , q〉) = {¬pf}.

4.3 Active Diagnosability of a set of distributed
systems

In the previous section we considered active diagnos-
ability of a system within its environment. The envi-
ronment as defined represents a maximal use of the
system. Implicitly we supposed that, each time the
system can accept a command, the environment can
provide it. It is interesting to extend the notion of ac-
tive diagnosability to any environment composed by
a set of interacting systems. In this context, when a
system fails, the diagnosis is performed by its envi-
ronment composed by the other partners. Let us con-
sider a set of interacting systemsA = {Ai}i=1 ...n.
We suppose that thekth system holds a faultf and
the others do not. We call context ofAk the set of
the other systems,Contk = A \ {Ak}. The interac-
tion of the systemAk with the other subsystems can
be seen as a game between the system and a coalition
composed by its context. Let us noteGk = GA

+

kE
,Ak

the game between the systemAk and its perfect en-
vironment. According to propositions 2 and 3 we
haveG{Ai}i=1 ...n ∼ GContk∪{Gk[N ]}. Let G =
GContk∪{Gk[N ]}, we annotate its configurations by the
functionµ : C → 2∆

Ak with µ(〈q1, . . . , ck, . . . qn〉) =
µk(ck) with ck ∈ Ck. The environment resulting from
Contk will at the best behave as the perfect environ-
ment. This makes interesting the question of diagnos-
ability in a given context, i.e. ”can the context of a
faulty system actively diagnose it?”.

Definition 9 Let A = {Ai}i=1 ...n be a set of in-
teracting systems. The systemAk is diagnosable in
the context ofA iff ∀f ∈ Lfk, G |= AG[♦pf ⇒
〈〈C〉〉F(pf ∨ ¬pf )] withC ⊆ Contk.

This means that a system is diagnosable in a context
if there is a subset of systems, in its context, that can
form a coalition in order to diagnose any of its faults.

Example 8 Let A = {A,A1, A2} with A the system
of figure 1 withLuc = {b, c} andA1, A2 the two sys-
tems represented in figure 6. In this context the sys-
temA2 decides about the diagnosability ofA by acti-
vating the commande that produces the commandc.

We have hereG{A1,A2}∪{GA
+

E
,Ak [N ]} |= AG[♦pf ⇒

〈〈A2〉〉F(pf ∨ ¬pf )], i.e. the systemA2 has a strategy
to actively diagnose the systemA. After receiving the

7
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cb

q10

q11
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e
g
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h
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A1 : Lc
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1o
= {e, g} A2 : Lc
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q20

q22

q21

q23

Figure 6: An active diagnosable context forA

first a, followed byh, the systemA2 can send the com-
mande toA1 to force it to sendc toA. The systemA2
will then receive the diagnosis result:ameans correct,
d means the fault happened inA.

5 RELATED WORK
The paper proposes a generalization of the diagnos-
ability definition presented in(Sampathet al., 1995).
The aim is to take into account the semantics of the
observable events (actions or reactions). The idea of
gathering control theory and diagnosis is promising as
claimed in (Kelly et al., 2009). At the best of our
knowledge(Wang, 2009), and then in(Wang et al.,
2009), was the first that linked diagnosis concerns and
control. These two works focus on the use of control-
lability and observability for fault avoidance purpose.
They suppose a safe sublanguage of the system and
also produce, if it is possible, a controller that can en-
sure that the system will be safe. In this work we gen-
eralize diagnosability without avoiding fault. We do
not influence the behavior of system before the diag-
nosis process is engaged. Our approach to check active
diagnosability is related to works that use symbolic
model checking technics in order to verify diagnos-
ability (such as in(Jiang and Kumar, 2001) (Cordier
and Largout, 2001) (Cimatti et al., 2003)). We used
to run the toy example here the MOCHA tool(Alur et
al., 2001). MOCHA offers a language to specify a set
of systems and to compose a game structure between
a set of players. The tool has also a model checker for
ATL formulas. We extended our method to a set of
systems, but the checking process is still performed in
a centralized manner. It will be interesting to adapt the
fault propagation method proposed in(Schumann and
Pencoĺe, 2007) in order to study a purely distributed
checking method (Distributed strategy computing).

6 CONCLUSION AND FUTURE WORK
In this paper we propose a generalization of diagnos-
ability definition and verification in the context of open
systems. Our active diagnosability definition can de-
tect systems as diagnosable while the classical defini-
tion states the opposite. Also it can improve the di-
agnosis process by producing automatically a scenario
(strategy of commands) of interaction with the system
in order to get accurate diagnosis. The method can
be used for a single system or for a system placed in
a context. In the last case the active diagnosability
and its checking method proposed here can be used
for a number of applications like pervasive systems
and self-healing systems. The natural extension of this
work is the use of the game metaphor for a distributed

checking of active diagnosability. Unfortunately, the
MOCHA tool does not compute strategies neither as
counter example nor as illustration: we used it only
for diagnosis purpose.
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