Intrinsically Motivated Goal Exploration for Active Motor Learning in Robots: a Case Study

Adrien Baranes 1, * Pierre-Yves Oudeyer 1
* Auteur correspondant
1 Flowers - Flowing Epigenetic Robots and Systems
Inria Bordeaux - Sud-Ouest, U2IS - Unité d'Informatique et d'Ingénierie des Systèmes
Abstract : We introduce the Self-Adaptive Goal Generation - Robust Intelligent Adaptive Curiosity (SAGG-RIAC) algorithm as an intrinsically motivated goal exploration mechanism which allows a redundant robot to efficiently and actively learn its inverse kinematics. The main idea is to push the robot to perform babbling in the goal/operational space, as opposed to motor babbling in the actuator space, by self-generating goals actively and adaptively in regions of the goal space which provide a maximal competence improvement for reaching those goals. Then, a lower level active motor learning algorithm, inspired by the SSA algorithm, is used to allow the robot to locally explore how to reach a given self-generated goal. We present simulated experiments in a 32 dimensional continuous sensorimotor space showing that 1) exploration in the goal space can be a lot faster than exploration in the actuator space for learning the inverse kinematics of a redundant robot; 2) selecting goals based on the maximal improvement heuristics is statistically significantly more efficient than selecting goals randomly.
Type de document :
Communication dans un congrès
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), 2010, Taipei, Taiwan. 2010
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00541769
Contributeur : Pierre Rouanet <>
Soumis le : mercredi 1 décembre 2010 - 10:55:47
Dernière modification le : jeudi 16 novembre 2017 - 17:12:01
Document(s) archivé(s) le : vendredi 26 octobre 2012 - 17:10:45

Fichier

BaranesOudeyerIROS10.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00541769, version 1

Collections

Citation

Adrien Baranes, Pierre-Yves Oudeyer. Intrinsically Motivated Goal Exploration for Active Motor Learning in Robots: a Case Study. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), 2010, Taipei, Taiwan. 2010. 〈inria-00541769〉

Partager

Métriques

Consultations de la notice

188

Téléchargements de fichiers

227