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Message Drop and Scheduling in DTNs:
Theory and Practice

Amir Krifa, Chadi Barakat, Senior Member, IEEE, and Thrasyvoulos Spyropoulos, Member, IEEE,

Abstract—In order to achieve data delivery in Delay Tolerant Networks (DTN), researchers have proposed the use of store-carry-
and-forward protocols: a node there may store a message in its buffer and carry it along for long periods of time, until an appropriate
forwarding opportunity arises. This way, messages can traverse disconnected parts of the network. Multiple message replicas are
often propagated to further increase delivery probability. This combination of long-term storage and message replication imposes a
high storage and bandwidth overhead. Thus, efficient scheduling and drop policies are necessary to: (i) decide on the order by which
messages should be replicated when contact durations are limited, and (ii) which messages should be discarded when node buffers
operate close to their capacity.
In this paper, we propose a practical and efficient joint scheduling and drop policy that can optimize different performance metrics, such
as average delay and delivery probability. We first use the theory of encounter-based message dissemination to derive the optimal
policy based on global knowledge about the network. Then, we introduce a method that estimates all necessary parameters using
locally collected statistics. Based on this, we derive a distributed scheduling and drop policy that can approximate the performance of
the optimal policy in practice. Using simulations based on synthetic and real mobility traces, we show that our optimal policy and its
distributed variant outperform existing resource allocation schemes for DTNs. Finally, we study how sampled statistics can reduce the
signaling overhead of our algorithm and examine its behavior under different congestion regimes. Our results suggest that close to
optimal performance can be achieved even when nodes sample a small percentage of the available statistics.

Index Terms—Delay Tolerant Network, Congestion, Drop Policy, Scheduling Policy
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1 INTRODUCTION

MOBILE ad hoc networks (MANETs) had been
treated, until recently, as a connected graph over

which end-to-end paths need to be established. This
legacy view might no longer be appropriate for mod-
elling existing and emerging wireless networks [1], [2],
[3], [4]. Wireless propagation phenomena, node mobility,
power management, etc. often result in intermittent con-
nectivity with end-to-end paths either lacking or rapidly
changing. To allow some services to operate even under
these challenging conditions, researchers have proposed
a new networking paradigm, often referred to as Delay
Tolerant Networking (DTN [5]), based on the store-carry-
and-forward routing principle [1]. Nodes there, rather
than dropping a session (and respective packets) when
no forwarding opportunity is available, store and carry
messages until new communication opportunities arise.

Despite a large amount of effort invested in the design
of efficient routing algorithms for DTNs, there has not
been a similar focus on queue management and message
scheduling. Yet, the combination of long-term storage
and the, often expensive, message replication performed
by many DTN routing protocols [6], [7] impose a high
bandwidth and storage overhead on wireless nodes [8].
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Moreover, the data units disseminated in this context,
called bundles, are self-contained, application-level data
units, which can often be large [5]. As a result, it is
expected that nodes’ buffers, in this context, will often
operate at full capacity. Similarly, the available band-
width during a contact could be insufficient to communi-
cate all intended messages. Consequently, regardless of the
specific routing algorithm used, it is important to have: (i)
efficient drop policies to decide which message(s) should
be discarded when a node’s buffer is full, and (ii) efficient
scheduling policies to decide which message(s) should
be chosen to exchange with another encountered node
when bandwidth is limited.

In this paper, we try to solve this problem in its
foundation. We develop a theoretical framework based
on Epidemic message dissemination [9], [10], [11], and
propose an optimal joint scheduling and drop policy,
GBSD (Global knowledge Based Scheduling and Drop)
that can maximize the average delivery rate or minimize
the average delivery delay. GBSD derives a per-message
utility by taking into account all information that are
relevant for message delivery, and manages messages
accordingly. Yet, to derive these utilities, it requires
global network information, making its implementation
difficult in practice, especially given the intermittently
connected nature of the targeted networks. In order to
amend this, we propose a second policy, HBSD (History
Based Scheduling and Drop), a distributed (local) algo-
rithm based on statistical learning. HBSD uses network
history to estimate the current state of required (global)
network parameters and uses these estimates, rather
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than actual values (as in GBSD), to calculate message
utilities for each performance target metric.

To our best knowledge, the recently proposed RAPID
protocol [12] is the only effort aiming at scheduling
(and to a lesser extend message drop) using a similar
theoretical framework. Yet, the utilities derived there
are sub-optimal, as we will explain later, and require
global knowledge (as in GBSD), raising the same im-
plementation concerns. Simulations using both synthetic
mobility models and real traces show that our HSBD
policy not only outperforms existing buffer management
and scheduling policies (including RAPID), but can also
approximate the performance of the reference GBSD
policy, in all scenarios considered.

Furthermore, we look deeper into our distributed
statistics collection solution and attempt to identify the
available tradeoffs between the collection overhead and
the resulting performance. Aggressively collecting statis-
tics and exchanging them with every node encountered
allows estimates to converge faster (and thus achieves
good performance), but it can potentially result in high
energy and bandwidth consumption, and also interfere
with data transmissions. Our results suggest that close
to optimal performance can still be achieved even when
the signaling overhead is forced (through sampling) to
take only a small percentage of the contact bandwidth.

Finally, we examine how our algorithm behaves under
different congestion regimes. Interestingly, we find that
(i) at low to moderately congested regimes, the optimal
policy is simply equivalent to dropping the message
with the oldest age (similarly to the findings of [[13]]),
while (ii) at highly congested regimes, the optimal policy
is not linear on message age; some young messages have
to be dropped, as a means of indirect admission control,
to allow older messages to create enough replicas and
have a chance to be delivered. Hence, our framework can
also explain what popular heuristic policies are doing, in
this context, relative to the optimal one.

The rest of this paper is organized as follows. Section 2
describes the current state-of-the art in terms of buffer
management and scheduling in DTNs. In Section 3,
we describe the ”reference”, optimal joint scheduling
and drop policy that uses global knowledge about the
network. Then, we present in Section 4 a learning process
that enables us to approximate the global network state
required by the reference policy. Section 5 discusses our
evaluation setup and presents performance results for
both policies (GBSD and HBSD) using synthetic and
real mobility traces. In Section 6, we examine in detail
the mechanism to collect and maintain network history
statistics, and evaluate the signaling-performance trade-
off. Section 7 studies the behavior of our HBSD policy
in different congestion regimes. Finally, we conclude this
paper and discuss future work in Section 8.

2 STATE OF THE ART
A number of sophisticated solutions have been proposed
to handle routing in DTNs. Yet, the impact of buffer man-

agement and scheduling policies on the performance of
the system has been largely disregarded, in comparison,
by the DTN community.

In [14], Zhang et al. present an analysis of buffer
constrained Epidemic routing, and evaluate some simple
drop policies like drop-front and drop-tail. The authors
conclude that drop-front, and a variant of it giving
priority to source messages, outperform drop-tail in
the DTN context. A somewhat more extensive set of
combinations of heuristic buffer management policies
and routing protocols for DTNs is evaluated in [13],
confirming the performance of drop-front. In [15], Do-
hyung et al. present a drop policy which discards a
message with the largest expected number of copies first
to minimize the impact of message drop. However, all
these policies are heuristic, i.e. not explicitly designed
for optimality in the DTN context. Also, these works
do not address scheduling. In a different work [16], we
address the problem of optimal drop policy only (i.e.
no bandwidth or scheduling concerns) using a similar
analytical framework, and have compared it extensively
against the policies described in [14] and [13]. Due to
space limitations, we do not repeat these results here. We
rather focus on the more general joint scheduling and drop
problem, for which we believe the RAPID protocol [12]
represents the state-of-the-art.

RAPID is the first protocol to explicitly assume both
bandwidth and (to a lesser extent) buffer constraints
exist, and to handle the DTN routing problem as an opti-
mal resource allocation problem, given some assumption
regarding node mobility. As such, it is the most related
to our proposal, and we will compare directly against it.
Despite the elegance of the approach, and performance
benefits demonstrated compared to well-known routing
protocols, RAPID suffers from the following drawbacks:
(i) its policy is based on suboptimal message utilities
(more on this in Section 3); (ii) in order to derive these
utilities, RAPID requires the flooding of information
about all the replicas of a given message in the queues
of all nodes in the network; yet, the information propa-
gated across the network might arrive stale to nodes (a
problem that the authors also note) due to change in the
number of replicas, change in the number of messages
and nodes, or if the message is delivered but acknowl-
edgements have not yet propagated in the network; and
(iii) RAPID does not address the issue of signalling over-
head. Indeed, in [12], the authors showed that whenever
the congested level of the network starts increasing, their
meta-data channel consumes more bandwidth. This is
rather undesirable, as meta-data exchange can start in-
terfering with data transmissions amplifying the effects
of congestion. In another work [17], Yong et al. present a
buffer management schema similar to RAPID. However
they do not address the scheduling issue nor the trade-
off between the control channel overhead and system
performance. In this paper, we successfully address all
these three issues.
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3 OPTIMAL JOINT SCHEDULING AND DROP
POLICY

In this section, we first describe our problem setting and
the assumptions for our theoretical framework. We then
use this framework to identify the optimal policy, GBSD
(Global Knowledge based Scheduling and Drop). This
policy uses global knowledge about the state of each
message in the network (number of replicas). Hence, it
is difficult to implement it in a real world scenario, and
will only serve as reference. In the next section, we will
propose a distributed algorithm that can successfully
approximate the performance of the optimal policy.

3.1 Assumptions and Problem Description

We assume there are L total nodes in the network. Each
of these nodes has a buffer, in which it can store up to B
messages in transit, either messages belonging to other
nodes or messages generated by itself. Each message has
a Time-To-Live (TTL) value, after which the message
is no more useful to the application and should be
dropped by its source and all intermediate nodes. The
message can also be dropped when a notification of
delivery is received, or if an “anti-packet” mechanism
is implemented [14]1.

Routing: Each message has a single destination (uni-
cast) and is assumed to be routed using a replication-
based (multiple copy) scheme [8]. Such schemes include
epidemic routing [6], gossiping [8], spray and wait [19],
coding-base schemes [20], [21], etc.2 During a contact,
the routing scheme used will create a list of messages
to be replicated among the ones currently in the buffer.
Thus, different routing schemes might choose different
messages. For example, epidemic routing will replicate
all messages not already present in the encountered
node’s buffer [6].

For the purposes of this paper, we will use epidemic
routing as a case study, for the following reasons. First,
its simplicity allows us to concentrate on the problem
of resource allocation, which is the focus of this paper.
Second, it consumes the most resources per message
compared to any other scheme. As a result, it can be
easily driven to medium or high congestion regimes,
where the efficient resource allocation problem is most
critical (this will also be more clear in Section 7). Third,
given the nature of random forwarding schemes, unless
a buffer is found full or contact capacity is not enough
to transfer all messages, epidemic forwarding is optimal

1. Once a node delivers a packet to the destination, it should delete
the packet from its buffer to save storage space and prevent the node
from infecting other nodes. Moreover, to avoid being re-infected by
the packet, a node can keep track of packet delivery. We refer to this
information stored at the node as ”anti-packet”; various algorithms
have been proposed to propagate anti-packets to other infected and
susceptible nodes [14], [18].

2. We do not treat here utility-based forwarding schemes (e.g. [7],
[22], [8]). Their forwarding decisions may partially conflict with our
utility-based buffer management policy, as some of the work is re-
peated during both routing and buffer management (sub-optimally).

in terms of delay and delivery probability. Consequently,
epidemic routing along with appropriate scheduling and
message drop policies, can be viewed as a new routing
scheme that optimally adapts to available resources [12].

Finally, we note that our framework could be used
to treat other types of traffic (e.g. multicast), as well.
However, we focus on unicast traffic to elucidate the
basic ideas behind our approach, and defer the treatment
of multi-point traffic to future work.

Mobility Model: Another important element in our
analytical framework is the impact of mobility. In the
DTN context, message transmissions occur only when
nodes encounter each other. Thus, the time elapsed between
node meetings is the basic delay component. The meeting
time distribution is a basic property of the mobility
model assumed [11], [10]3. To formulate the optimal
policy problem, we will not assume any specific mobility
model used, but rather consider a generic model that has
the following two properties:

1) meeting times are exponentially distributed or have
at least an exponential tail;

2) nodes move independently of each other.

Regarding the former requirement, it has been shown
that many popular mobility models like Random Walk,
Random Waypoint and Random Direction [11], [10] have
such a property. It is also known in the theory of random
walks on graphs that hitting times on subsets of vertices
usually have an exponential tail [24]. Moreover, it has re-
cently been argued that meeting and inter-meeting times
observed in many traces may also exhibit an exponen-
tial tail [25]. Regarding the independence assumption,
although it might not always hold in some scenarios, it
turns out to be a useful approximation (as will be seen
in the results section). In fact, one could use a mean-
field analysis argument to show that independence is
not required, in the limit of large number of nodes, for
the analytical formulas derived to hold (see e.g. [26]).

Buffer Management and Scheduling: Let us consider
a time instant when a new contact occurs between nodes
i and j. The following resource allocation problem arises
when nodes are confronted with limited resources (i.e.
contact bandwidth and buffer space)4.

(Scheduling Problem) If i has X messages in its local
buffer that it should forward to j (chosen by the rout-
ing algorithm), but does not know if the contact will
last long enough to forward all messages, which ones
should it send first, so as to maximize the global delivery
probability for all messages currently in the network?

3. By meeting time we refer to the time until two nodes starting from
the stationary distribution come within range (”first meeting-time”);
If some of the nodes in the network are static, then one needs to use
hitting times between mobile and static nodes. Our theory can be easily
modified to account for static nodes by considering, for example, two
classes of nodes with different meeting rates (see e.g. [23]).

4. We note that, by “limited resources”, we do not imply that our
focus is only small, resource-limited nodes (e.g. wireless sensors), but
rather that the offered forwarding or storage load exceeds the available
capacity. In other words, we are interested in congestion regimes.
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Fig. 1. GBSD Global optimization policy

(Buffer Management Problem) If one (or more) of these
messages arrive at j’s buffer and find it full, what is the
best message j should drop among the ones already in
its buffer (locally) and the newly arrived one, in order to
maximize the average delivery rate among all messages
in the network (globally)?

To address these two questions, we propose the fol-
lowing policy. Given a routing metric to optimize (e.g.
delivery delay or delivery probability), our policy, GBSD,
derives a per-message utility that captures the marginal
value of a given message copy, with respect to the chosen
optimization metric. Based on this utility, two main func-
tions are performed:

1) Scheduling: at each contact, a node should replicate
messages in decreasing order of their utilities.

2) Drop: when a new message arrives at a node with a
full buffer, this node should drop the message with
the smallest utility among the one just received and
all buffered messages for which the current node
is not the source.

We will derive next such a per-message utility for two
popular metrics: maximizing the average delivery prob-
ability (rate), and minimizing the average delivery delay.
Table 1 contains some useful notation that we will use
throughout the paper. Finally, the GBSD optimization
policy is summarized in Figure 1.

3.2 Maximizing the average delivery rate

We first look into a scenario where each message has a
finite TTL value. The source of the message keeps a copy
of it during the whole TTL duration, while intermediate
nodes are not obliged to do so. To maximizes the average

TABLE 1
Notation

Variable Description
L Number of nodes in the network
K(t) Number of distinct messages in the network

at time t

TTLi Initial Time To Live for message i

Ri Remaining Time To Live for message i

Ti = TTLi -
Ri

Elapsed Time for message i. It measures the
time since this message was generated by its
source

ni(Ti) Number of copies of message i in the network
after elapsed time Ti

mi(Ti) Number of nodes (excluding source) that
have seen message i since its creation until
elapsed time Ti

λ Meeting rate between two nodes; λ = 1
E[H]

where E[H] is the average meeting time

delivery probability among all messages in the network
the optimal policy must use the per message utility
derived in the following theorem, in order to perform
scheduling and buffer management.

Theorem 3.1. Let us assume that there are K messages in
the network, with elapsed time Ti for the message i. For each
message i ∈ [1,K], let ni(Ti) be the number of nodes who have
a copy of the message at this time instant, and mi(Ti) those
that have “seen” the message (excluding the source) since it’s
creation5 (ni(Ti) 6 mi(Ti) + 1). To maximize the average
delivery rate of all messages, a DTN node should apply the
GBSD policy using the following utility per message i:

Ui(DR) = (1− mi(Ti)
L− 1

)λRi exp(−λni(Ti)Ri). (1)

Proof: Let the meeting time between nodes be expo-
nentially distributed with parameter λ. The probability
that a copy of a message i will not be delivered by
a node is then given by the probability that the next
meeting time with the destination is greater than Ri, the
remaining lifetime of a message (Ri = TTL − Ti). This
is equal to exp(−λRi).

Knowing that message i has ni(Ti) copies in the
network, and assuming that the message has not yet
been delivered, we can derive the probability that the
message itself will not be delivered (i.e. none of the ni

copies gets delivered):

P{message i not delivered | not delivered yet} =
ni(Ti)∏

i=1

exp(−λRi) = exp(−λni(Ti)Ri). (2)

Here, we have not taken into account that more
copies of a given message i may be created in the
future through new node encounters. We have also not
taken into account that a copy of message i could be

5. We say that a node A has “seen” a message i, when A had received
a copy of message i sometime in the past, regardless of whether it still
has the copy or has already removed it from the buffer.
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dropped within Ri (and thus this policy is to some
extent “greedy” or “locally optimal”, with respect to the
time dimension). Predicting future encounters and the
effect of further replicas created complicates the problem
significantly. Nevertheless, the same assumptions are
applied for all messages equally and thus can justify the
relative comparison between the delivery probabilities
for different messages.

We need to also take into consideration what has
happened in the network since the message generation,
in the absence of an explicit delivery notification (this
part is not considered in RAPID [12], making the utility
function derived there suboptimal). Given that all nodes
including the destination have the same chance to see
the message, the probability that a message i has been
already delivered is equal to:

P{message i already delivered} = mi(Ti)/(L− 1).
(3)

Combining Eq.(2) and Eq.(3) the probability that a mes-
sage i will get delivered before its TTL expires is:

Pi = P{message i not delivered yet} ∗ (1− exp(−λni(Ti)Ri))

+ P{message i already delivered}
= (1− mi(Ti)

L− 1
) ∗ (1− exp(−λni(Ti)Ri)) +

mi(Ti)

L− 1
.

So, if we take at instant t a snapshot of the network,
the global delivery rate for the whole network will be:

DR =

K(t)∑
i=1

[
(1− mi(Ti)

L− 1
) ∗ (1− exp(−λni(Ti)Ri)) +

mi(Ti)

L− 1

]

In case of a full buffer or limited transfer opportunity, a
DTN node should take respectively a drop or replication
decision that leads to the best gain in the global delivery
rate DR. To define this optimal decision, we differentiate
DR with respect to ni(Ti), then we discretize and replace
dn by ∆n to obtain:

∆(DR) =

K(t)∑
i=1

∂Pi

∂ni(Ti)
∗ 4ni(Ti)

=

K(t)∑
i=1

[
(1− mi(Ti)

L− 1
)λRi exp(−λni(Ti)Ri) ∗ 4ni(Ti)

]

Our aim is to maximize ∆(DR). In the case of message
drop, for example, we know that: ∆ni(Ti) = −1 if
we drop an already existing message i from the buffer,
∆ni(Ti) = 0 if we don’t drop an already existing message
i from the buffer, and ∆ni(Ti) = +1 if we keep and store
the newly-received message i. Based on this, GBSD ranks
messages using the per message utility in Eq.(1), then
schedules and drops them accordingly. This utility can
be viewed as the marginal utility value for a copy of a
message i with respect to the total delivery rate. The
value of this utility is a function of the global state of
the message (ni and mi) in the network.

3.3 Minimizing the average delivery delay
We next turn our attention to minimizing the average de-
livery delay. We now assume that all messages generated
have infinite TTL or at least a TTL value large enough
to ensure a delivery probability close to 1. The following
Theorem derives the optimal per-message utility, for the
same setting and assumptions as Theorem 3.1.

Theorem 3.2. To minimize the average delivery delay of all
messages, a DTN node should apply the GBSD policy using
the following utility for each message i:

Ui(DD) =
1

ni(Ti)2λ
(1− mi(Ti)

L− 1
). (4)

Proof: Let us denote the delivery delay for message
i with random variable Xi. This delay is set to 0 (or any
other constant value) if the message has been already
delivered. Then, the total expected delivery delay (D) for
all messages for which copies still exist in the network
is given by,

D =

K(t)∑
i=1

[
mi(Ti)

L− 1
∗ 0 + (1− mi(Ti)

L− 1
) ∗ E[Xi|Xi > Ti]

]
. (5)

We know that the time until the first copy of the
message i reaches the destination follows an exponential
distribution with mean 1/(ni(Ti)λ). It follows that,

E[Xi|Xi > Ti] = Ti +
1

ni(Ti)λ
. (6)

Substituting Eq.(6) in Eq.(5), we get,

D =
K(t)∑

i=1

(1− mi(Ti)
L− 1

)(Ti +
1

ni(Ti)λ
).

Now, we differentiate D with respect to ni(Ti) to find
the policy that maximizes the improvement in D,

∆(D) =
K(t)∑

i=1

1
ni(Ti)2λ

(
mi(Ti)
L− 1

− 1) ∗∆ni(Ti).

The best drop or forwarding decision will be the one
that maximizes |∆(D)| (or −∆(D)). This results to the
per message utility of Eq.(4).

Note that, the per message utility with respect to
delivery delay is different than the one for the delivery
rate. This implies (naturally) that both metrics cannot be
optimized concurrently.

4 USING NETWORK HISTORY TO APPROXI-
MATE GLOBAL KNOWLEDGE IN PRACTICE

It is clear from the above description that the optimal
policy (GBSD) requires global information about the
network and the ”spread” of messages, in order to
optimize a specific routing metric. In particular, for each
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message present in a node’s buffer, we need to know the
values of mi(Ti) and ni(Ti). In related work [12], it has
been suggested that this global view could be obtained
through a secondary, “instantaneous” channel (e.g. cel-
lular network), if available, or by flooding (“in-band”)
all necessary meta-data. Regarding the former option,
cellular network connections are known to be low band-
width (measurements suggest only few kbps even for
2.5-3G technologies [27]) and high cost in terms of power
and actual monetary cost per bit. In networks of more
than a few nodes, the amount of signalling data might
make this option prohibitive. Concerning flooding, our
experiments show that the impact of the flooding delay
on the performance of the algorithm is not negligible. In
practice, intermittent network connectivity and the long
time it takes to flood buffer status information across
DTN nodes, make this approach inefficient.

A different, more robust approach is to find estimators
for the unknown quantities involved in the calculation
of message utilities, namely m and n. We do this by
designing and implementing a learning process that per-
mits a DTN node to gather knowledge about the global
network state at different times in the past, by making
in-band exchanges with other nodes. Each node main-
tains a list of encountered nodes and the state of each
message carried by them as a function of time (i.e. its
buffer state history). Specifically, it logs whether a given
message was present at a given time T in a node’s buffer
(counting towards n) or whether it was encountered
earlier but is not anymore stored, e.g. it was dropped
(counting towards m). In Section 6, we describe our
statistics maintenance and collection method, in more
detail, along with various optimizations to considerably
reduce the signalling overhead.

Since global information gathered thus about a spe-
cific message might take a long time to propagate (as
mentioned earlier) and hence might be obsolete when
we calculate the utility of the message, we follow a
different route. Rather than looking for the current value
of mi(T ) and ni(T ) for a specific message i at an elapsed
time T , we look at what happens, on average, for all
messages after an elapsed time T . In other words, the mi(T )
and ni(T ) values for message i at elapsed time T are
estimated using measurements of m and n for the same
elapsed time T but measured for (and averaged over) all
other older messages. These estimations are then used in
the evaluation of the per-message utility.

Let’s denote by
∧
n (T ) and

∧
m (T ) the estimators for

ni(T ) and mi(T ) of message i. For the purpose of the
analysis, we suppose that the variables mi(T ) and ni(T )
at elapsed time T are instances of the random variables
N(T ) and M(T ). We develop our estimators

∧
n (T ) and

∧
m

(T ) so that when plugged into the GBSD’s delivery rate
and delay per-message utilities calculated in Section 3,
we get two new per-message utilities that can be used
by a DTN node without any need for global information
about messages. This results in a new scheduling and

drop policy, called HBSD (History Based Scheduling and
Drop), a deployable variant of GBSD that uses the same
algorithm, yet with per-message utility values calculated
using estimates of m and n.

4.1 Estimators for the Delivery Rate Utility

When global information is unavailable, one can cal-
culate the average delivery rate of a message over all
possible values of M(T ) and N(T ), and then try to
maximize it. In the framework of the GBSD policy, this is
equivalent to choosing the estimators

∧
n (T ) and

∧
m (T )

so that the calculation of the average delivery rate is
unbiased:

E[(1− M(T )
L− 1

) ∗ (1− exp(−λN(T )Ri)) +
M(T )
L− 1

] =

(1−
∧
m (T )
L− 1

) ∗ (1− exp(−λ
∧
n (T )Ri)) +

∧
m (T )
L− 1

Plugging any values for
∧
n (T ) and

∧
m (T ) that verify

this equality into the expression for the per-message
utility of Eq.( 1), one can make sure that the obtained
policy maximizes the average delivery rate. This is ex-
actly our purpose. Suppose now that the best estimator
for

∧
m (T ) is its average, i.e.,

∧
m (T ) =

−
m (T ) = E[M(T )].

This approximation is driven by the observation we
made that the histogram of the random variable M(T )
can be approximated by a Gaussian distribution with
good accuracy. To confirm this, we have applied the
Lillie test [28], a robust version of the well known
Kolmogorov-Smirnov goodness-of-fit test, to M(T ) for
different elapsed times (T = 25%,50% and 75% of the
TTL). This test led to acceptance for a 5% significance
level. Consequently, the average of M(T ) is at the same
time the unbiased estimator and the most frequent value
among the vector M(T ). Then, solving for

∧
n (T ) gives:

∧
n (T ) = − 1

λRi
ln(

E[(1− M(T )
L−1 ) exp(−λN(T )Ri)]

(1−
−
m(T )
L−1 )

) (7)

Substituting this expression into Eq.(1) we obtain the
following new per message utility for our approximating
HBSD policy:

λRiE[(1− M(T )
L− 1

) exp(−λRiN(T ))] (8)

The expectation in this expression is calculated by
summing over all known values of N(T ) and M(T )
for past messages at elapsed time T . Unlike Eq.(1), this
new per-message utility is a function of past history of
messages and can be calculated locally. It maximizes the
average message delivery rate calculated over a large
number of messages. When the number of messages is
large enough for the law of large numbers to work, our
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history based policy should give the same result as that
of using the real global network information.

Finally, we note that L, the number of nodes in the
network, could also be calculated from the statistics
maintained by each node in the network. In this work,
we assume it to be fixed and known, but one could esti-
mate it similar to n and m, or using different estimation
algorithms like the ones proposed in [29].

4.2 Estimators for the Delivery Delay Utility

Similar to the case of delivery rate, we calculate the
estimators

∧
n (T ) and

∧
m (T ) in such a way that the

average delay is not affected by the estimation. This
gives the following per-message utility specific to HBSD,

E[L−1−M(T )
N(T ) ]2

λ(L− 1)(L− 1− −
m (T ))

(9)

This new per-message utility is only a function of the
locally available history of old messages and is thus
independent of the actual global network state. For large
number of messages, it should lead to the same average
delay as when the exact values for m and n are used.

5 PERFORMANCE EVALUATION

5.1 Experimental Setup

To evaluate our policies, we have implemented a DTN
framework into the Network Simulator NS-2 [30]. This
implementation includes (i) the Epidemic routing proto-
col with FIFO for scheduling messages queued during
a contact and drop-tail for message drop, (ii) the RAPID
routing protocol based on flooding (i.e. no side-channel)
as described, to our best understanding, in [12], (iii) a
new version of Epidemic routing enhanced with our
optimal joint scheduling and drop policy (GBSD), (iv)
another version using our statistical learning based dis-
tributed algorithm (HBSD), and (v) the VACCINE anti-
packet mechanism described in [14]6.

In our simulations, each node uses the 802.11b proto-
col to communicate, with rate 11Mbits/sec. The trans-
mission range is 100 meters, to obtain network scenar-
ios that are neither fully connected (e.g. MANET) nor
extremely sparse. Our simulations are based on three
mobility scenarios, a synthetic one, based on the Random
Waypoint model and two real-world mobility traces: the
first trace was collected as part of the ZebraNet wildlife
tracking experiment in Kenya described in [31]. The
second mobility trace tracks San Francisco’s Yellow Cab
taxis. Many cab companies outfit their cabs with GPS to
aid in rapidly dispatching cabs to their costumers. The
Cabspotting system [32] talks to the Yellow Cab server
and stores the data in a database. We have used an API

6. We have also performed simulations without any anti-packet
mechanism, from which similar conclusions can be drawn.

provided by the Cabspotting system in order to extract
mobility traces7.

To each source node, we have associated a CBR
(Constant Bit Rate) application, which chooses randomly
from [0, TTL] the time to start generating messages
of 5KB for a randomly chosen destination. We have
also considered other message sizes (see e.g. [16]), but
found no significant differences in the qualitative and
quantitative conclusions drawn regarding the relative
performance of different schemes8. Unless otherwise
stated, each node maintains a buffer with a capacity of
20 messages to be able to push the network towards a
congested state without exceeding the processing and
memory capabilities of our simulation cluster. We com-
pare the performance of the various routing protocols
using the following two metrics: the average delivery
rate and average delivery delay of messages in the
case of infinite TTL9. Finally, the results presented here
are averages from 20 simulation runs, which we found
enough to ensure convergence.

5.2 Performance evaluation for delivery rate
First, we compare the delivery rate of all policies for the
three scenarios shown in Table 2.

TABLE 2
Simulation parameters

Mobility pattern: RWP ZebraNet Taxis

Simulation’s
Duration(h):

7 14 42

Simulation’ Area (m2): 3000*3000 3000*3000 -

Number of Nodes: 70 70 70

Average Speed (m/s): 2 - -

TTL(h): 1 2 6

CBR Interval(s): 360 720 2160

TABLE 3
Taxi Trace & Limited buffer and bandwidth

Policy: GBSD HBSD RAPID FIFO\DT

D. Probability: 0.72 0.66 0.44 0.34

D. Delay(s): 14244 15683 20915 36412

Figure 2 shows the delivery rate based on the Random
Waypoint model. From this plot, it can be seen that:
the GBSD policy plugged into Epidemic routing gives
the best performance for all numbers of sources. When

7. Note that this trace describes taxi’s positions according to the
GPS cylindrical coordinates (Longitude, Latitude). In order to uses these
traces as input for the NS-2 simulator, we have implemented a tool [30]
based on the Mercator cylindrical map projection which permit us to
convert traces to plane coordinates.

8. In future work, we intend to evaluate the effect of variable
message size and its implications for our optimization framework. In
general, utility-based scheduling problems with variable sized mes-
sages can often be mapped to Knapsack problems (see e.g. [33]).

9. By infinite TTL, we mean any value large enough to ensure almost
all messages get delivered to their destination before the TTL expires.
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Fig. 2. Delivery Probability for Epidemic Routing with
different scheduling and drop policies (both buffer and
bandwidth constraints).

TABLE 4
ZebraNet Trace & Limited buffer and bandwidth

Policy: GBSD HBSD RAPID FIFO\DT

D. Probability: 0.68 0.59 0.41 0.29

D. Delay(s): 4306 4612 6705 8819

congestion-level decreases, so does the difference be-
tween GBSD and other protocols, as expected. Moreover,
the HBSD policy also outperforms existing protocols
(RAPID and Epidemic based on FIFO/drop-tail) and
performs very close to the optimal GBSD. Specifically,
for 70 sources, HBSD offers an almost 60% improvement
in delivery rate compared to RAPID and is only 14%
worse than GBSD. Similar conclusions can be also drawn
for the case of the real Taxi traces or ZebraNet traces
and 70 sources. Results for these cases are respectively
summarized in Table 3 and Table 4.

5.3 Performance evaluation for delivery delay
To study delays, we increase messages’ TTL (and simu-
lation duration), to ensure almost every message gets de-
livered, as follows. Random Waypoint: (duration 10.5h,
TTL = 1.5h). ZebraNet: (simulation duration = 28h, TTL
= 4h). Taxi trace: (simulation duration = 84h, TTL = 12h).
Traffic rates are as in Section 5.2.

For the random waypoint mobility scenario, Figure 3
depicts the average delivery delay for the case of both
limited buffer and bandwidth. As in the case of delivery
rate, GBSD gives the best performance for all considered
scenarios. Moreover, the HBSD policy outperforms the
two routing protocols (Epidemic based on FIFO/drop-
tail, and RAPID) and performs close to GBSD. Specifi-
cally, for 70 sources and both limited buffer and band-
width, HBSD average delivery delay is 48% better than
RAPID and only 9% worse than GBSD.

Table 3 and Table 4 show that similar conclusions can
be drawn for the delay under respectively the real Taxi(s)
and ZebraNet traces.
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6 MAINTAINING NETWORK HISTORY

The results of the previous section clearly show that
our distributed policy (HBSD) that uses estimators of
global message state (rather than actual state) suc-
cessfully approximates the performance of the optimal
policy (GBSD). This is as an important step towards
a practical implementation of efficient buffer manage-
ment and scheduling algorithms on wireless devices.
Nevertheless, in order to derive good estimators in a
distributed manner, nodes need to exchange (a possibly
large amount of) metadata during every node meeting.
Potentially, each node needs to know the history of
all messages having passed through a node’s buffer,
for every node in the network. In a small network,
the amount of such “control” data might not be much,
considering that large amounts of data transfers can
be achieved between 802.11 transceivers during short
contacts (data transfers of a few 10s of MBytes have been
reported for experiments between vehicles moving at
high speeds [34]). Nevertheless, in larger networks, this
method can quickly become unsalable and interfere with
(or starve) data transmissions, if statistics maintenance
and collection is naively done.

In this section, we describe the type of statistics each
node maintains towards calculating the HBSD utility for
each message, and propose a number of mechanisms
and optimizations to significantly reduce (and control)
the amount of metadata exchanged during contacts.
Finally, we explore the impact of reducing the amount
of collected statistics on the performance of our buffer
management and scheduling policy. Our results sug-
gest that, with a carefully designed statistics collection
and maintenance scheme, order(s) of magnitude less
metadata can be exchanged (compared to maintaining a
complete view about the network), without significantly
affecting performance.
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6.1 Maintaining Buffer State History
In order to keep track of the statistics about past mes-
sages necessary to assign appropriate utility values to
messages considered for transmission or dropping, we
propose that each node maintains the data structure
depicted in Figure 4. Each node maintains a list of
messages whose history in the network it keeps track
of (we will see in the next section how a node chooses
which messages to include in this list). For each message,
it maintains its ID (a unique string resulting from the
combination of some of its attributes), its TTL and the
list of nodes that have seen it before (i.e. had stored
the messages at some time in the past and should be
accounted towards calculating m or n). Then, for each of
the nodes in the list, it maintains a data structure with
the following data: (i) the node’s ID, (ii) a boolean array
Copies Bin Array, and (iii) the version Stat V ersion
associated to this array.

The Copies Bin Array array (Fig. 5) enables nodes to
maintain dynamically what each message experienced
during its life time. For a given entry pair (message
a and node b) in this list, the Copies Bin Array[k]
indicates if the node a had already stored or not a copy
of message b in its buffer during Bin k. In other words,
time is quantized into “bins” of size Bin Size, and bin
k correspond to the period of time between k∗Bin Size
and (k + 1) ∗ Bin Size. As a result, the size of the
Copies Bin Array is equal to TTL/Bin Size.

How should one choose Bin Size? Clearly, the larger
it is, the fewer the amount of data a node needs to main-
tain and to exchange during each meeting; however,
the smaller is also the granularity of values the utility
function can take and thus the higher the probability of
an incorrect (scheduling or buffer management) decision.
As already described in Section 3, message transmissions
can occur only when nodes encounter each other. This is
also the time granularity at which buffer state changes
occur. Hence, we believe that a good trade-off is to
monitor the evolution of each message’s state at a bin
granularity in the order of meeting times10. This already
results in a big reduction of the size of statistics to maintain
locally (as opposed to tracking messages at seconds or
milliseconds granularity), while still enabling us to infer
the correct messages statistics.

Finally, the Stat V ersion indicates the Bin at which
the last update occurred. Let’s assume that a message a
is first stored at a node b during bin 3. It then creates
a new entry in its list for pair (a,b), inserts 0s in bins
0 − 2 of the new Copies Bin Array and 1s in the rest
of the bins, and sets the Stat V ersion to 3. If later, at
in bin 5 node b decides to drop this message, then the
list entry is maintained, but it sets all bins from 5 to
TTL/Bin Size to 0, and updates the Stat V ersion to 5.

10. According to the Nyquist-Shannon [35] sampling theorem, a good
approximation of the size of a Bin would be equal to inter-meeting-
time/2. A running average of the observed times between consecutive
meetings could be maintained easily, in order to dynamically adjust
the bin size [8].

Finally, when the TTL for message a elapses (regardless
of whether a is still present in b’s buffer or not), b
sets the Stat V ersion to TTL/Bin Size, which also
indicates that all information about the history of this
message in this buffer is now available. The combination
of how the Copies Bin Array is maintained and the
Stat V ersion updated, ensures that only the minimum
amount of necessary metadata for this pair of (message,
node) is exchanged during a contact.

We note also that, in principle, a
Message Seen Bin Array could be maintained,
indicating if a node a had seen (rather than stored a
message b at time t, in order to estimate m(T ). However,
it is easy to see that the Message Seen Bin Array can
be deduced directly from the Copies Bin Array, and
thus no extra storage is required. Summarizing, based
on this lists maintained by all nodes, any node can
retrieve the vectors N(T ) and M(T ) and can calculate
the HBSD per-message utilities described in Section 4
without a need for an oracle.

6.2 Collecting Network Statistics

We have seen so far what types of statistics each node
maintains about each past (message ID, node ID) tuple it
knows about. Each node is supposed to keep up-to-date
the statistics related to the messages it stores locally (i.e.
entries in the list of Fig. 4 corresponding to its own node
ID). However, it can only update its knowledge (and the
respective entry) about the state of a message a at a node
b when it either meets b directly, or it meets a node that
has more recent information about the (a, b) tuple (i.e. a
higher Stat V ersion). The goal of the statistics collection
method is that, through such message exchanges, nodes
converge to a unified view about the state of a given
message at any buffer in the network, during its lifetime.

Sampling Messages to Keep Track of: We now look in
more detail into what kind of metadata nodes should
exchange. The first interesting question is the following:
should a node maintain global statistics for every message
it has heard of or only a subset? We argue that moni-
toring a dynamic subset of these messages is sufficient
to quickly11 converge to the correct expectations we
need for our utility estimators. This dynamic subset is
illustrated in Figure 6 as being the Messages Under
Monitoring, which are stored in the MUM buffer; it is
dynamic because its size is kept fixed while messages
inside it change. When a node decides to store a message
for the first time, if there is space in its MUM buffer, it
also inserts it there and will track its global state. In other
words, each node randomly chooses a few messages it
will sample, for which it will attempt to collect global
state, and does not keep track of all messages currently
alive in the network. The actual sampling rate depends
on the size of the MUM buffer and the offered traffic

11. While speed of convergence is not that important, due to our
history-based approach, it becomes significant in non-stationary sce-
narios with traffic load fluctuations and node churn, as we shall see.
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Fig. 4. Network History Data Structure

Fig. 5. Example of Bin arrays

load, and results in significant further reduction in the
amount of metadata exchanged. At the same time, a
smaller MUM buffer might result to slower convergence
(or even lack of). In Section 6.3 we study the impact of
MUM buffer size on the performance of our algorithm.

Handling Converged Messages: Once the node collects
an entire history of a given message, it removes it from
the MUM buffer and pushes it to the buffer of Messages
with a Complete History (MCH). A node considers
that it has the complete history of a given message
only when it gets the last version (i.e. Stat V ersion =
TTL/Bin Size) of the statistics entries related to all
the nodes the message goes through during its TTL12

Finally, note that, once a node decides to move a message
to the MCH buffer, it only needs to maintain a short
summary (i.e. number of nodes with a copy n(T ) and
number of nodes having seen the message, m(T ), at time
T ) rather than the per node state as in Fig. 4.

Statistics Exchanged: Once a contact opportunity is
present, both peers have to ask only for newer versions
of the statistics entries (message ID, node ID) related
to the set of messages buffered in their MUM buffer.
This ensures that, even for the sampled set of messages,
only new information is exchanged and no bandwidth is
wasted. This optimization does not introduce any extra
latency in the convergence of our approximation scheme.

12. Note that there is a chance that a node might “miss” some
information about a message it pushes in its MCH. This occurs, for
example, if it receives the last version for a subset of nodes which
had the message, before it receives any version from another node
that also had the message. This probability depends on the statistics
of the meeting time (first and second moment) and the TTL value.
Nevertheless, for many scenarios of interest, this probability is small
and it may only lead to slightly underestimating the m and n values.

Fig. 6. Statistics Exchange and Maintenance.

6.3 Performance Tradeoffs of Statistics Collection

We have presented a number of optimizations to (con-
siderably) reduce the amount of metadata stored and
the amount of signalling overhead. Here, we explore
the trade-off between the signalling overhead, its impact
on performance, and the dynamicity of a given sce-
nario. Our goal is to identify operation points where the
amount of signalling overhead is such that it interferes
minimally with data transmission, while at the same
time it suffices to ensure timely convergence of the
required utility metrics per message. We will consider
throughout the random waypoint simulation scenario
described in Section 5.2. We have observed similar be-
haviour for the trace-based scenarios.

Amount of Signalling Overhead per Contact: We
start by studying the effect of varying the size of the
MUM buffer (number of messages under monitoring) on
the average size of exchanged statistics per-meeting. Fig-
ure 7 compares the average size of statistics exchanged
during a meeting between two nodes for three different
sizes of the MUM buffer (20, 50 and 80), as well as for the
basic epidemic statistics exchange method (i.e. unlimited
MUM). We vary the number of sources in order to cover
different congestions regimes.

Our first observation is that increasing the traffic load
(and thus the amount of congestion) results in decreasing
the average amount of statistics exchanged per-meeting
(except for the MUM size of 20 messages). This might
be slightly counterintuitive, since a higher traffic load
implies more messages to keep track of. However, note
that a higher congestion level also implies that much
fewer copies per message will co-exist at any time (and
new versions are less frequently created). As a result,
much less metadata per message is maintained and
exchanged, resulting in a downward trend. In the case of
a MUM size of 20, it seems that these two effects balance
each other out. In any case, the key property here is that,
in contrast with the flooding-based method of [12], our
distributed collection method scales well, not increasing the
amount of signalling overhead during high congestion.

A second observation is that, using our statistics
collection method, a node can reduce the amount of
signalling overhead per meeting up to an order of mag-
nitude (e.g. for MUM = 20), compared to the unlimited
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MUM case, even in this relatively small scenario of 70
nodes. (Note also that, the plot shown for the epidemic
case, already implements the binning and versioning
optimizations of Section 6.1).)
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Fig. 7. Signalling overhead (per contact) resulting from
HBSD statistics collection.

Finally, we plot in Figure 8 the average size of ex-
changed (non-signalling) data per-meeting. We can ob-
serve that increasing the size of the MUM buffer results
in a slight decrease of the data exchanged. This is due
to the priority we give to statistics exchange during a
contact. We note also that this effect becomes less pro-
nounced when congestion increases (in line with Fig. 7).
Finally, in the scenario considered, we can observe that,
for MUM sizes less than 50, signalling does not interfere
with data transmissions (remember that packet size is
5KB). This suggests that, in this scenario, a MUM size of
50 messages represents a good choice with respect to the
resulting signalling overhead. In practice, a node could
find this value online, by dynamically adjusting its MUM
size and comparing the resulting signalling overhead
with average data transfer. It is beyond the scope of
this paper to propose such an algorithm. Instead, we are
interested in exposing the various tradeoffs and choices
involved in efficient distributed estimation of statistics.
Towards this goal, we explore next the effect of the
MUM sizes considered on the performance of our HBSD
algorithm.

Convergence of Utilities and Performance of the
HBSD Policy : In this last part, we fix the number of
sources to 50 and we look at the impact of the size of the
MUM buffer on (i) the time it takes the HBSD delivery
rate utility to converge, and (ii) its accuracy. We use the
mean relative square error to measure the accuracy of the
HBSD delivery rate utility, defined as follows:

1
#Bins

∗
∑

Bins

(A−B)2

B2
,

where, for each bin, A is the estimated utility value
of Eq. (8) (calculated using the approximate values of m
and n, collected with the method described previously)
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and B is the utility value calculated using the real values
of m and n.
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Figure 9 plots the mean relative square errors for the
HBSD delivery rate utility, as a function of time. We
can observe that, increasing the size of the MUM buffer
results in faster reduction of the mean relative square
error function. With a MUM buffer of 80 messages,
the delivery rate utility estimate converges 800 seconds
faster than using an MUM buffer of 20 messages. Indeed,
the more messages a node tracks in parallel, the faster
it can collect a working history of past messages that it
can use to calculate utilities for new messages considered
for drop or transmission. We observe also that all plots
converge to the same very small error value 13. Note also
that it is not the absolute value of the utility function
(during different time bins) that we care about, but rather
the shape of this function, whether it is increasing or
decreasing, and the relative utility values. (We will look
into the shape of this function at different congestion
regimes in the next section.)

In fact, we are more interested in the end performance
of our HBSD, as a function of how “aggressively” nodes

13. We speculate that this remaining error might be due to slightly
underestimating m and n, as explained earlier.
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collect message history. In Figures 10 and 11, we plot
the delivery rate and delay of HBSD, respectively, for
different MUM sizes. These results correspond to the
scenario described in Section 5.2, where we have a
fixed number of CBR sources. As is evident from these
figures, regardless of the size of the MUM buffer sizes,
nodes eventually gather enough past message history to
ensure an accurate estimation of per message utilities,
and a close-to-optimal performance. In such scenarios,
where traffic intensity is relatively stable, even a rather
small MUM size (i.e. very low sampling rate) suffices to
achieve good performance. This is not necessarily the
case when traffic load experiences significant fluctua-
tions (e.g. due to new popular content appearing in the
network).
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HBSD with statistics collec-
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When the offered traffic load changes frequently (or
node churn is high, e.g. experiencing “flash crowds”),
convergence speed becomes important. The bigger the
MUM buffer the faster our HBSD policy react to chang-
ing congestion levels. We illustrate this with the fol-
lowing experiment. We maintain the same simulation
scenario, but we vary the number of CBR sources among
each two consecutive TTL(s), from 10 to 70 sources (i.e.
the first and second TTL window we have 10 sources, the
third and fourth window 70 sources, etc. — this is close
to a worst case scenario, as there is a sevenfold increase
in traffic intensity within a time window barely higher
than a TTL, which is the minimum required interval
to collect any statistics). Furthermore, to ensure nodes
use non-obsolete statistics towards calculating utilities,
we force nodes to apply a sliding window of one TTL to
the messages with complete history stored in the MCH
buffer, and to delete messages out of this sliding window14

Figures 12 and 13 again plot the HBSD policy delivery
rate and delay, respectively, as a function of MUM buffer
size. Unlike the constant load case, it is easy to see there
that, increasing the size of the MUM buffer, results in
considerable performance improvement. Nevertheless,
even in this rather dynamic scenario, nodes manage to
keep up and produce good utility estimates, with only
a modest increase on the amount of signalling overhead

14. A running average could be used for smoother performance. We
only care here to demonstrate the effect of dynamic traffic loads.

required.
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7 DISTRIBUTION OF HBSD UTILITIES

We have described how to efficiently collect the nec-
essary statistics in practice, and derive good estimates
for the HBSD utility distribution during the lifetime of
a message. In this last section, we turn our attention
to the utility distributions themselves. First, we are
interested whether the resulting distributions for HBSD
delivery rate and delivery delay utilities react differently
to different congestion levels, that is, if the priority
given to messages of different ages shifts based on the
offered load. Furthermore, we are interested whether the
resulting utility shape (and respective optimal policy)
could be approximated by simple(r) policies, in some
congestion regimes.

We consider again the simulation scenario used in
Section 5.2 and Section 6.3. First, we fix the number of
sources to 50, corresponding to a high congestion regime.
In Figure 14 and Figure 15, we plot the distribution
of the HBSD delivery rate and delivery delay utilities
described in Sections 4.1 and 4.2. It is evident there that
the optimal utility distribution has a non-trivial shape
for both optimization metrics, resulting in a complex
optimal scheduling and drop policy. This also helps
explain why simple drop and scheduling policies (e.g.
Drop Youngest or Oldest Message, DropTail, FIFO or
LIFO scheduling, etc.), considered in earlier work [14],
[16] lead to incorrect decisions during congestion and
perform worse than the GBSD and HBSD policies [16].

Next, we consider a scenario with low congestion. We
reduce the number of sources to 15, keep the buffer
size of 20 messages, but we also decrease the CBR rate
of sources from 10 to 2 messages/TTL. In Figures 16
and 17, we plot the distribution of the HBSD delivery
rate and delivery delay utilities, respectively, for this
low congestion scenario. Surprisingly, our HBSD policy
behaves very differently now, with both utility functions
decaying monotonically as a function of time (albeit
not at constant rate). This suggests that the optimal
policy in low congestion regimes could be approximated
by the simpler “Drop Oldest Message” (or schedule
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gested network.

younger messages first) policy, which does not require
any signalling and statistics collection between nodes.

To test this, in Tables 5 and 6, we compare the perfor-
mance of the HBSD policy against a simple combination
of “Drop Oldest Message” (for Buffer Management)
and “Transmit Youngest Message First” (for Scheduling
during a contact). We observe, that in the low congestion
regime (Tables 6) the two policies indeed have similar
performance (4% and 5% difference in delivery rate and
delivery delay, respectively). However, in the case of a
congested network (Table 5), HBSD clearly outperforms
the simple policy combination.

We can look more carefully at Figures 14 and 15, to un-
derstand what is happening in high congestion regimes.
The number of copies per message created at steady state
depends on the total number of messages co-existing
at any time instant, and the aggregate buffer capacity.
When too many messages exist in the network (for the
provided buffer space per node), uniformly assigning
the available messages to the existing buffers (which is
what a random drop and scheduling policy would do),
would imply that every message can have only a few
copies created. Specifically, for congestion higher than
some level, the average number of copies per message
allowed is so low that most messages cannot reach their
destination during their TTL (this depends only on the
number of copies and mobility model). Uniformly assign-
ing resources between nodes is no more optimal. Instead, to
ensure that at least some messages can be delivered on
time, the optimal policy gives higher priority to older
messages that have managed to survive long enough
(and have probably created enough copies), and “kills”
some of the new ones being generated. This is evident
by the values assigned at different bins (especially in the
delivery delay case). In other words, when congestion is
excessive our policy performs an indirect admission control
function.

Contrary to this, when the offered load is low enough
to ensure that all messages can on average create enough
copies to ensure delivery, the optimal policy simply per-
forms a fair (i.e. equal) distribution of resources (ensured
by the utility functions of Figures 16 and 17).

The above findings suggest that it would be quite
useful to find a generic way to signal the congestion level

TABLE 5
HBSD vs. “Schedule Younger First\Drop-Oldest” in a

congested network.

Policies: HBSD “Schedule Younger
First\Drop-Oldest”

D. Rate(%): 54 29

D. Delay(s): 1967 3443
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TABLE 6
HBSD vs “Schedule Younger First\Drop-Oldest” in a low

congested network.

Policies: HBSD “Schedule Younger
First\Drop-Oldest”

D. Rate(%): 87 83

D. Delay(s): 1530 1618

and identify the threshold based on which nodes can
decide to either activate our HBSD scheme or just use a
simple Drop/Scheduling policy. Suspending a complex
Drop/Scheduling mechanism and its underlying statis-
tics collection and maintenance methods, whenever not
needed, can help nodes save an important amount of
resources (e.g. energy), while maintaining the same end
performance. Finally, we believe that the indirect sig-
nalling provided by the behaviour of the utility function
during congestion, could provide the basis for an end-
to-end flow control mechanism, a problem remaining
largely not addressed in the DTN context.

8 CONCLUSION

In this work, we investigated both the problems of
scheduling and buffer management in DTNs. First, we
proposed an optimal joint scheduling and buffer man-
agement policy based on global knowledge about the
network state. Then, we introduced an approximation
scheme for the required global knowledge of the opti-
mal algorithm. Using simulations based on a synthetic
mobility model (Random Waypoint), and real mobility
traces, we showed that our policy based on statistical
learning successfully approximates the performance of
the optimal algorithm. Both policies (GBSD and HBSD)
plugged into the Epidemic routing protocol outperform
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current state-of-the-art protocols like RAPID [12] with
respect to both delivery rate and delivery delay, in all
considered scenarios. Moreover, we discussed how to
implement our HBSD policy in practice, by using a dis-
tributed statistics collection method, illustrating that our
approach is realistic and effective. We showed also that
unlike many works [12], [17] that also relied on the use
of an in-band control channel to propagate metadata, our
statistics collection method scales well, not increasing the
amount of signalling overhead during high congestion.

Finally, we carried a study of the distributions of
HBSD’ utilities under different congestion levels and
we showed that: when congestion is excessive, HBSD
performs an indirect admission control function and
has a non-trivial shape for both optimization metrics,
resulting in a complex optimal scheduling and drop
policy. However, when the offered load is low enough,
HBSD can be approximated by a simple policy that
does not require any signalling and statistics collection
between nodes. The above findings suggest that it would
be quite useful to find a generic way to signal the
congestion level and identify the threshold based on
which nodes can decide to either activate our HBSD
scheme or just use a simple Drop/Scheduling policy.
Suspending a complex Drop/Scheduling, whenever not
needed, can help nodes save an important amount of
resources, while maintaining the same end performance.
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