J. Spaan, C. Kolyva, J. Van-den-wijngaard, R. Ter-wee, P. Van-horssen et al., Coronary structure and perfusion in health and disease, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.72, issue.1, pp.3137-3153, 1878.
DOI : 10.1152/physrev.00029.2005

P. Horssen, J. P. Wijngaard, M. Siebes, and J. A. Spaan, Improved regional myocardial perfusion measurement by means of an imaging cryomicrotome, 4th European Conference of the International Federation for Medical and Biological Engineering, pp.771-774, 2009.
DOI : 10.1007/978-3-540-89208-3_185

N. Westerhof, C. Boer, R. R. Lamberts, and P. Sipkema, Cross-Talk Between Cardiac Muscle and Coronary Vasculature, Physiological Reviews, vol.86, issue.4, pp.1263-1308, 2006.
DOI : 10.1152/physrev.00029.2005

N. Smith and . Kassab, Analysis of coronary blood flow interaction with myocardial mechanics based on anatomical models, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.359, issue.1783, pp.1251-1262, 2001.
DOI : 10.1098/rsta.2001.0829

N. Smith, A computational study of the interaction between coronary blood flow and myocardial mechanics, Physiological Measurement, vol.25, issue.4, pp.863-877, 2004.
DOI : 10.1088/0967-3334/25/4/007

K. Terzaghi, Theoretical Soil Mechanics, 1943.
DOI : 10.1002/9780470172766

M. A. Biot, Theory of Propagation of Elastic Waves in a Fluid???Saturated Porous Solid. II. Higher Frequency Range, The Journal of the Acoustical Society of America, vol.28, issue.2, pp.179-191, 1956.
DOI : 10.1121/1.1908241

URL : https://hal.archives-ouvertes.fr/hal-01368668

M. A. Biot, Theory of finite deformations of porous solids, Math. J, vol.21, pp.597-620, 1972.
URL : https://hal.archives-ouvertes.fr/hal-01369961

K. May-newman and A. D. Mcculloch, Homogenization modeling for the mechanics of perfused myocardium, Progress in Biophysics and Molecular Biology, vol.69, issue.2-3, pp.463-481, 1998.
DOI : 10.1016/S0079-6107(98)00020-0

E. Almeida and R. Spilker, Finite element formulations for hyperelastic transversely isotropic biphasic soft tissues, Computer Methods in Applied Mechanics and Engineering, vol.151, issue.3-4, pp.3-4, 1998.
DOI : 10.1016/S0045-7825(97)82246-3

Z. Yang and P. Smolinski, Dynamic finite element modeling of poroviscoelastic soft tissue, Computer Methods in Biomechanics and Biomedical Engineering, vol.102, issue.1, pp.7-16, 2006.
DOI : 10.1002/nme.1620320704

R. Borja, On the mechanical energy and effective stress in saturated and unsaturated porous continua, International Journal of Solids and Structures, vol.43, issue.6, pp.1764-1786, 2006.
DOI : 10.1016/j.ijsolstr.2005.04.045

S. Badia, A. Quaini, and A. Quarteroni, Coupling Biot and Navier???Stokes equations for modelling fluid???poroelastic media interaction, Journal of Computational Physics, vol.228, issue.21
DOI : 10.1016/j.jcp.2009.07.019

N. Koshiba, J. Ando, X. Chen, and T. Hisada, Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model, Journal of biomechanical engineering, vol.129, issue.374, 2007.

V. Calo, N. Brasher, Y. Bazilevs, and T. Hughes, Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow, Computational Mechanics, vol.196, issue.29, pp.161-177, 2008.
DOI : 10.1007/s00466-008-0321-z

P. Feenstra and C. Taylor, Drug transport in artery walls: A sequential porohyperelastic-transport approach, Computer Methods in Biomechanics and Biomedical Engineering, vol.4, issue.3, pp.263-276, 2009.
DOI : 10.1115/1.2895529

J. M. Huyghe and D. H. Van-campen, Finite deformation theory of hierarchically arranged porous solids???I. Balance of mass and momentum, International Journal of Engineering Science, vol.33, issue.13, pp.1861-1871, 1991.
DOI : 10.1016/0020-7225(95)00042-V

J. M. Huyghe and D. H. Van-campen, Finite deformation theory of hierarchically arranged porous solids???II. Constitutive behaviour, International Journal of Engineering Science, vol.33, issue.13, pp.1861-1871, 1991.
DOI : 10.1016/0020-7225(95)00043-W

R. Cimrman and E. Rohan, Modelling heart tissue using a composite muscle model with blood perfusion, Computational Fluid and Solid Mechanics, 2nd MIT Conference, pp.1642-1646, 2003.
DOI : 10.1016/B978-008044046-0.50400-0

W. Vankan, J. Huyghe, J. Janssen, and A. Huson, A FINITE ELEMENT MIXTURE MODEL FOR HIERARCHICAL POROUS MEDIA, International Journal for Numerical Methods in Engineering, vol.96, issue.2, pp.40-193, 1997.
DOI : 10.1002/(SICI)1097-0207(19970130)40:2<193::AID-NME55>3.0.CO;2-9

O. Coussy, Mechanics of porous continua, 1995.

P. De-buhan, X. Chateau, and L. Dormieux, The constitutive equations of finite strain poroelasticity in the light of a micro-macro approach, European Journal of Mechanics - A/Solids, vol.17, issue.6, pp.909-922, 1998.
DOI : 10.1016/S0997-7538(98)90501-0

P. G. Ciarlet and G. Geymonat, Sur les lois de comportement enélasticitéenélasticité non linéaire, C.R.A.S, Série II, vol.295, pp.423-426, 1982.

J. Sainte-marie, D. Chapelle, R. Cimrman, and M. Sorine, Modeling and estimation of the cardiac electromechanical activity, Computers & Structures, vol.84, issue.28, pp.1743-1759, 2006.
DOI : 10.1016/j.compstruc.2006.05.003

URL : https://hal.archives-ouvertes.fr/hal-00839206

F. Brezzi and M. Fortin, Mixed and hybrid finite element method, 1991.
DOI : 10.1007/978-1-4612-3172-1

B. Irons and R. Tuck, A version of the Aitken accelerator for computer iteration, International Journal for Numerical Methods in Engineering, vol.1, issue.3, pp.275-277, 1969.
DOI : 10.1002/nme.1620010306

J. Bestel, F. Clément, and M. Sorine, A Biomechanical Model of Muscle Contraction, Lectures Notes in Computer Science, vol.2208, pp.1159-1161, 2001.
DOI : 10.1007/3-540-45468-3_143

P. Krej?í, J. Sainte-marie, M. Sorine, and J. Urquiza, Solutions to muscle fiber equations and their long time behaviour, Nonlinear Analysis: Real World Applications, vol.7, issue.4, pp.535-558, 2005.
DOI : 10.1016/j.nonrwa.2005.03.021

D. Chapelle, P. Le-tallec, and P. Moireau, Mechanical modeling of the heart contraction

D. Chapelle, M. Fernández, J. Gerbeau, P. Moireau, J. Sainte-marie et al., Numerical Simulation of the Electromechanical Activity of the Heart, Lecture Notes in Computer Science, vol.84, issue.4, pp.357-365, 2009.
DOI : 10.1016/j.compstruc.2006.05.003

URL : https://hal.archives-ouvertes.fr/inria-00542779

M. Boulakia, S. Cazeau, M. A. Fernández, J. Gerbeau, and N. Zemzemi, Mathematical Modeling of Electrocardiograms: A Numerical Study, Annals of Biomedical Engineering, vol.98, issue.1???3, 2009.
DOI : 10.1007/s10439-009-9873-0

URL : https://hal.archives-ouvertes.fr/inria-00400490

D. Zinemanas, R. Beyar, and S. Sideman, An integrated model of LV muscle mechanics, coronary flow, and fluid and mass transport, Am J Physiol Heart Circ Physiol, vol.268, issue.2, pp.633-645, 1995.

G. S. Kassab, K. N. Le, and Y. B. Fung, A hemodynamic analysis of coronary capillary blood flow based on anatomic and distensibility data, Am J Physiol Heart Circ Physiol, vol.277, issue.6, pp.2158-2166, 1999.

K. Fronek and B. Zweifach, Microvascular pressure distribution in skeletal muscle and the effect of vasodilation, Am J Physiol, vol.228, issue.3, pp.791-796, 1975.

F. Gonzalez and J. B. Bassingthwaighte, Heterogeneities in regional volumes of distribution and flows in rabbit heart, Am J Physiol Heart Circ Physiol, vol.258, issue.4, pp.1012-1024, 1990.

K. May-newman, C. Chen, R. Oka, R. Haslim, and A. De-maria, Evaluation of myocardial perfusion using threedimensional myocardial contrast echocardiography, Nuclear Science Symposium Conference Record, pp.1691-1694, 2001.

D. Ghista and E. Ng, Cardiac Perfusion and Pumping Engineering, World Scientific, 2007.
DOI : 10.1142/6460

J. M. Huyghe, T. Arts, D. H. Van-campen, and R. S. Reneman, Porous medium finite element model of the beating left ventricle, Am J Physiol Heart Circ Physiol, vol.262, issue.4, pp.1256-1267, 1992.

H. Ashikaga, B. A. Coppola, K. G. Yamazaki, F. J. Villarreal, J. H. Omens et al., Changes in regional myocardial volume during the cardiac cycle: implications for transmural blood flow and cardiac structure, AJP: Heart and Circulatory Physiology, vol.295, issue.2, pp.610-618, 2008.
DOI : 10.1152/ajpheart.00107.2008

J. I. Husseini and . Hoffman, Cardiac contraction affects deep myocardial vessels predominantly, Am J Physiol Heart Circ Physiol, vol.261, issue.5, pp.1417-1429, 1991.

D. Gregg and H. Green, Registration and interpretation of normal phasic inflow into a left coronary artery by an improved differential manometric method, Am J Physiol, vol.130, pp.114-125, 1940.

W. Nichols and M. O. Rourke, McDonald's blood flow in arteries, 2005.