An efficient numerical method for the equations of steady and unsteady flows of homogeneous incompressible Newtonian fluid.

Z. Sheng Marc Thiriet 1 Frédéric Hecht 2
1 REO - Numerical simulation of biological flows
LJLL - Laboratoire Jacques-Louis Lions, Inria Paris-Rocquencourt, UPMC - Université Pierre et Marie Curie - Paris 6
Abstract : In the present paper, we present some numerical methods to solve the equations of steady and unsteady flows, such as those in the microcirculatory bed and large blood vessels (arteries and veins), respectively. In the case of steady flows, the method does not need neither any boundary conditions on pressure nor any small parameter, and the main computation consists of solving some Poisson equations. In the case of unsteady flows, the scheme uses a consistent Neumann boundary condition for the pressure Poisson equation. At each time step, a Poisson and heat equation are solved for the pressure and each velocity component, respectively. The accuracy and efficiency of scheme are checked by a set of numerical tests.
Type de document :
Article dans une revue
Journal of Computational Physics, Elsevier, 2011, 230 (3), pp.551-571
Liste complète des métadonnées

https://hal.inria.fr/inria-00543063
Contributeur : Marc Thiriet <>
Soumis le : dimanche 5 décembre 2010 - 17:15:57
Dernière modification le : vendredi 31 août 2018 - 09:06:03

Identifiants

  • HAL Id : inria-00543063, version 1

Collections

Citation

Z. Sheng, Marc Thiriet, Frédéric Hecht. An efficient numerical method for the equations of steady and unsteady flows of homogeneous incompressible Newtonian fluid.. Journal of Computational Physics, Elsevier, 2011, 230 (3), pp.551-571. 〈inria-00543063〉

Partager

Métriques

Consultations de la notice

154