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MUCUS DYNAMICS SUBJECT TO AIR AND WALL MOTION ∗

S. ENAULT 1, D. LOMBARDI 2, P. PONCET 3 AND M. THIRIET 4

Abstract. This study presents a numerical investigation of basic interactions between respiratory mucus motion,
air circulation and epithelium ciliated cells vibration. One focuses on identification of meaningful rheological
parameters, physiological and numerical simulation dimensioning. These preliminary results are crucial before the
study of more general configurations of respiratory mucus motion. The numerical study presented in this work
aims at providing a first numerical tool able to simulate the effects of mucus mobility and its ability to carry out
pathogens or to deliver aerosol therapy to membrane wall cells. Momentum diffusion is identified as the dominant
effect, as expected in this micrometer scale configuration, and its associate momentum diffusion operator is shown
to be extremely stiff. Furthermore, epithelium vibration is shown to be much more efficient than air circulation for
mucus propulsion.

Résumé. Ce travail présente une étude numérique des interactions élémentaires entre le mucus de l’appareil
respiratoire, la circulation de l’air et le mouvement vibratoire des cellules épithéliales ciliées tapissant la membrane
pulmonaire. On s’intéresse en particulier à l’identification des paramètres les plus importants parmi les données
rhéologiques, le dimensionnement physiologique et la configuration numérique. Ces résultats préliminaires sont
cruciaux afin d’envisager l’étude de cas plus généraux de transport du mucus respiratoire. Un tel outil numérique
aura pour but de quantifier la mobilité du mucus et sa capacité à expulser les pathogènes ou à délivrer un aérosol à
travers membrane. La diffusion a été identifiée comme étant le phénomène dominant, comme attendu à l’échelle du
micromètre, et son opérateur de diffusion associé a été observé comme étant extrêmement raide. D’autre part, il a
été montré que la vibration de l’épithélium est bien plus efficace que la circulation de l’air pour assurer le transport
du mucus.

1. CONTEXT

The present work aims at modeling and simulating motion of respiratory mucus film in lungs. Understanding mech-
anisms involved in mucus mobility is a key point for improving airway clearance, crucial for patients with respiratory
disease. Human respiratory ducts are coated by epithelial cells that yield a carpet of cilia vibrating in the airway surface
fluid to propulse the mucus stratum with entrapped particles outside the ventilatory system. Mucus is a visco-elastic fluid
secreted by the respiratory epithelium (see figure 1) that protects tracheo-bronchial tree mucosa from dehydration and
traps inhaled particles (allergens, carcinogens, dust, micro-organisms, and inflammatory debris) that come into contact
with it. Ciliary motions that are associated with mucus propulsion in the human respiratory tract cleans airways, as it
flows from either the tracheo-bronchial tree or upper airways toward the pharynx, where it is swallowed (or expectorated).
Strong mucus mobility is necessary to provide satisfying airway clearance and healthy behavior of respiratory system.
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FIGURE 1. Real lung geometry and membrane neighborhood with air/mucus/epithelium configuration.

Otherwise either proliferation of pathogen agents is observed in stagnant mucus, either lack of mucus film let pathogens
slip through pulmonary membrane. Long time targeted diseases are cystic fibrosis (or mucoviscidosis), cilio-toxic affec-
tions (chronic bronchitis, virus and/or infections), and aerosol-therapy (lung cancer). Such pathologies impact directly
fluid features, such as viscosity main modulus, as shown on figure 2.

Mucus delivery and motion are investigated in the framework of flow and transport in the respiratory tract that also
include gas transport under several alternative modes of ventilation, aerosol transport, and surfactant dynamics in the
terminal airways. Most - if not almost all - studies of transport in airways deal with gas convection in large respiratory
ducts and diffusion in bronchioles and alveoli [2, 21]. Experimental and numerical tests focused on unsteady 1D flow
in collapsible tracheas and bronchi during forced expiration, a usual manœuvre daily used in lung function testing [22,
24]. In parallel, some studies aimed at investigating tracheal deformation both experimentally [23] and numerically
[4]. Results obtained from measurements and simulations were validated by in vivo observations. 3D flows in simple
representative models of airways were afterward studied [7, 25]. Nowadays, numerical simulations are carried out in
fluid domains extracted from medical image processing [10] and compared to in vivo measurements [19]. However,
due to impaired mucus-associated respiratory pathologies as well as development of minimally invasive aerosol-based
therapeutic procedures, there is a need in knowledge and simulations of mucus delivery and motion in patient-specific
domains. Many attempts have been made to study separately epithelium, mucus features, and air flow in lungs, but
coupling of movements of these interacting compartments has never been investigated.
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FIGURE 2. Different lung mucus viscosity values, altered by different pathologies, and modifying air-
way clearance feature (data from [13]).

Several factors have been identified to determine efficiency of mucociliary clearance: Number of cilia that syn-
chronously beat; Cilium beating frequency; Thickness of mucus layer; Composition and rheology of mucus; Mucus
thickness; Mean air velocity in bronchiole; and Geometry and gravity.

The present manuscript aims at providing a two-dimensional preliminary study on numerical simulation dimension-
ing, scalability, and dominant effects. Such simulations are crucial in order to predict achievable size of future three-
dimensional simulations, and also to consider meaningful model for future work. Section 2 describes the fluid model, and
section 3 gives problem dimensioning and boundary conditions. Discretization and numerical algorithms are described in
section 4, and section 6 presents the results obtained, strategies and dominant effects.

2. MULTI-FLUID AND VORTICITY FORMULATION OF NAVIER-STOKES EQUATION

The methodology used in order to model incompressible multi-fluid, is to consider one fluid with variable viscosity
and density with possible jumps of these quantities. This is valid with both diffuse and sharp interfaces, and with possible
extension to miscible fluids. The Navier-Stokes equations in their velocity-vorticity formulation will be used. This allows
simplifying pressure from these equations and thus avoiding a special treatment for continuity of normal component of
stress tensor at interface. Furthermore, in a first approach, mucus is assumed to be a Newtonian fluid.

Lagrangian velocity-vorticity methods, in three-dimensional context, have been proved to be robust, efficient and
linearly scalable in complex geometry [15] under complex boundary conditions [16] with spatial [12] or temporal [12]
strong variations, and even in multi-scale context [14]. Consequently, these methods offer a good framework for future
work and have been chosen for the present study, in a simplified context. In order to do so, the method developed in [8]
for fluid solid interaction is extended in the present work to multi-fluid.

In the present work vorticity-velocity equations will be considered, but in their Eulerian formulation, in order to provide
pure grid-based schemes and thus help implementation. Moreover, one can expect that the present microfluidic context
makes the momentum diffusion stability condition much stronger than transport CFL condition, and consequently the use
of Lagrangian method for this kind of simulation would be questionable.
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One considers a two-dimensional domain of height L and width A, as displayed on figure 3. The Newton’s second law
of mechanics reads

∂ρu

∂t
+∇ · (ρu⊗ u) = ∇ · σ + f (1)

where u is the velocity field, ρ the volumic mass, σ = −pI + µ2D(u) + λ(∇ · u)I, µ the dynamic viscosity, p the
pressure and g the gravity, and D(u) = (∇u +∇uT )/2 is the strain-rate tensor. Moreover, the mass conservation reads
∂tρ+∇ · (ρu) = 0. Now, two formalisms relying on vorticity will be derived from this equation.

For an incompressible fluid of constant density and viscosity, one gets the usual Navier-Stokes equations :

∂u

∂t
+ u · ∇u− ν∆u = (f −∇p)/ρ (2)

where ν = µ/ρ. Introducing vorticity ω = ∇∧ u and taking the curl of equation (2) gives

∂ω

∂t
+ u · ∇ω − ω · ∇u− ν∆ω = 0 (3)

since ∇ ∧ ∇p ≡ 0, under the condition that f derives from a potential (such as gravity). The compatibility relations are
∇ · u = 0 (incompressibility),∇ · ω = 0 (by definition of vorticity).

Physical boundary conditions related to the Navier-Stokes equations are often no-slip boundary conditions u = 0.
When wall models are involved, non-homogeneous conditions can be considered and/or with first order conditions, such
as Navier conditions for solid wall or normal stress for fluid-solid interaction and deformable walls. Virtual boundary
conditions can also be periodic, no-slip-through or Neumann. In order to avoid boundary conditions on velocity while
the equation is on vorticity, tangential components of boundary conditions on velocity can be converted in Neumann or
Fourier-Robin conditions on vorticity [16].

Furthermore, for an incompressible fluid of variable density and viscosity, on which the external force is only gravity
f = ρg, equation (1) gives

∂u

∂t
+ u · ∇u− 1

ρ
∇ · (2µD(u)) = g −∇p/ρ (4)

one which continuity of normal stress σ · n at interface can be applied. Taking the curl of this last equation gives

∂ω

∂t
+ u · ∇ω − ω · ∇u−∇ ∧

(
1

ρ
∇ · (2µD(u))

)
=

1

ρ2
∇ρ ∧∇p (5)

since ∇∧∇p = 0 and ∇∧ g = 0. Since ∇p is defined through equation (4), equation (5) can be written

∂ω

∂t
+ u · ∇ω − ω · ∇u−∇ ∧

(
1

ρ
∇ · (2µD(u))

)
=

1

ρ
∇ρ ∧

(
g − ∂u

∂t
− u · ∇u +

1

ρ
∇ · (2µD(u))

)
(6)

In Boussinesq approximation, the right hand side of equation can be reduced to (∇ρ ∧ g)/ρ (see [8] for instance). This
equation is valid in 3D as well as in 2D. Moreover, in the present context of two-dimensional simulations, one has no
stretching, that is to say ω · ∇u ≡ 0. Equation (6) is then finally reduced to

∂ω

∂t
+ u · ∇ω −∇ ∧

(
1

ρ
∇ · (2µD(u))

)
=

1

ρ
∇ρ ∧ g (7)

The full governing equations, involving this last one, viscosity and density transport and boundary conditions are
displayed in equation (15) of section 4. Transport is kept in the model since it can be non neglectible under some
circumstances, such as strong velocities at boundaries or strong alteration of air/mucus interface topology [9].

Furthermore, in case of jumps of µ and ρ, calculus has to be performed carefully since multiplication of Dirac and
non-continuous functions may occur. Two arguments are required to have rigorous expression of diffusion terms. On the
one hand, density and viscosity can jump only together (at the fluid interface) and are both affine function of a level-set
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FIGURE 3. Setting of the model : Computational box and related boundary conditions (to the left), and
Poiseuille flow setup for reference velocity at the top of the box (to the right).

air mucus
ρ ( kg.m−3) 1.068 1000
µ ( Pa.s ) 19.04 · 10−6 1− 15

TABLE 1. Mucus and air rheology parameters (assumed to be Newtonian).

(characteristic of species, see equation (17) of section 4), so ρ−1∇µ has the same regularity as µ−1∇µ = ∇ lnµ which
are well defined as generalized function whatever the regularity of µ. On the other hand, the Boussinesq approximation
makes the µD(u) with the same regularity as the stress σ, that is to say continuous when no surface tension is involved
(the present work does not involve it in the governing equations). Consequently,∇ · µD is a smooth generalized function
(which may be singular, but without jump derivation), and ρ−1∇ · µD is well defined, even at interface.

Moreover, if future work requires on non-Boussinesq hypothesis (such as short wavelengths generated at interface),
equation (5), involving (u,ω, p) models in the spirit of [18], will has to be used instead of equation (7). If surface tension
is also involved, then stress is no longer continuous and more general vorticity formulations will be required in order to
satisfy mathematical definition of diffusion, such as ζ = ∇× (ρu).

3. DIMENSIONAL AND BOUNDARY CONDITIONS SETUP

We consider a small box of height L and width A, as displayed on figure 3. As the dimension of the box in negligible
compared to the size of the bronchiole (in the third generation L = 8µm has to be compared to the radius R = 3mm),
we can reasonably forget the curvature of the bronchiole in our model, and define differential operators in Cartesian
coordinates (and not in curvilinear). In the transverse direction, we suppose periodic boundary conditions, the domain
size for transverse motion being chosen as A = 2.5 10−5m = 25µm (a few epithelial cells).

Rheology is provided by the data on table 1. In the future, variable rheology of mucus will be considered in order
to take into account mucus hydration, mucin hydrophilic feature and exogen ratio. Currently, mucus rheology will be
considered as constant in space and time.

We set a boundary condition on the velocity Vref , on the top virtual boundary (see figure 3) . Moreover, for this
preliminary study, we did not consider the epithelium layer with the complex interaction between cilia, goblet cells,
mucin and mucus. We use a virtual boundary at the bottom in the spirit of [9] (cf. figure 3), and a boundary condition on
the velocity, ucell, that model the output of the epithelium box.
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FIGURE 4. Reference velocity Vref during the respiratory cycle.

3.1. Top reference velocity

Due to small size of bronchioles, air flow is supposed to be a Poiseuille flow in a cylindrical duct of radiusR, satisfying
full no-slip condition at r = R−H , H being the mucus height, with mucus assumed to have a velocity neglectful toward
air velocity. Indeed, this configuration leads to a small Womersley number Wo = R

√
2π/νT = 0.93, thus the frequency

of pulsations is sufficiently low, so that the flow will be very nearly in phase with the pressure gradient, and will be given
to a good approximation by Poiseuille’s law. We can notice that a large radius or a faster respiratory cycle would lead to
a state for which Poiseuille’s law would not be applicable.

Maximum velocity at the center of bronchiole, assumed to be known and denoted Vmax(t), leads to the velocity Vref
at the top of computational box, which is the velocity at location r = R−L (see figure 3). The reference velocity Vref at
the top of computational box is then obtained by means of Poiseuille formula :

Vref (t) = vmax(t)

(
1−

(
R− L
R

)2
)
≈ 2L

R
Vmax(t) ≈ 4L

πR3
Q(t) (8)

where Q(t) is the flow rate, or equivalently Vmax(t) is the maximum velocity at the duct center. In the present configu-
ration (typical size of third generation), Vref (t) (or Vmax(t) up to a constant) is the function displayed on figure 4. The
interpolation methodology used to obtain this function Vmax(t) is developed in the following section 3.2.

3.2. Maximum air velocity during respiratory cycle

In order to model the reference velocity at the top virtual boundary, we need to find a function f(t) that mimic the air
flow into the lung during the respiratory cycle. In fact, the air flow function is linked to the air velocity in the lumen and
if the air velocity profile is supposed to follow a Poiseuille profile, the maximum air velocity can be found throught the
following equation:

f(t) =

∫
S

v · ndx = 2πvmax(t)

∫ R−H

0

(
1−

( r
R

)2
)
rdr ≈ π

2
R2vmax(t) (9)

The respiratory cycle can be split in two phases: an inspiration one during Ti and an expiration one during Te. In the
following we suppose that our bronchal tree is perfect, that is to say the breathed volume V nI in the bronchial of the n-th
generation is linked to the breathed volume in the trachea VI :

V nI = 2−nVI
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We have searched the air flow function in the form

f(t) = Aθ′(t) sin(θ(t)) (10)

In order to fit the biologic phenomenon of breath, we impose the following constraints:
(1) At time t = 0, t = Ti and t = Te+Ti the air flow is zero. So, we want θ(0) = 0, θ(Ti) = π and θ(Ti+Te) = 2π.
(2) The breathed volume is given VI . That imposes the amplitude of the function: 2A = VI .
(3) We also want to control the derivatives at the begining εd and end εf of the respiratory cycle with εd and εf close

to each other.

θ′(0) =

√
εd
A

θ′(Ti + Te) =

√
εf
A

We interpolate the function θ by a polynomial function of degree 4:

θ(t) = αt4 + βt3 + γt2 + δt

The previous conditions lead to a simple linear system:


0 0 0 1
T 4
i T 3

i T 2
i Ti

T 4 T 3 T 2 T
4T 3 3T 2 2T 1




α
β
γ
δ

 =


√

2εd
VI

π
2π√

2εf
VI


The numerical input parameters are T = 4s, Te/Ti = 1.4 thus Ti = 1.667s and Te = 2.333s, VI = 500mL, which

leads to the function displayed on figure 4.

3.3. Wall condition and cilia model

A cilium has an planar asymmetrical motion:
• propulsion phase during a time Tprop.
• rest phase during a time Trest.
• recovery phase during a time Treturn: the cilium bends while its return.

During this time, the cilium has a mean velocity um. We assume that during the propulsion phase, the cilium has a
sinusoidal movement, and after the velocity is zero during Trest + Treturn.

ucell(t) =

{ Ttotπum

2Tprop
sin( πt

Tprop
) sur t ∈ [0, Tprop]

0 sur t ∈ [Tprop, Ttot]
(11)

This leads to the curve displayed on figure 5 for cilium velocity, using values displayed on table 2. In our simulation
we use a box of 10 cilia. A model for the motion of a set of cilia is required, and we have decided to take a traveling
wave of our cilium motion, so that this ”kind of hola” motion could be optimal for mucus transport. Future work will
require to investigate effect of cilia synchronization of mucus transport, and to build a more realistic model based on these
investigations. In practice, cilia have a periodic motion with a frequency that lies between 4 and 25 Hz; The value 20 Hz
has been selected for our simulations.

3.4. Non-dimensional system

In order to improve a priori conditioning of the discretization of problem (7), the unknowns and the parameters are
rescaled in the following way:

x =
x

x∗
u =

u

u∗
t =

t

t∗
=
tu∗

x∗
(12)
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FIGURE 5. Cilium velocity with respect to time (left picture) and naive model for velocity of 10 cilia
with respect to time and space (right picture).

Total time Ttot 50 · 10−3s
Propulsion time: Tprop 10 · 10−3s

Rest Time Trepos 13 · 10−3s
Return time Tretour 27 · 10−3s

cilium height 7 · 10−6m
cilium height in the mucus 1− 2 · 10−6m

cilium mean velocity 70− 80 · 10−6m.s−1

TABLE 2. Characteristic time, space and velocity values for epithelium cilia motion.

where x∗ and u∗ are the standard distance and velocity of the problem.

ρ =
ρ

ρ∗
µ =

µ

µ∗
(13)

The Froud number, the dynamical pressure and the Reynolds number are introduced:

Fr =
u∗√
gx∗

, p =
p

ρ∗u∗2
, Re =

ρ∗x∗u∗

µ∗

We get, as a rescaling of equation (4) :

∂tu+ u · ∇u = −1

ρ
∇p+

êg
Fr2

+
1

Reρ
∇ · (µ2D(u)) (14)

where êg is the unit vector of the gravitation. With these data, we found Re ≈ 4 · 10−6 and Fr2 ≈ 1, 27 · 10−2. It
seems, as expected in most of microfluidic configurations, that the diffusion term is the most important phenomenon in
the model.
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4. NUMERICAL ALGORITHM

One considers equation (7) with boundary conditions described in the last section :

∂ω

∂t
+ u · ∇ω −∇ ∧

(
ρ−1∇ · (2µD(u))

)
= ∇ ln ρ ∧ g in Ω×]0, T [

∇ · u = 0, ω = ∇∧ u in Ω×]0, T [
∂ρ

∂t
+ u · ∇ρ = 0 and

∂µ

∂t
+ u · ∇µ = 0 in Ω×]0, T [

u(x, 0) = u0(x) on Ω
ρ(x, 0) and µ(x, 0) constant by pieces with respect to values of table 1

u(x, t) = Vref (x, t) on top boundary
u(x, t) = ucell(x, t) on bottom boundary
u(x, t) is periodic on left and right boundaries

(15)

with aftermath non-dimensionalization. Initial mucus location is a film of height H = L/3 at the bottom of the computa-
tional box.

First, we introduce a vorticity-to-velocity operator in the spirit of [15] : on a domain Ω =]0, A[×]0, L[, one takes at
each time a vorticity field ω : Ω→ R and gets a velocity field u : Ω→ R2.

This linear application is denoted u = Aω, and it is defined by means of the two following embedded Poisson
equations : 

−∆Ψ = ∇∧ u = ω on ]0, A[×]0, L[

∆Φ = 0 on ]0, A[×]0, L[

Ψ(0, x2) = Ψ(A, x2) x2 ∈ [0, L]

Φ(0, x2) = Φ(A, x2) x2 ∈ [0, L]

∂x2Ψ + ∂x1Φ = u · τ = Vref on x2 = L

∂x2
Ψ + ∂x1

Φ = u · τ = ucell on x2 = 0

−∂x1
Ψ + ∂x2

Φ = u · n = 0 on x2 = 0

(16)

whose solutions satisfy Ψ,Φ : Ω → R, and the velocity is finally computed by u = ∇ ∧ Ψ +∇Φ. For the Laplacian as
well as for the derivations, centered second order finite difference schemes are used, except for fluxes at boundaries for
which second order one-sided schemes are used.

Using such a vorticity-to-velocity operation A, one can use time splitting algorithm in order to split transport, gravity
and momentum diffusion in equation (15). These three steps, for which initial condition is the final value of the step
performed before, are as follows :

(1) Convection – Let φ be a level-set function characteristic of mucus (that is to say of value 1 in mucus and 0
otherwise). The following transport equations are solved using centered second order finite differences in space
and second-order Runge-Kutta scheme in time :

∂ω

∂t
+Aω · ∇ω = 0

∂φ

∂t
+Aω · ∇φ = 0

(17)

both in Ω×]0, T [. CFL condition δt 6 δx
√

3/‖u‖∞ of this scheme is non restrictive compared to the one induced
by diffusion. Density ρ and dynamic viscosity µ are built afterward by ρ(x) = ρmucusφ(x) +ρair(1−φ(x)) and
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µ(x) = µmucusφ(x) + µair(1 − φ(x)). Input/output boundary conditions on φ and ω are periodic for left and
right domain boundary, and Dirichlet conditions and imposed at top and bottom boundaries.

(2) Gravity – The following dynamical system can be integrated analytically in time and be discretized by centered
second order finite difference scheme :

∂ω

∂t
= ∇ ln ρ ∧ g in Ω×]0, T [ (18)

whose source is localized at fluid interface.
(3) Momentum diffusion – Over a time step [tn, tn + δt], the following momentum diffusion equation has to be

solved :
∂ω

∂t
−∇ ∧

(
ρ−1∇ · (2µD(u))

)
= 0 in Ω×]tn, tn + δt[ (19)

with initial condition ω(·, tn) given as the final value of gravity step. In order to avoid three successive numerical
differentiations, one prefers to introduce a Stokes equation whose initial condition is u(·, tn) = Aω(·, tn) :

∂u

∂t
− 1

ρ
∇ · (2µD(u)) +∇γ = 0 in Ω×]tn, tn + δt[ (20)

since ρ is stationary over this sub-step (thus ∂ρ/∂t ≡ 0), with u = Vref , ucell or periodic boundary conditions.
Relation ω(·, tn + δt) = ∇∧ u(·, tn + δt) gives the final vorticity.

In the momentum diffusion step, γ is not the pressure, and it is not used to ensure boundary conditions on u, since
most of them are already satisfied by definition of A : This is only as a projector on divergence free fields, and periodic
and homogeneous Neumann boundary conditions are set at boundaries.

Moreover, stability condition of the momentum diffusion equation reads

Max

(
µmucus
ρmucus

,
µair
ρair

)
δt

δx2
6

1

2
(21)

With the rheological data considered herein (see table 1), one gets (as expected) a tiny time step δt of around 10−10

when Euler or RK2 time integrators are used (Explicit Euler scheme gives a CFL at δt 6 5 10−10). An implicit scheme
is then required. In order to solve the implicit momentum diffusion step, the GMRES method is used to solve the
resultant linear system (and not a fast solver for standard Poisson equation since diffusion coefficients are not constant).
Simulations have shown that the time of convergence of the GMRES algorithm is non linear with respect to the time step.
In our configurations, it seems optimal to take the time step δt around 10−4.

Furthermore, in order to check consistency and convergence, the cilium velocity is chosen independent of x. As the
initial condition is also independent of x, a first assumption is to suppose that all the functions are independent of x. One
gets then ∂x2

(µ∂x2
ux1

) = 0 and this equation can be easily solved analytically:{
ux(y) = ucell + C

µmucus
y pour y ∈ [0, H]

ux(y) = vref + C
µair

(y − L) pour y ∈ [H,L]
(22)

with

C = (vref − ucell)
(

H

µmucus
+
L−H
µair

)−1

5. VALIDATION

5.1. Non uniform decelerating Couette flow

In this section a test case is set up in order to validate the scheme presented above. In particular the dynamics of a
plane shear flow is taken into account. The domain is [0, 4] × [0, 1] ⊂ R2, and the time is t ∈ [0, 1]. The fluid is not at
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constant density, instead, the latter is supposed to be a function of the space coordinate. The flow being incompressible,
the density is purely advected so that the mass conservation reduces to:

∂tρ+ v · ∇ρ = 0 =⇒ ∇ · v = 0, (23)

where v = (u, v) is the velocity field.
Several hypothesis will be assumed in the following:

(1) the flow is invariant in x direction, i.e. ∂x◦ = 0;
(2) u(x, 0, t) = 0; u(x, 1, t) = f(t); ∀x
(3) v(x, 0, t) = 0; v(x, 1, t) = 0.

The above assumptions holding, let ρ = ρ(y, t) be the density distribution, the conservation of momentum can be
simplified and a simple diffusion problem is found:

∂tu =
µ

ρ
∆u. (24)

Let us observe that, since the equation for the divergence is implicitly satisfied (v = 0 and u = u(y, t)) and the boundary
conditions are sufficient to provide the motion, no pressure gradient is needed and, as consequence, the pressure can be
set to p = 0 (or whatever constant value). Moreover, since the motion is purely parallel to the x direction, applying the
conservation equation lead to:

∂tρ = 0 =⇒ ρ = ρ(y). (25)
We look for a separate solution so that:

u = Θ(t)U(y) =⇒ Θ̇

Θ
=

µ

ρ(y)

U ′′

U
, (26)

where the partial derivative with respect to time is denoted with a dot while the partial derivative with respect to the space
direction is denoted with a prime.

Let us introduce the separation constant λ. The problem can be splitted into two sub-problems:

Θ̇ = λΘ; U ′′ =
λ

µ
ρ(y)U. (27)

The first problem is a classical initial value problem and its solution is the exponential, λ being the inverse of a charateristic
time scale. The second problem is a second order Sturm-Liouville boundary value problem. Several analytical solutions
can be found for different expressions of ρ(y). Let us recall a classical result of mathematical physics:

φn = e−x
2/2Hn(y) ⇐⇒ φ′′n + (2n+ 1− y2)φn = 0, (28)

where Hn represents the n-th Hermite polynomial. Choosing µ = 1, λ = −1, ρ = (3 − y2), f(t) = e−t, the following
solution is obtained:

u(y, 0) = y exp(1/2− t− y2/2). (29)
If the initial condition for the problem is u(y, 0) = y exp(1/2(1 − y2)) the solution written above is the unique solution
for the problem.

Several numerical experiments were done varying both the space and the time resolution. A krilov subspace solver
(GMRES) and a biconjugate gradient stabilized solver were tried for the solution of the diffusion substep, with analogous
results. In Fig.6.a) a longitudinal section (x = 0.5) of the exact solution is shown at different times. Let us note that the
stationary solution for a variable density Couette flow is a linear profile, as in the constant density case: the non-stationary
boundary conditions induce a space variation in the inertia term, making the profile curve. In Fig.6.b) a zoom of the
solution at time T=0.3 is shown, when the space resolution is Nx = 200, Ny = 200. The agreement between the solution
is good, no relevant error appeared in the numerical tests.
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(a) (b)

FIGURE 6. a) Exact solution at different times, b) Exact and numerical solution at T=0.3, zoom.

(a) (b)

FIGURE 7. a) Plot of e(t), where R stands for the resolution; b) Logarithmic plot of E as function of
the space resolution.

The convergence properties of the algorithm were analyzed. In particular the L2 norm of the error is investigated as
the space resolution is varied. The error is defined as follows:

E =

∫ 1

0

e(t) dt =

∫ 1

0

(∫
Ω

(Ux − U (e))2 dΩ

)1/2

dt, (30)

where Ux is the numerical solution for the x component of the velocity field, U (e) is the exact solution.
In Fig.7.a the time evolution of the L2 space error is plotted as function of time for different resolutions. It has a

maximum at approximately one fith of the simulated evolution, and it is quite small in norm. In Fig.7.b the logarithmic
plot of the errorE is plotted as function of the space resolution. The scheme is convergent and the convergence rate shown
by the experiments results a bit faster than the first order one.
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5.2. Space varying viscosity decelerating Couette flow

In this section a test case is set up in order to validate the scheme presented above. In particular the dynamics of a space
varying viscosity Couette flow is taken into account. This flow allows us to validate the non-linear diffusion operator.

The domain is [0, R] × [0, 1] ⊂ R2, and the time is t ∈ [0, 1]. The fluid is now considered of constant density,
but the dynamic viscosity is supposed to be a function of the space coordinate. The mass conservation reduces to the
incompressibility of the fluid:

∂tρ+∇ · (vρ) = 0 =⇒ ∇ · v = 0, (31)
where v = (ux, uy) is the velocity field.

Several hypothesis will be assumed in the following:
(1) the flow is invariant in x direction, i.e. ∂x◦ = 0;
(2) ux(x, 0, t) = 0; ux(x, 1, t) = f(t); ∀x
(3) uy(x, 0, t) = 0; uy(x, 1, t) = 0.

The equation for the divergence leads to ∂yuy = 0, and with the boundary conditions, we obtain uy(y) = 0.
The above assumptions holding, let ν = ν(y) be the density distribution, the conservation of momentum can be

simplified and a simple diffusion problem is found:

∂tux − ∂y (ν∂yux) = 0 (32)

Let us observe that the equation for y gives
ρg = ∂yp (33)

thus p = ρgy + cste. We search solution ux as a function of separate variables:

ux(y, t) = θ(t)U(y) (34)

and then we obtain:
θ̇(t)

θ(t)
=

(νU ′)
′

U
= λ (35)

that is to say
θ(t) = θ0 exp(λt) ∝ f(t)

(νU ′)
′ − λU = 0

(36)

Now, we notice that the n-th Legendre polynomial Ln is solution of :{ (
(1− y2)u′

)′
+ n(n+ 1)u = 0

u(1) = 1
(37)

When n is odd, Ln is null at the origin. We can take ν(y) = 1− y2, λn = −(2n+ 1)(2n+ 2) < 0 and{
θ(t) = f(t) = exp(λnt)
U(y) = L2n+1(y)

(38)

We recall some Legendre polynomials of odd order:
• P1(x) = x,

• P3(x) =
1

2
(5x3 − 3x),

• P5(x) =
1

8
(63x5 − 70x3 + 15x),

• P7(x) =
1

16
(429x7 − 693x5 + 315x3 − 35x),

• P9(x) =
1

128
(12155x9 − 25740x7 + 18018x5 − 4620x3 + 315x).
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(a) (b)

FIGURE 8. a) Exact solution at different times, b) Exact and numerical solution at T=0.2, zoom.

(a) (b)

FIGURE 9. a) Plot of e(t), where R stands for the resolution; b) Logarithmic plot of E as function of
the space resolution.

Several numerical experiments were done varying both the space and the time resolution, using the same linear algebra
as in last section. In Fig.8.a a longitudinal section (x = 0.5) of the exact solution is shown at different times. Let us
note that whether a proper exponent is chosen for the upper bound velocity deceleration, the solution is the first Legendre
polynomial, scaled, i.e. it coincides with the profile of the stationary Couette flow. This is due to the fact that the
momentum change induced by the deceleration is compensated by the effect of the varying viscosity.

In Fig.8.b a zoom of the solution at time T=0.3 is shown, when the space resolution is Nx = 200, Ny = 200. The
agreement between the solution is good, no relevant error appeared in the numerical tests. We analyzed the convergence
properties, as in the previous test case. In particular the L2 norm of the error is investigated as the space resolution is
varied. In Fig.9.a, the time evolution of the L2 space error is plotted as function of time for different resolutions. As in the
previous case it shows a maximum at one fith of the time history. In Fig.9.b, the logarithmic plot of the error E is shown.
In the case of non-uniform diffusion the convergence rate is not exactly of the first order.
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FIGURE 10. Shape of velocity with ucell(x) as bottom boundary condition (left picture), and resulting
vorticity (right picture). Dashed line is the interface air/mucus.

6. RESULTS

With the algorithm described in the previous section, the parameters and boundary conditions given in section 3, one
gets that gravity and convection contribution are less than 1% : the dominant term and effect is the momentum diffusion.

The figure 10 is a result obtain with the first scheme. In the upper part, the velocity has a Poiseuille profile as expected.
In the lower part (under the red dashed line), the shape of the velocity field is more complex: the cilium velocity field
produces a vortex. The figure 10 also shows the shape of the vorticity in our numerical box : vorticity produced by the
variation of cilium velocity ucell(x), is diffused in the mucus almost instantly, while it propagates through the interface
to the air.

At the chosen time step δt = 10−4, 500 time steps are required for a 20Hz cilia cycle, and 4 104 time steps are required
for a full 4s respiratory cycle. The typical spatial resolution is δx1 = 1.25µm, and δx2 = 100nm. These setting looks
like the minimum requirements for having stable and physical solutions. This will be essential for dimensioning future
three-dimensional simulations.

Furthermore, a crucial point for future work is to identify the stiffness of the problem, in order to apply adequate
numerical algorithms. Since it has been shown above that momentum diffusion is the dominant effect, focus is given on
the stiffness of operator :

Hρ,µ(u) = −1

ρ
∇ ·
(

2µ
∇u +∇uT

2

)
(39)

whose spectrum is displayed on figure 11 with several zoom levels. It depends on functions ρ and µ, and thus depends on
air/mucus interface topology. The ratio between the largest and smallest eigenvalue modules is 5 109, which means that
Hρ,µ is an extremely stiff momentum diffusion operator. In future, state-of-the-art ”stiff” integrators will be used, such as
exponential integrators and/or Krylov-based time integrators [26, 27].

Another noticeable point is that air/mucus interface remains visibly flat (deviation amplitude can be neglected toward
the film height), despite the strong vorticity generation. This phenomenon would be even stronger if surface tension
was involved in the model. In the present study, standard (but stable) Eulerian schemes have been chosen for solving
convection and air/mucus interface transport. Such schemes have been chosen more for convenience than for their ability
to track these quantities accurately. Nevertheless, the use of Lagrangian methods would help to track more accurately
fluid interface and would improve accuracy of transport terms (for both vorticity and level-set defining species). On this
kind of problems, motivation for Lagrangian methods is not due to stability improvement such as in aerodynamic flow
simulation at higher Reynolds numbers [17].
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(a) (b) (c)

(d) (e)

FIGURE 11. Spectrum of momentum diffusion operator, quantifying stiffness induced by momentum
diffusion, with successive zoom level from top left picture (a) displaying whole spectrum, to (d) dis-
playing zero neighborhood. Picture (e) shows eigenvalue modules.

Moreover, mucus motion follows the velocity induced by epithelium, and it is not significantly affected by air velocity
(the ratio between their Reynolds numbers is 50, see table 1 for instance).

7. CONCLUSION AND PERSPECTIVES

The present study has brought precious preliminary results on dimensioning and strategies for future three-dimensional
computation of mucus motion in tracheo-bonchial tree. Essential rheological parameters and characteristic lengths have
been used in order to carry out minimum requirements on simulation size.

As expected, like in most microfluidic simulations, momentum diffusion is the dominant effect. The momentum
diffusion operator as been shown to be extremely stiff. Adequate time integrators, such as exponential integrators, will be
used in the future in order to minimize computational time of momentum diffusion.

Vorticity formulation allows to avoid management of continuity of normal stress at interface (which has to be satisfied
if pressure is computed) and to consider the mucus, the pericelial mucus and the air as one fluid of sharply variable
rheology. Computing accurately transport of species is then crucial in order to localize correctly mucus. In the future,
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more elaborate Lagrangian methods will be used for transport computing, despite the convection is not the dominant effect
in global mucus motion.

The dominant input parameter has been shown to be the epithelium cilia displacement. Accurate computation of
epithelium dynamics will be required in order to get correct bottom boundary conditions for mucus. Mechanical properties
of cilia will also be investigated.

Moreover, the rheological model of mucus, considered as Newtonian in the present study for convenience, has to be
improved in order to take into account visco-elasticity and hydration level. Visco-plasticity feature of mucus is also an
open question that will also deserve attention in further works.
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