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Abstract: The static dependency pair method is a
method for proving the termination of higher-order
rewrite systems à la Nipkow. It combines the depen-
dency pair method introduced for first-order rewrite
systems with the notion of strong computability in-
troduced for typed λ-calculi. Argument filterings and
usable rules are two important methods of the depen-
dency pair framework used by current state-of-the-art
first-order automated termination provers. In this
paper, we extend the class of higher-order systems
on which the static dependency pair method can be
applied. Then, we extend argument filterings and
usable rules to higher-order rewriting, hence provid-
ing the basis for a powerful automated termination
prover for higher-order rewrite systems.

1 Introduction

Various extensions of term rewriting systems (TRSs)
[22] for handling functional variables and abstractions
have been proposed [11, 19, 9, 20, 12]. In this paper,
we consider higher-order rewrite systems (HRSs) [19],
that is, rewriting on β-normal η-long simply-typed λ-
terms using higher-order matching. For example, the
typical higher-order function foldl can be defined by
the following HRS Rfoldl:







foldl(λxy.F (x, y), X, nil) → X
foldl(λxy.F (x, y), X, cons(Y, L))

→ foldl(λxy.F (x, y), F (X,Y ), L)

Then the function sum computing the sum of the
elements can be defined by the HRS Rsum, which is
the union of Rfoldl and the following rules:

{

add(0, Y ) → Y, add(s(X), Y ) → s(add(X,Y ))
sum(L) → foldl(λxy.add(x, y), 0, L)

Also, the function len can be defined by the HRS
Rlen, which is the union of Rfoldl and the following
rule:

len(L) → foldl(λxy.s(x), 0, L)

The static dependency pair method is a method for
proving the termination of higher-order rewrite sys-
tems. It combines the dependency pair method in-
troduced for first-order rewrite systems [1] with Tait
and Girard’s notion of strong computability intro-
duced for typed λ-calculi [7]. It was first introduced
for simply-typed term rewriting systems (STRSs) [14]
and then extended to HRSs [16]. The static de-
pendency pair method consists in showing the non-
loopingness of each static recursion component in-
dependently, the set of static recursion components
being computed through some static analysis of the
possible sequences of function calls.
This method applies only to plain function-passing

(PFP) systems. In this paper, we provide a new def-
inition of PFP that significantly enlarges the class of
systems on which the method can be applied. It is
based on the notion of accessibility introduced in [3]
and extended to HRSs in [2].
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For the HRS Rsum ∪ Rlen, the static dependency
pair method returns the following two components:
{

foldl♯(λxy.F (x, y), X, cons(Y, L))

→ foldl♯(λxy.F (x, y), F (X,Y ), L)

}

{

add♯(s(X), Y ) → add♯(X,Y )
}

The static dependency pair method proves the termi-
nation of the HRS Rsum ∪ Rlen by showing the non-
loopingness of each component.
In order to show the non-loopingness of a com-

ponent, the notion of reduction pair is often used.
Roughly speaking, it consists in finding a well-
founded quasi-ordering in which the component rules
are strictly decreasing and all the original rules are
non-increasing.
Argument filterings, which consist in removing

some arguments of some functions, provide a way to
generate reduction pairs. First introduced for TRSs
[1], it has been extended to STRSs [12, 15]. In this
paper, we extend it to HRSs.
In order to reduce the number of constraints re-

quired for showing the non-loopingness of a compo-
nent, the notion of usable rules is also very impor-
tant. Indeed, a finer analysis of sequences of function
calls show that not all original rules need to be taken
into account when trying to prove the termination of
a component. This analysis was first conducted for
TRSs [5, 8] and has been extended to STRSs [21, 15].
In this paper, we extend it to HRSs.
All together, this paper provides a strong theoreti-

cal basis for the development of an automated termi-
nation prover for HRSs, by extending to HRSs some
successful techniques used by modern state-of-the-art
first-order termination provers like for instance [6, 8].

2 Preliminaries

We assume that the reader is familiar with notions
for HRSs [18], and notions related with static depen-
dency pair methods [16].
A preterm is generated from an infinite set of typed

variables V and a set of typed function symbols Σ
by λ-abstraction and λ-application. We denote by
T the set of (simply-typed) terms, which is an η-
long β-normal form. We denote by t↓ the η-long β-

normal form of t. In general, a term t is of the form
λx1 . . . xm.at1 . . . tn where a ∈ Σ ∪ V . We abbrevi-
ate this by λxm.a(tn). For a term t ≡ λxm.a(tn),
we define top(t) = a and args(t) = {tn}. A higher-
order rewrite rule is a pair (l, r) of terms, denoted by
l → r, such that top(l) ∈ Σ, type(l) = type(r) ∈ B
and FV (l) ⊇ FV (r). An HRS is a set of higher-order
rewrite rules. The reduction relation −→

R
of an HRS R

is defined by s −→
R

t iff s ≡ C[lθ↓] and t ≡ C[rθ↓] for
some rewrite rule l → r ∈ R, context C[ ] and substi-
tution θ. An HRS R is said to be finitely branching
if {t′ | t −→

R
t′} is a finite set for any term t.

A term t is said to be terminating or strongly nor-
malizing for an HRS R, denoted by SN(R, t), if there
is no infinite rewrite sequence of R starting from t.
We write SN(R) if ∀t.SN(R, t). A well-founded re-
lation > on terms is a reduction order if > is closed
under substitution and context. An HRS R is termi-
nating iff R ⊆ > for some reduction order >.
A term t is said to be strongly computable in an

HRS R if SC(R, t) holds, which is inductively defined
on simple types as follows: SN(R, t) if type(t) ∈ B,
and ∀u ∈ Tα.(SC(R, u) ⇒ SC(R, (tu)↓)) if type(t) =
α → β. We also define the set T args

SC (R) = {t | ∀u ∈
args(t).SC(R, u)}.

3 Improved Static Dependency

Pair Method

In this section, we introduce the static dependency
pair method for plain function-passing (PFP) HRSs
[16] but extend the class of PFP systems by redefining
the notion of safe subterms by using the notion of
accessibility [2].

Definition 3.1 The stable subterms of t are
SSub(t) = SSubFV (t)(t) where SSubX(t) =
{t} ∪ SSub′X(t), SSub′X(λx.s) = SSubX(s),
SSub′X(a(tn)) =

⋃n
i=1 SSubX(ti) if a /∈ X , and

SSub′X(t) = ∅ otherwise.

Definition 3.2 (Safe subterms - New definition)
The set of safe subterms of a term l is safe(l) =
⋃

l′∈args(l){t↓ | t ∈ Acc(l′), FV (t) ⊆ FV (l′)} where

t ∈ Acc(l′) (t is accessible in l′) if either:
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1. t = l′ or t ∈ SSub(l′), type(t) ∈ B and FV (t) ⊆
FV (l′),

2. λx.t ∈ Acc(l′) and x /∈ FV (l′),

3. t(x↓) ∈ Acc(l′) and x /∈ FV (t) ∪ FV (l′),

4. f(tn) ∈ Acc(l′), ti = λxk.t, type(t) ∈ B and
{xk} ∩ FV (t) = ∅,

5. x(tn) ∈ Acc(l′), ti = t and x /∈ FV (tn)∪FV (l′).

Strictly speaking, safe(l) may not be included in
Sub(l) and, because of (3), accessible terms are β-
normal preterms not necessarily in η-long form.

Definition 3.3 (Plain Function-Passing [16])
An HRS R is plain function-passing (PFP) if for any
l → r ∈ R and Z(rn) ∈ Sub(r) such that Z ∈ FV (r),
there exists k ≤ n such that Z(rk)↓ ∈ safe(l).

For example, the HRS Rfoldl dis-
played in the introduction is PFP, be-
cause safe(foldl(λxy.F (x, y), X, cons(Y, L))) =
{λxy.F (x, y), X, cons(Y, L), Y, L}
and F↓ ≡ λxy.F (x, y) ∈
safe(foldl(λxy.F (x, y), X, cons(Y, L))).

The definition of safeness given in [16] corresponds
to case (1). This new definition therefore includes
much more terms, mainly higher-order patterns [17].
This greatly increases the class of rules that can be
handled and the applicability of the method since it
reduces the number of dependency pairs.

For instance, the new definition allows us to handle
the following rule:

D(λx.sin(Fx))y → D(λx.Fx)y × cos(Fy)

Indeed, l′ = λx.sin(Fx) ∈ Acc(l′) by (1), sin(Fx) ∈
Acc(l′) by (2), Fx ∈ Acc(l′) by (2) and F ∈ Acc(l′)
by (3). Therefore, safe(l) = {l′, λx.Fx, y}. With the
previous definition, we had safe(l) = {l′, y} only.

Lemma 3.4 Let R be an HRS, l → r ∈ R, θ
be a substitution. Then lθ↓ ∈ T args

SC (R) implies
SC(R, sθ↓) for any s ∈ safe(l).

Proof. Refer to Lemma 4.3 in [16] and Lemma 10 in
[2]. �

This definition of safeness can be further improved
(in case 4) by using more complex interpretations for
base types than just the set of strongly normalizing
terms, but this requires to check more properties. We
leave this for future work.

We now recall the definitions of static dependency
pair, static recursion component and reduction pair,
and the basic theorems concerning these notions, in-
cluding the subterm criterion [16].

Definition 3.5 (Static dependency pair [16])
Let R be an HRS. All top symbols of the left-hand
sides of rewrite rules, denoted by DR, are called
defined symbols, whereas all other function symbols,
denoted by CR, are constructors.

We define the marked term t♯ by f ♯(tn) if t has the
form f(tn) with f ∈ DR; otherwise t♯ ≡ t. Then, let

D♯
R = {f ♯ | f ∈ DR}.

We also define the set of candidate subterms
as follows: Cand(λxm.a(tn)) = {λxm.a(tn)} ∪
⋃n

i=1 Cand(λxm.ti).

Now, a pair 〈 l♯, a♯(rn) 〉, denoted by l♯ → a♯(rn), is
said to be a static dependency pair in R if there exists
l → r ∈ R such that λxm.a(rn) ∈ Cand(r), a ∈ DR,
and a(rk)↓ /∈ safe(l) for all k ≤ n. We denote by
SDP (R) the set of static dependency pairs in R.

Example 3.6 Let PFP-HRS Rave be the union of
Rsum, Rlen and the following rules:























sub(X, 0) → X, sub(0, Y ) → 0
sub(s(X), s(Y )) → sub(X,Y )
div(0, s(Y )) → 0
div(s(X), s(Y )) → s(div(sub(X,Y ), s(Y )))
ave(L) → div(sum(L), len(L))

Then, the set SDP (Rave) consists of the following 11
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pairs:










































































foldl♯(λxy.F (x, y), X, cons(Y, L))

→ foldl♯(λxy.F (x, y), F (X,Y ), L)

add♯(s(X), Y ) → add♯(X,Y )

sum♯(L) → foldl♯(λxy.add(x, y), 0, L)

sum♯(L) → add♯(x, y)

sub♯(s(X), s(Y )) → sub♯(X,Y )

div♯(s(X), s(Y )) → div♯(sub(X,Y ), s(Y ))

div♯(s(X), s(Y )) → sub♯(X,Y )

len♯(L) → foldl♯(λxy.s(x), 0, L)

ave♯(L) → div♯(sum(L), len(L))

ave♯(L) → sum♯(L), ave♯(L) → len♯(L)

Definition 3.7 (Static dependency chain [16])

Let R be an HRS. A sequence u♯
0 → v♯0, u

♯
1 → v♯1, . . .

of static dependency pairs is a static dependency
chain in R if there exist θ0, θ1, . . . such that
v♯iθi↓

∗−→
R

u♯
i+1θi+1↓ and uiθi↓, viθi↓ ∈ T args

SC (R) for
all i.

Note that, for all i, u♯
iθi and v♯iθi are terminating,

since strong computability implies termination.

Proposition 3.8 [16] Let R be a PFP-HRS. If there
exists no infinite static dependency chain then R is
terminating.

Definition 3.9 (Static recursion component [16])
Let R be an HRS. The static dependency graph of
R is the directed graph in which nodes are SDP (R)
and there exists an arc from u♯ → v♯ to u′♯ → v′♯

if the sequence u♯ → v♯, u′♯ → v′♯ is a static
dependency chain.
A static recursion component is a set of nodes in a

strongly connected subgraph of the static dependency
graph of R. We denote by SRC(R) the set of static
recursion components of R.
A static recursion component C is non-looping if

there exists no infinite static dependency chain in
which only pairs in C occur and every u♯ → v♯ ∈ C
occurs infinitely many times.

Proposition 3.10 [16] Let R be a PFP-HRS such
that there exists no infinite path in the static depen-
dency graph. If all static recursion components are
non-looping, then R is terminating.

Example 3.11 For the PFP-HRS Rave in Example
3.6, the set SRC(Rave) consists of the following four
static recursion components:

{

foldl♯(λxy.F (x, y), X, cons(Y, L))

→ foldl♯(λxy.F (x, y), F (X,Y ), L)

}

{

add♯(s(X), Y ) → add♯(X,Y )
}

{

sub♯(s(X), s(Y )) → sub♯(X,Y )
}

{

div♯(s(X), s(Y )) → div♯(sub(X,Y ), s(Y ))
}

To prove the non-loopingness of components, the
notions of subterm criterion and reduction pair have
been proposed. The subterm criterion was intro-
duced on TRSs [8], and then extended to STRSs [14]
and HRSs [16]. Reduction pairs [13] are an abstrac-
tion of the notion of weak-reduction order [1].

Definition 3.12 (Subterm criterion [16]) Let R
be an HRS and C ∈ SRC(R). We say that C satisfies
the subterm criterion if there exists a function π from
D♯

R to non-empty sequences of positive integers such
that:

• u|π(top(u♯))⊲subv|π(top(v♯)) for some u♯ → v♯ ∈ C,

• and the following conditions hold for any u♯ →
v♯ ∈ C:

– u|π(top(u♯)) Dsub v|π(top(v♯)),

– ∀p ≺ π(top(u♯)).top(u|p) /∈ FV (u),

– and ∀q ≺ π(top(v♯)).q = ε ∨ top(v|q) /∈
FV (v) ∪ DR.

Definition 3.13 (Reduction pair [1, 13]) A pair
(&, >) of relations is a reduction pair if & and >
satisfy the following properties:

• > is well-founded and closed under substitutions,

• & is closed under contexts and substitutions,

• and & · > ⊆ > or > · & ⊆ >.

In particular, & is a weak reduction order if (&,& \ .
) is a reduction pair.
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Proposition 3.14 [16] Let R be a PFP-HRS such
that there exists no infinite path in the static depen-
dency graph. Then, C ∈ SRC(R) is non-looping if
C satisfies one of the following properties:

• C satisfies the subterm criterion.

• There is a reduction pair (&, >) such that R ⊆
&, C ⊆ & ∪> and C ∩> 6= ∅.

Example 3.15 Let π(foldl♯) = 3 and π(add♯) =
π(sub♯) = 1. Then, every static recursion component
C except the one for div (cf. Example 3.11) satisfies
the subterm criterion. Hence, these static recursion
components are non-looping.

4 Argument Filterings

An argument filtering generates a weak reduction or-
der from an arbitrary reduction order. The method
was first proposed on TRSs [1], and then extended
to STRSs [12, 15]. In this section, we expand this
technique to HRSs.

Definition 4.1 An argument filtering function is a
function π such that, for every f ∈ Σ of type α1 →
· · · → αn → β with β ∈ B, π(f) is either a positive
integer i ≤ n if αi = β, or a list of positive integers
[i1, . . . , ik] with i1, . . . , ik ≤ n. Then we also define
π(λxm.a(tn)) as follows:







λxm.π(ti) if a ∈ Σ and π(a) = i
λxm.a(π(ti1 ), . . . , π(tik)) if a ∈ Σ and π(a) = [ik]
λxm.a(π(t1), . . . , π(tn)) if a ∈ V

Given an argument filtering π and a binary relation
>, we define s &π t by π(s) > π(t) or π(s) ≡ π(t),
and s >π t by π(s) > π(t). We also define the
substitution θπ by θπ(x) ≡ π(θ(x)). Finally, we de-
fine the typing function typeπ after argument filter-
ing as typeπ(a) = αi1 → · · · → αik → β if a ∈ Σ,
π(a) = [i1, . . . , ik], type(a) = α1 → · · ·αn → β and
β ∈ B; otherwise typeπ(a) = type(a).

In the examples, except stated otherwise, π(f) =
[1, . . . , n] if type(f) = α1 → · · · → αn → β

and β ∈ B. For instance, if π(sub) = [1] then
π(div♯(sub(X,Y ), s(Y ))) ≡ div♯(sub(X), s(Y )).
Note that our argument filtering method never de-

stroys the well-typedness, which is easily proved by
induction on terms.

Theorem 4.2 For any argument filtering π and
term t ∈ T , π(t) is well-typed under the typing func-
tion typeπ and typeπ(π(t)) = type(t).

In the following, we prove the soundness of the
argument filtering method as a generating method of
weak reduction orders. To this end, we first prove
a lemma required for showing that >π and &π are
closed under substitution.

Lemma 4.3 π(tθ↓) ≡ π(t)θπ↓.

Proof. By induction on preterm tθ ordered with −→
β
∪

⊲sub . �

Theorem 4.4 For any reduction order > and argu-
ment filtering function π, &π is a weak reduction or-
der.

Proof. It is easily shown that s &π t ⇒ C[s] &π

C[t] by induction on C[ ]. From Lemma 4.3, we have
s &π t ⇒ sθ↓ &π tθ↓, and s >π t ⇒ sθ↓ >π tθ↓.
Remaining properties are routine. �

Example 4.5 Consider the PFP-HRS Rave in Ex-
ample 3.6. Every static recursion component ex-
cept {div♯(s(X), s(Y )) → div♯(sub(X,Y ), s(Y ))} is
non-looping (cf. Example 3.15). We can prove its
non-loopingness with the argument filtering method,
by taking π(sub) = π(div♯) = [1], and the nor-
mal higher-order reduction ordering >n

rhorpo, written
(>rhorpo)n in [10]. From Proposition 3.14, the static
recursion component for div is non-looping, and Rdiv

is terminating.

5 Usable Rules

In order to reduce the number of constraints required
for showing the non-loopingness of a component, the
notion of usable rules is widely used. This notion
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was introduced on TRSs [5, 8] and then extended to
STRSs [21, 15]. In this section, we extend it to HRSs.
To illustrate the interest of this notion, we start

with some example.

Example 5.1 We consider the data type heap ::=
lf | nd(nat, heap, heap) and the PFP-HRS Rheap de-
fined by the following rules:































































































































add(0, Y ) → Y, add(s(X), Y ) → s(add(X,Y ))
map(λx.F (x), nil) → nil
map(λx.F (x), cons(X,L))

→ cons(F (X),map(λx.F (x).L))
merge(H, lf) → H, merge(lf, H) → H
merge(nd(X1, H11, H12), nd(X2, H21, H22))

→ nd(X1, H11,merge(H12, nd(X2, H21, H22))
merge(nd(X1, H11, H12), nd(X2, H21, H22))

→ nd(X2,merge(nd(X1, H11, H12), H21), H22)
fl(λxyz.F (x, y, z), X, lf) → X
fl(λxyz.F (x, y, z), X, nd(Y,H1, H2))

→ F (X, fl(F↓, X,H1), fl(F↓, X,H2))
sumT(H) → fl(λxyz.add(x, add(y, z)), 0, H)
hd(nil) → lf, hd(cons(X,L)) → X
l2t(nil) → nil, l2t(cons(H, nil)) → cons(H, nil)
l2t(cons(H1, cons(H2, L)))

→ l2t(cons(merge(H1, H2), l2t(L)))
list2heap(L) → hd(l2t(map(λx.nd(x, lf, lf), L)))

The static recursion components for fl consists of

{

fl♯(λxyz.F (x, y, z), X, nd(Y,H1, H2))
→ fl(λxyz.F (x, y, z), X,Hi)

}

for i = 1, 2, and their union. By taking π(fl) = 3,
these components satisfy the subterm criterion. The
static recursion components for add, map and merge
also satisfy the subterm criterion. Hence it suffices to
show that the following three static recursion compo-
nents for l2t are non-looping:

{

l2t♯(cons(H1, cons(H2, L)))

→ l2t♯(cons(merge(H1, H2), l2t(L))) · · · (1)

}

{

l2t♯(cons(H1, cons(H2, L))) → l2t♯(L) · · · (2)
}

{(1), (2)}

The component {(2)} satisfies the subterm criterion.
By taking π(cons) = [2] and π(l2t) = π(l2t♯) = 1,

we can orient the static dependency pairs (1) and
(2) by using the normal higher-order recursive path
ordering [10]: π(l2t♯(cons(H1, cons(H2, L)))) ≡
cons(cons(L)) >n

rhorpo cons(L) ≡

π(l2t♯(cons(merge(H1, H2), l2t(L)))) and
π(l2t♯(cons(H1, cons(H2, L)))) ≡
cons(cons(L)) >n

rhorpo L ≡ π(l2t♯(L)). However, in
contrast to Example 4.5, the non-loopingness of {(1)}
and {(1), (2)} cannot be shown with the previous
techniques. Indeed, we cannot solve the constraint
Rheap ⊆ &. More precisely, we cannot orient the rule
for hd, because π(hd(cons(X,L))) ≡ hd(cons(L))
does not contain the variable X occurring in the
right-hand side.

The notion of usable rule solves this problem, that
is, it allows us to ignore the rewrite rule for hd for
showing the non-loopingness of l2t.

Definition 5.2 (Usable rules) We denote f >def

g if g is a defined symbol and there is some l → r ∈ R
such that top(l) = f and g occurs in r.

We define the set U(t) of usable rules of a term t
as follows. If, for every X(tn) ∈ Sub(t), tn are dis-
tinct bound variables, then U(t) = {l → r ∈ R |
f >∗

def top(l) for some f ∈ DR occurs in t}. Other-
wise, U(t) = R. The usable rules of a static recursion
component C is U(C) =

⋃

{U(v♯) | u♯ → v♯ ∈ C}.
For each α ∈ B, we associate the new func-

tion symbols ⊥α and cα with type(⊥α) = α and
type(cα) = α → α → α. We define the HRS Ce

as Ce = {cα(x1, x2) → xi | α ∈ B, i = 1, 2}.

We omit the index α whenever no confusion arises.

When we show the non-loopingness of a static re-
cursion component using a reduction pair, Proposi-
tion 3.14 requires showing that R ⊆ &. The non-
loopingness is not guaranteed by simply replacing R
with U(C). We can supplement the gap with the
HRS Ce.

Theorem 5.3 Let R be a finitely-branching PFP-
HRS. Then C ∈ SRC(R) is non-looping if there ex-
ists a reduction pair (&, >) such that U(C)∪Ce ⊆ &,
C ⊆ & ∪>, and C ∩> 6= ∅.
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Proof. From Lemma 5.7, 5.9 and 5.10. These lemmas
will be given at the end of this section. �

Example 5.4 We show the termination of the PFP-
HRS Rheap in Example 5.1. We have to show the non-
loopingness of the components {(1)} and {(1), (2)}.
To this end, it suffices to show that the constraint
U({(1), (2)}) ∪ Ce ⊆ & can be solved (instead of
Rheap ⊆ &). The usable rules of {(1), (2)} are seven
rules for merge and l2t. The weak reduction order
(>n

rhorpo)π orient the rules. Since Ce ⊆ (>n
rhorpo)π,

we conclude that Rheap is terminating.

In the rest of this section, we present a proof
of Theorem 5.3. We assume that R is a finitely-
branching PFP-HRS, C is a static recursion compo-
nent of R, and ∆ = {top(l) | l → r ∈ R \ U(C)}.
The key idea of the proof is to use the following

interpretation I.
Thanks to the Well-ordering theorem, we assume

that every non-empty set of terms T has a least ele-
ment least(T ).

Definition 5.5 For a terminating term t ∈ Tα, I(t)
is defined as follows: λx.I(t′) if t ≡ λx.t′, a(I(tn)) if
t ≡ a(tn) and a /∈ ∆, and cα(a(I(tn)), Redα({I(t

′) |
t −−−−→

R\U(C)
t′})) if t ≡ a(tn) and a ∈ ∆. Here, for each

α ∈ B, Redα(T ) is defined as ⊥α if T = ∅; other-
wise cα(u,Redα(T \ {u})) where u ≡ least(T ). We
also define θI by θI(x) ≡ I(θ(x)) for a terminating
substitution θ.

Theorem 5.6 For any terminating t, I(t) is well-
typed and type(I(t)) = type(t).

Proof. By induction on t ordered by ⊲sub ∪ −→
R
. �

Lemma 5.7 Let t be a term and θ be a substitu-
tion such that tθ↓ is terminating. Then, I(tθ↓) ∗−→

Ce

I(t)θI↓ ∗−→
Ce

tθI↓.

Proof. By induction on ({type(x) | x ∈ dom(θ)}, t)
ordered by the lexicographic combination of the mul-
tiset extension ⊲mul

s of ⊲s, and ⊲sub ∪ −→
R
. �

Lemma 5.8 Let t be a term and θ be a permutation
such that tθ↓ is terminating. Then, I(tθ↓) ≡ I(t)θI↓.

Proof. By induction on t ordered by ⊲sub ∪ −→
R
. �

Lemma 5.9 Let l → r ∈ C ∪ U(C) and θ be a
substitution such that rθ↓ is terminating. Then,
I(rθ↓) ≡ rθI↓.

Proof. By induction on t, we can show the stronger
property I(tθ↓) ≡ tθI↓ for any l → r ∈ C ∪U(C) and
t ∈ Sub(r). �

Lemma 5.10 If s −→
R

t and s is terminating, then

I(s) +−−−−−→
U(C)∪Ce

I(t).

Proof. From Lemma 5.7 and 5.9. �
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