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Abstract

We give an efficient algorithm to generate random RNA secondary structures
with pseudoknots, either uniformly or non uniformly in a controllable fashion. Al-
though we consider a restrictive class of pseudoknots, the class of simple recursive
pseudoknots, it turns out that most of the known real RNA pseudoknotted secondary
structures in the biological databases belong to this class.

1 Introduction

Algorithms for generating random biological sequences have been investigated for a
long time [9, 3, 11]. Random sequences are of great interest in genome analysis: they
provide a way to represent the “background noise” from which the real biological infor-
mation can be distinguished. A number of softwares for generating random sequences
have been made available (see e.g. [5, 17, 16]). More recently, random generation of more
complex structures has been investigated. For example, random graphs are useful for
retrieving biological information from biological networks such as regulation networks
or protein interaction networks [13].

Special attention has been paid for RNA secondary structures. RNA is a major com-
ponent of cellular processes, as DNA and proteins. Briefly, a RNA molecule is a chain
of nucleotides A, C, G, and U (for Adenine, Cytosine, Guanine and Uracil respectively)
that folds onto itself to form a three-dimensional conformation, according to chemi-
cal bounds between pairs of nucleotides. Algorithms of random generation of RNA
structures are used notably for predicting the structure of a given sequence [8, 14] and
for evaluating structure comparison softwares [2]. Up to now, random generation al-
gorithms deal only with so-called secondary structures without pseudoknots. As will be
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seen below, such a structure is a partial representation of the whole molecular structure.
Most of the RN A structures contain pseudoknots, configurations that cannot be taken into
account by generation algorithms.

In this paper, we give an efficient algorithm to generate uniformly at random sec-
ondary structures with pseudoknots. Although we consider a restrictive class of pseu-
doknots, the class of simple recursive pseudoknots, it turns out that most of the known real
RNA secondary structures in the biological databases belong to this class. Our random
generation method is based on a context-free encoding of recursive pseudoknots, and
involves a linear decoding algorithm for obtaining the final structures. Using the clas-
sical recursive method [10] for generating the encoding, it leads to a total complexity in
nlogn for generating a structure of size n.

Finally, we give a few experimental results. We present a general context-free gram-
mar for pseudoknotted structures, and we use it to generate uniform random structures.
The we show how a particular weighted grammar, as defined and studied in [7], can be
designed in order to generate more realistic RNA structures.

2 Definitions and notation.

The structure of a RNA molecule mainly depends on the interactions between its nu-
cleotides. Notably, A — U and (G — C' form strong hydrogen bounds, they constitute the
two Watson-Crick pairs of nucleotides (or basepairs, for short). The pair G — U, weaker,
is called the Wobble basepair. Meanwhile, any pair of nucleotides can form a (generally
weak) chemical bond [12].

Any RNA structure can be represented by a graph where the nodes are the nu-
cleotides and the edges are the chemical bonds between them. Each node is numbered
by its position in the sequence. Several levels of structure have been defined. The tertiary
structure is the graph that contains all the chemical bonds in the molecule. A secondary
structure (with or without pseudoknots) is a subgraph of the tertiary structure that con-
tains all the nodes, but only the stronger bounds (Watson-Crick and Wobble). In this
kind of structure, every node has one neighbour at most. So we can define the graph
of an RNA secondary structure (possibly with pseudoknots) as below. The notion of
pseudoknot will be defined later.

Definition 1. The graph of an RNA secondary structure (possibly with pseudoknots) is a graph
G with a set of vertices V = {1,2,...,n} and a set of edges F, such that each vertex has degree
at most 1.

The following two definitions are required before defining the pseudoknot.

Definition 2 (Crossing arcs). Let (i, ) and (k,1) two edges of G, with i < jand k < I. We
say that (i, j) and (k,l) are crossing if i < k < j < l.
Definition 3 (Crossing graph). The crossing graph of the graph G of an RNA structure is

a graph C defined as follows: the vertices of C' are the edges of (i, and two vertices of C' are
connected by an edge if and only if their two corresponding arcs in G are crossing.
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Definition 4 (Pseudoknot). A pseudoknot is a set of arcs that is not a singleton and that
corresponds to a maximal connected component in the crossing graph.

Figure 1 shows two representations of the graph of a RNA secondary structure with-
out pseudoknot, where the vertices are labelled by their corresponding nucleotide. It is
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Figure 1: Left: classical “biological” representation of a secondary structure without
pseudoknot. Right: representation by an arc-annotated sequence. Drawing done with
VARNA [6].

well known that the set of secondary structures without pseudoknot are in one-to-one
correspondence with Motzkin words [19]. Indeed, the two extremities of a basepair can
be encoded, respectively, by an opening parenthese and a closing parenthese, and the
unpaired base can be encoded by a dot. For example, the code for the structure in Fig-
ure 1is ((((((...)))--((((-...))))-)))- On the other hand, the set of secondary structures with
pseudoknots on {1,2,...,n} is in one-to-one correspondence with the set of involutions
on{l,2,...,n}.

As will be seen later, the notions of simple pseudoknot and H-type pseudoknot are im-
portant for our purpose.

Definition 5 (Simple pseudoknot [1]). A pseudoknot P is simple if there exist two numbers
j1 and jo, with j; < ja, such that:

e cach edge (i, 7) in P satisfies either i < j; < j < joorj1 <i < js <j,
e and if two edges (i, j) and (', j') satisfy i < < jrorjy <i <, thenj> j.

The first property ensures that, for each edge of P, one of its ends exactly is between
j1 and j». And the edges are divided in two sets: those having their other end smaller
than j;, and those having their other end greater than j,. We call these two sets, re-
spectively, the left part and the right part of the pseudoknot. The second property of the
definition ensures that two edges in the same set cannot intersect each other. Figure 2
shows a simple pseudoknot.

Definition 6 (H-type Pseudoknot). A H-type pseudoknot is a simple pseudoknot having
the following additional property: each arc in one of the two above sets crosses all the arcs of the
other set.
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Figure 2: A simple pseudoknot.

3 Random generation of pseudoknotted structures.

As remarked in the previous section, the set of all theoretical pseudoknotted structures
is in bijection with the set of involutions. Meanwhile, due to the steric and thermody-
namic constraints on RNA molecules, only a negligeible fraction of the set of theoretical
pseudoknotted structures can be produced in real molecules. Notably, it was shown in
[4] that more than 87% of the RNA structures in the biological databases contain only
H-type pseudoknots. For this reason, we need to consider restricted classes of pseu-
doknots in order to generate “biologically realistic” pseudoknotted structures. In the
following, we consider two classes of pseudoknotted structures: those containing only
simple pseudoknots, and the subclass of those containing only H-type pseudoknots.
Meanwhile, any pseudoknot can embed substructures that can be pseudoknotted in
turn. For this reason, the structures are sayed to be recursively pseudoknotted.

In section 3.1, we present an encoding of these two classes by a context-free lan-
guage. Although this encoding was first stated in [18] by two aof the authors together
with Mireille Régnier and Jean-Marc Steyaert, we present it here for the sake of self-
containment. Then in section 3.2 we give a linear algorithm that constructs a pseudo-
knot given its encoding. Finally, we present in section 3.3 some preliminary results in
generating realistic RNA pseudoknotted structures.

3.1 A context-free encoding for simple and H-type pseudoknots

Let us first recall some definitions. Let L be a language on a given alphabet A, and
w = wws . ..w, aword of L, where the w,’s are the letters of w. A word v is a subword
of wif v = ww;, ... w;, where 1 < i; < iy < ... < i, < n. The projection of w onto
an alphabet A’ € A is the subword w’ obtained by erasing in w all letters that do not
belong to A'. The projection of L onto A’ is the set of projections of the words of L onto
A’. Finally, let us recall that the Dyck language on any two-letter alphabet {d, d} is the
language of balanced parentheses strings, where d and d stand, respectively, for opening
and closing parentheses. Now we can state twe two following straightforward lemmas:



Lemma 1. Any class of pseudoknotted structures where all pseudoknots are simple can be rep-
resented by the words of a language L on the alphabet {c,d,d, x,Z,y, y} where

e (i) c encodes the unpaired nucleotides;

e (i) d and d encode, respectively, the left and right ends of edges that are not involved in
pseudoknots;

e (ii) x and 7 encode, respectively, the left and right ends of edges that are involved in the
left parts of pseudoknots;

e (iii) y and y encode, respectively, the left and right ends of edges that are involved in the
right parts of pseudoknots.

Additionally, the projection of the language to the alphabet {d,d} (resp. {x,z}, {y,y}) is a
sublanguage of the Dyck language on the same alphabet.

Lemma 2. Let S be a pseudoknotted structure, and w be the word on {c,d,d,z,Z,y,y} that
represents S. Then every simple pseudoknot in S is represented by a subword v of w, such that

V= xn yml jnl ymg jnz . ymk jnk Z—/m,

whereny +ny+ ... +ny =nand my; +mo +...+my = m.

Remark that a H-type pseudoknots is a simple pseudoknot where k£ = 1. Thus every
H-type pseudoknot in S is represented by a subword v = z" y™ 2" y™.

The following Proposition gives a way to encode any pseudoknotted structure where
all pseudoknots are simple by a variant of the Motzkin language with for kinds of pairs
of parentheses, that is on the alphabet {c, p, p, d, d, x, Z, y, i}

Proposition 1. Let S be a pseudoknotted structure, and w be the word on {c,d,d, z,%,y, j}
that encodes S. Then w can be encoded by a word on the alphabet {d, d, z,%,y,y} U{p, p} where
every subword v = " y™ T™ y™> " ... y™ T y™ | corresponding to a H-type pseudoknot
is replaced with v’ = px™ =1 y™ym g yM2gM2 g2 ymegme e lp

In particular , every subword v = 2" y™ 2" §™ corresponding to a simple pseudoknot
is replaced with v/ = pz"~! y™ ™ 2"~ 'p. The new letters p and p mark the beginning and
the end of a pseudoknot. They are necessary to avoid ambiguity in the case of nested
pseudoknots.

The proof is straightforward, as there is an immediate one-to-one correspondance
between the two kinds of words below. The transformation is illustrated in Figure 3(a)
and Figure 3(b), respectively, for simple pseudoknots and for the particular case of H-
type pseudoknots.

Now we can define an unambiguous context-free grammar that generates the lan-
guage which encodes the recursively pseudoknotted structures, with simple pseudo-
knots.
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(a) Simple pseudoknot (b) H-type pseudoknot

Figure 3: Top: the pseudoknot and its encoding v. Bottom: the corresponding nested
structure and its encoding v’ given by Proposition 1.

Proposition 2. The following unambiguous context-free grammar generates the language which
encodes the recursively pseudoknotted structures, with simple pseudoknots:

- dSdS|cS|P

— pSXpS|e

— xSXZSY|yY SyS
— ySYyS|e

R VIS

The three rules in the first line allow to generate unpaired bases and non crossing
edges, and to place pseudoknots anywhere. The other rules generate words which cor-
respond to the code for a simple pseudoknot.

3.2 A linear decoding algorithm

At first, we present an algorithm that takes as input the word u that represents a unique
simple pseudoknot, and constructs the pseudoknot. In other words, the algorithms
constructs f~!(u), where f is the encoding function defined in Proposition 1. The words
are considered as arrays of characters. The principle of the algorithm is very simple, in
two steps. During the first step the word u is read from left to right, and the algorithm
writes in the same order all the letters but the 3’s, and replaces the p and the p by z and
z, respectively. During the second step, the ’s are written at the end of the word.

Now we can write the Algorithm 2 that takes as input the encoding u of a recur-
sively pseudokotted structure, and gives the pseudoknot f~!(u). As any pseudoknot
can embed other pseudoknotted structures, a stack is used. Each element of the stack
will contain the list of the positions of the vertices of a given pseudoknot in the struc-
ture. When the end of the encoding of a pseudoknot is reached, it is popped out and the
procedure CrossSubword is called (Algorithm 3). This procedure is quite similar to the
Algorithm 1, the only difference is that the positions of the vertices of the pseudoknot
in the whole word u that contains the pseudoknot are taken into account.



Algorithm 1 Constructing a simple pseudoknot from its noncrossing encoding
Require: a word u of length n that encodes a pseudoknot
Ensure: u < f~(u)
J1
fori=1tondo
if u; € {z,z,y} then
Uj < Uy
je—j+1
else if u; = p then
Uj
je—j+1
else if u; = p then
Uj x
J—g+1
end if
end for
for k = j ton do
Uk <Y
end for

Algorithm 2 Constructing a simple recursive pseudoknotted structure from its non-
crossing encoding

Require: a word u of length n
Ensure: u < f~(u)
fori=1tondo
if u; = p then {Beginning of a pseudoknot}
Create new list L
Addito L
Push(L)
else if u; € {z,7,y, y} then {Inside a pseudoknot}
Pop(L)
Addito L
Push(L)
else if u; = p then {End of a pseudoknot}
Pop(L)
CrossSubword(u, L)
end if
end for

3.3 Experiments

Now it is easy to generate random pseudoknotted structures of a given size. Starting
from a non ambiguous grammar, we use the GenRGenS software [15] to generate words
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Algorithm 3 CrossSubword

Require: a word u of length n, alist L = (q1, ¢2, . . ., ¢n) Of positions in u
Ensure: u, ug, - .- Ug,, < [~ (ug U, - - - Ug,)
g1

fori=1tomdo
if u, € {z,7,y} then
Ug; < U,
JJ+1
else if u,, = p then
Ug; <
j+—7+1
else if u,, = p then
Ug, < X
JJ+1
end if
end for
fork = jtondo
Ug, <Y
end for

that encode pseudoknots, then we decode them with the Algorithm 3. The generation
is uniform if we use a classical context-free grammar. It can also be non-uniform (in a
controllable fashion) if we use a weighted context-free grammar [7].

Figure 4 shows some examples of random structures that have been generated with
the grammar of Proposition 2.

Figure 4: Four random structures generated with the grammar of Proposition 2.

In order to generate more realistic structures, we designed a more complex grammar



in such a way to favour long stems (i.e. series of consecutive basepairs):
T|cS|P

NIQ

dNdS|QT

dQd|dddcceddd

prx X STTpS|e
xSXzS|yyySY yyyS

ySYyS|e

A A

N <O =235 W,

+

And we weighted the grammar in order to obtain, in average, more pseudoknots than
in the uniform model. Two examples of generated structures are shown in Figure 5.
Other weighted grammars are being investigated for getting more realistic structures

Figure 5: Two random structures generated with a weigthed grammar. Left: classical
biological representation. Right: arc-annotated representation.

compared to real biological ones.
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