A High-order Discontinuous Galerkin Scheme for Elastic Wave Propagation

Abstract : In this paper, we introduce a fourth-order leap-frog time scheme combined with a high-order discontinuous Galerkin method for the solution of the elastodynamic equations. The time discretization, obtained via a simple construction based on Taylor developments, provides an accurate scheme for the numerical simulation of seismic wave propagation. Results of the propagation of an eigenmode allow a numerical study of stability and convergence of the scheme for both uniform and non structured meshes proving the high level of accuracy of the method. The robustness of the scheme in the heterogeneous case is studied and we also examine the propagation of an explosive source in a homogeneous half-space.
Document type :
Reports
Complete list of metadatas

Cited literature [16 references]  Display  Hide  Download

https://hal.inria.fr/inria-00543664
Contributor : Nathalie Glinsky <>
Submitted on : Monday, December 6, 2010 - 3:31:48 PM
Last modification on : Wednesday, November 20, 2019 - 3:27:41 AM
Long-term archiving on : Monday, November 5, 2012 - 11:25:58 AM

File

RR-7476.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : inria-00543664, version 1

Citation

Nathalie Glinsky, Serge Moto Mpong, Sarah Delcourte. A High-order Discontinuous Galerkin Scheme for Elastic Wave Propagation. [Research Report] RR-7476, INRIA. 2010, pp.21. ⟨inria-00543664⟩

Share

Metrics

Record views

530

Files downloads

365