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Abstract. Multichannel under-determined source separation is often
carried out in the time-frequency domain by estimating the source coef-
ficients in each time-frequency bin based on some sparsity assumption.
Due to the limited amount of data, this estimation is often inaccurate
and results in musical noise artifacts. A number of single- and multichan-
nel smoothing techniques have been introduced to reduce such artifacts
in the context of speech denoising but have not yet been systemati-
cally applied to under-determined source separation. We present some
of these techniques, extend them to multichannel input when needed,
and compare them on a set of speech and music mixtures. Many tech-
niques initially designed for diffuse and/or stationary interference appear
to fail with directional nonstationary interference. Temporal covariance
smoothing provides the best tradeoff between artifacts and interference
and increases the overall signal-to-distortion ratio by up to 3 dB.

1 Introduction

Source separation is the task of recovering the contribution or spatial image cj(t)
of each source indexed by j, 1 ≤ j ≤ J , within a multichannel mixture signal
x(t) with

x(t) =

J∑

j=1

cj(t). (1)

In this paper, we focus on audio source separation [14] in the under-determined
setting when the number of mixture channels I is such that 1 < I < J . This task
is typically addressed in the time-frequency domain via the Short-Term Fourier
Transform (STFT). A popular approach consists of exploiting the sparsity of
audio sources in this domain so as to estimate the STFT coefficients of the most
prominent sources in each time-frequency bin and set the STFT coefficients of
the other sources to zero. Depending on the assumed number of active sources
from 1 to I and on the chosen estimation criterion, this leads to algorithms such
as binary masking [11], soft masking [3] or ℓ1-norm minimization [17].



Although these separation algorithms succeed at reducing interference from
unwanted sources, they generate a significant amount of time- and frequency-
localized artifacts also known as musical noise [15]. These artifacts are particu-
larly annoying in scenarios such as hearing-aid speech processing or high-fidelity
music processing where fewer artifacts are preferred at the expense of increased
interference. Adaptive time-frequency representations with maximal sparsity or
STFTs with increased frame overlap only moderately reduce artifacts [10,2].
Indeed, the localized nature of artifacts is due to the limited amount of data
available for estimation in each time-frequency bin, such that similar mixture
STFT coefficients in neighboring time-frequency bins may result in very dis-
similar estimated source STFT coefficients. This causes strong discontinuities
independently of the chosen representation. Joint processing of several time-
frequency bins is needed to further reduce artifacts.

One approach consists of modeling the dependencies between the STFT coef-
ficients of the spatial image of each source via some joint probabilistic prior. For
instance, these coefficients may be locally modeled as zero-mean Gaussian vector
random variables whose covariance matrices are either constant over neighboring
time-frequency bins [8,13] or subject to more advanced spectral models including
constraints such as harmonicity [14]. These constraints increase the smoothness

of the estimated source covariance matrices hence of the estimated source STFT
coefficients derived by Wiener filtering. Although they typically reduce both in-
terference and artifacts compared to sparsity-based algorithms, these algorithms
still result in a significant level of artifacts [15,12].

In this paper, we explore a complementary approach whereby initial estimates
of the source covariance matrices obtained via any source separation algorithm
are post-processed by some smoothing technique so as to reduce artifacts. Sev-
eral such techniques have been introduced in the context of speech denoising or
beamforming [7,1,6,4,16] and employed for the post-filtering of linear source es-
timates in the context of determined audio source separation [9]. However, they
have not yet been systematically studied in the context of under-determined
source separation involving directional interference instead of a somewhat dif-
fuse background. Also, most of these techniques are specifically designed for
single-channel input. In the following, we propose multichannel extensions of
three single-channel smoothing techniques [7,1,16] and compare them with two
existing multichannel techniques [6,4] on a set of speech and music mixtures.

The structure of the paper is as follows. We explain how to initially esti-
mate the source covariance matrices and present five multichannel smoothing
techniques in Section 2. We assess the performance of each technique for various
source separation algorithms in Section 3 and conclude in Section 4.

2 Source covariance estimation and smoothing

Let us denote by x(n, f) and cj(n, f) the I × 1 vectors of STFT coefficients of
the mixture and the spatial image of source j respectively. We presume that esti-
mates of the source spatial images or their parameters have been obtained via any



source separation algorithm and apply the following three-step post-processing.
Firstly, assuming that cj(n, f) follows a zero-mean Gaussian distribution with

local covariance matrix Rcj
(n, f) [14], we derive initial estimates R̂cj

(n, f) of
these covariance matrices. Secondly, we replace the classical multichannel Wiener

filter [4,14]

Ŵj(n, f) = R̂cj
(n, f)R̂−1

x
(n, f), (2)

where R̂x(n, f) =
∑J

j=1
R̂cj

(n, f) is the estimated mixture covariance matrix,

by a smooth filter W̃j(n, f). Finally, the source spatial images are recovered by

c̃j(n, f) = W̃j(n, f)x(n, f). (3)

In the following, we discuss the first two steps in more detail.

2.1 Initial source covariance estimation

Source separation algorithms can be broadly divided into two categories: lin-
ear vs. variance model-based algorithms [14]. Linear model-based algorithms
such as binary masking [11] or ℓ1-norm minimization [17] directly operate on
the mixture STFT coefficients and provide estimates ĉj(n, f) of the source spa-
tial images. The source covariance matrices can then be naturally initialized
as R̂cj

(n, f) = ĉj(n, f)ĉH
j (n, f) where H denotes Hermitian transposition. By

contrast, variance-model based algorithms [14] represent the mixture by some
parametric distribution and operate on the parameters of this distribution. Ini-
tial estimates of the sources covariances may then be derived from the estimated
parameters. In the particular case when a Gaussian distribution is chosen [8,13],
the source covariances are readily estimated as the output of the algorithm.

In both cases, we add a small regularization term ǫ I to the initial covariance
matrices, where I is the I ×I identity matrix. This term ensures that the matrix
inversions in (2), (5) and (8) can always be computed even when a single source

is active. The regularization factor is set to ǫ = 10−6 × tr R̂cj
(n, f).

2.2 Spatial smoothing

A few multichannel smoothing techniques have been proposed in the beamform-
ing literature in order to widen the spatial response of the Wiener filter, so as to
reduce artifacts supposedly located close to the target source direction. While
these techniques were originally formulated for a single source in the presence of
background noise, their application to multiple sources is straightforward. One
technique proposed in [4, eq. 55] amounts to interpolating the Wiener filter as

W̃SFS

j (n, f) = (1 − µ)Ŵj(n, f) + µ I. (4)

This is equivalent to time-domain interpolation of the estimated source spatial
image signals with the mixture signal as suggested in [11]. Another technique
stemming from a weighted likelihood model results in a distinct interpolation [6]

W̃SCS

j (n, f) = R̂cj
(n, f)[(1 − µ)R̂x(n, f) + µR̂cj

(n, f)]−1. (5)



We refer to the techniques in (4) and (5) as spatial filter smoothing (SFS) and
spatial covariance smoothing (SCS) respectively. In both cases, the smoothness
of the resulting filter increases with µ, so that it is equal to the conventional
Wiener filter for µ = 0 and to the identity filter for µ = 1.

2.3 Temporal smoothing

Many techniques based on temporal smoothing of the source variances have also
been proposed for single-channel speech denoising [16]. However, their extension
to multichannel source separation is not straightforward. Two approaches may be
taken: either split the source covariance matrices into a spectral power vj(n, f) =
trRcj

(n, f) and a spatial covariance matrix Rj(n, f) = v−1

j (n, f)Rcj
(n, f) [13],

process the spectral power alone via a single-channel technique and recombine
it with the spatial covariance matrix, or design new smoothing equations that
process spectral power and spatial covariance at the same time. Our preliminary
experiments showed that the latter approach always performed better. Hence,
we only present the new proposed smoothing equations below.

The most popular technique consists of smoothing the initial Signal-to-Noise
Ratio (SNR) in a causal [7] or noncausal [5] fashion, with the latter resulting in
better onset preservation. Numerous variants of this so-called decision-directed
technique have been proposed [9]. By replacing variances by covariance matrices
and ratios by matrix inversion, we extend it to source separation as

Ĝj(n, f) = R̂cj
(n, f)[R̂x(n, f) − R̂cj

(n, f)]−1

G̃j(n, f) =
1

L + 1

L/2∑

l=−L/2

Ĝj(n + l, f)

W̃TRS

j (n, f) = I − [G̃j(n, f) + I]−1 (6)

where Gj(n, f) is a multichannel generalization of the SNR and we assume a
noncausal rectangular smoothing window of length L + 1. Note that this tech-
nique does not apply to binary masking, since Ĝj(n, f) is infinite in that case.

A simpler technique consists of smoothing the conventional single-channel
Wiener filter [1], which easily extends to a multichannel setting as

W̃TFS

j (n, f) =
1

L + 1

L/2∑

l=−L/2

Ŵj(n + l, f). (7)

Finally, one may also compute the Wiener filter from smoothed source variances
[16]. By smoothing the source covariances instead, we obtain

R̃cj
(n, f) =

1

L + 1

L/2∑

l=−L/2

R̂cj
(n + l, f)

W̃TCS

j (n, f) = R̃cj
(n, f)R̃−1

x
(n, f) (8)



with R̃x(n, f) =
∑J

j=1
R̃cj

(n, f). We here consider sliding smoothing windows
instead of disjoint windows as in [16].

We call the techniques in (6), (7) and (8) temporal SNR smoothing (TRS),
temporal filter smoothing (TFS) and temporal covariance smoothing (TCS) re-
spectively. Smoothness increases with L and the conventional Wiener filter is
obtained for L = 0. Note that, contrary to spatial smoothing, the filter does not
tend to identity when L → ∞ but to a stationary Wiener filter instead.

3 Experimental evaluation

We applied the five above smoothing techniques for the post-processing of three
separation algorithms, namely binary masking [11], ℓ1-norm minimization with
two active sources per time-frequency bin [17] and local Gaussian modeling [13],
over four instantaneous stereo (I = 2) mixtures of J = 3 sources. These mixtures
were taken from the 2008 Signal Separation Evaluation Campaign (SiSEC) [12]
and cover both male and female speech, percussive and non-percussive music.
The mixing matrices were known. Performance was evaluated using the over-
all Signal-to-Distortion Ratio (SDR) as well as the Signal-to-Interference Ratio
(SIR) and the Signal-to-Artifacts Ratio (SAR) in [15], averaged over all sources
and all mixtures. The choice of instantaneous mixing was dictated by the lim-
ited accuracy of these criteria in a convolutive setting. Indeed, while they are
accurate for instantaneous mixtures, they do not yet provide sufficiently precise
distinction of interference and artifacts on convolutive mixtures for this study.

The tradeoff between SAR and SIR as a function of µ and L is shown in
Figure 1. Temporal covariance smoothing provides the best tradeoff indepen-
dently of the considered separation algorithm. The resulting SIR decreases in
similar proportion to the increase of the SAR and a small increase of the SIR
is even observed for small µ or L. Spatial filter smoothing also improves the
SAR but results in a much steeper decrease of the SIR. All other methods fail to
reduce artifacts in a predictable manner and result either in non-monotonous in-
crease or decrease of the SAR. This indicates that many state-of-the-art smooth-
ing techniques initially designed for diffuse and/or stationary noise can fail in
the presence of directional nonstationary sources. In particular, temporal SNR
smoothing appears extremely sensitive to the initial estimation of the variances,
while spatial covariance smoothing results in conventional Wiener filtering for
all 0 ≤ µ < 1 both for binary masking and ℓ1-norm minimization1 and in small
deviation from conventional Wiener filtering for local Gaussian modeling.

These conclusions are further supported by the SDR curves in Figure 2, which
decrease quickly for all techniques except for temporal covariance smoothing due
to its good tradeoff between interference and artifacts and for spatial covariance
smoothing as explained above. A SDR increase is even observed with temporal
covariance smoothing, which is equal to 3 dB for binary masking and less for the
two other algorithms.

1 It can be shown that SCS amounts to conventional Wiener filtering for all 0 ≤ µ < 1
when ǫ → 0 as soon as at most two sources are active in each time-frequency bin.
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Fig. 1. Average tradeoff between SAR and SIR achieved by each separation algorithm
and each smoothing technique.

4 Conclusion and perspectives

We reformulated state-of-the-art Wiener filter smoothing techniques in the con-
text of under-determined audio source separation. Experimental results indicate
that many techniques thought for spatially diffuse and/or stationary noise fail
with directional nonstationary sources. Temporal covariance smoothing provides
the best tradeoff between SAR and SIR and also potentially increases the over-
all SDR. Future work will concentrate on assessing robustness to mixing matrix
estimation errors and adaptively estimating the optimal size L of the smoothing
window in each time-frequency bin for that technique.
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