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Consistent Wiener filtering: designing generalized
time-frequency masks respecting spectrogram consistency
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Yuu Mizuno (The University of Tokyo), Hirokazu Kameoka (NTT CS Labs),
Nobutaka Ono, Shigeki Sagayama (The University of Tokyo)

1 Introduction a function ofS=S; only:

- o . 1
Wiener filtering has been one of the most widely used () — ——( le,i\Sw,tIQ + Z Vﬁth,t — Sual?)
methods for source separation for several decades, in 2 ol o1

particular in agd|o _S|gnal processing. Tq exploit the +C(u(1),y(2)), (1)
short-term stationarity of audio signals, it is very often _ _

applied on time-frequency representations [1], especiaIIyWhere_C Is a consta_nt dep_endmg on_Iy W)3 v@. In-
the short-time Fourier transform (STFT). However, clas- troducing the classical Wiener filtering estimate far,

sical Wiener filtering does not take into account the in- e
trinsically redundant structure of STFT spectrograms, St = ﬁ Xt 2
and its output is actually in general not the optimal so- Vgt TVt

lution.  We show rlere that b}f ensuring that the outputihe paximum-Likelihood problem can be reformulated
spectrograms are “consistent”, i.e., that they correspond,q the minimization of the objective function
to actual time-domain signals, we can obtain a more ef-

ficient filtering. As Wiener filtering is widely used as a P(S) = utlSus — Susl? 3)
post-processing for many methods involving the estima- w,t

tion of the power spectrograms of the component signals 1) @)
(non-negative matrix factorization, AR modeling, etc.) Whereaw. = v,z + v ;.

or in time-frequency masking in computational auditory 5 5> \wiener filtering with consistency constraint
scene analysis, it is of tremendous importance to ensure

that the information gathered by those algorithms is bestfu
exploited. We generalize here the concept of Wiener fil-
tering to time-frequency masks which can involve a ma-
nipulation of the phase as well in order to find the true
Maximum-Likelihood solution, by focusing on the con- f STET i f time-d in sianal
cept of consistency, which we already exploited in [2] rames, spectrograms ol ime-domain signais are

NT i u i .
for fast phase restoration and [3] to improve Kameoka etterfr?:rr:;,ogj ¢ 0h\évr;'fc,g];eruigzlrl]%ﬂltafog?rﬁ;e;t ti?seca
al.’s complex NMF decomposition [4]. 9 X P P

per is that not all elements @"7 can be obtained as
2 Wiener filtering and consistency ;uch [5,2]. Ifwe assume.that inverse STFT is pgrformed
] o ) in such a way that there is “perfect reconstruction”, i.e.,
2.1 Maximum-Likelihood formulation of the that a signal can be exactly reconstructed from its spec-
Wiener filtering problem trogram through inverse STFT, then we showed in [2]
We assume that the observed signa the mixture of  that a necessary and sufficient condition for an affay
two signals, a target; and an interference signal, an-  to be a consistent spectrogram is for it to be equal to the
alyzed using an STFT with frame shitt We furtheras-  STFT of its inverse STFT. The set of consistent spectro-
sume that the STFT coefficients andS; of the signals  grams can thus be described as the null spac&Reof
s1 andsq at each time frameé and frequency biv are  theR-linear operatorF from CN7 to itself defined by
modeled as statistically independent Gaussian random
variables with variance? ando? respectively. For con- FW)=6W)-Ww, )
venience of notation, we shall writd?) = 1/02. Note whereG(W) = STFT(iISTFT(W)).
that the case of several interference signals.., s; Going back to the Wiener filtering problem, if we
can be reduced, without loss of generality, to that of two now impose that the solution be consistent, the prob-
sources only, as we assume in particular that the sourceiem amounts to finding a consistent spectrogi&min-
are not correlated. We would then consider a global in-imizing v, or in other words to minimize) under the
terference sourcé; = i, s;, and the variancé?  constraint thatF(S) = 0. Imposing consistency is
would be equal t(Z:f:2 o2, not a mere elegance or theory-oriented concern, but a
Denoting by X the spectrogram of the observed sig- truly fundamental problem. Indeed, the spectrogram of
nal, classical Wiener filtering consists in maximizing the the signal resynthesized from the classical Wiener filter
log-likelihood of the STFT coefficient$; andS,, which spectrogramsS' is actually different in general frons,
can be written, under the constraint tdat=5; +.5,, as  and is no longer maximizing the Wiener log-likelihood

If no further constraint is assumed &hthe objective
nction is obviously minimized fos = S. However,
we need to keep in mind that the STFT is a redundant
representation with a particular structure. Denoting by
N the number of frequency bins aridthe number of
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(or minimizing)), so that the final result of the process-
ing that we are listening to is in fact not the optimal so-
lution. What we really want to do is to find a signal

3.2 Operator splitting

If we let f1 = ¢ and fa = iker(F), Whereikeq ) is the
indicator function of KefF) defined byikerr)(S) = 0

in the time domain such that its spectrogram minimizesjt r(g) = ( andiyer7)(S) = +oo if F(S) # 0, then

the Wiener criterion), or, formulating this in the time-
frequency domain, to minimize the following “true” ob-
jective function

Z/;(S) = Zaw,t‘g(s)wﬁ - Sw,t
w,t

whereG(S) is again the spectrogram of the signal resyn-
thesized fromS by inverse STFT. IfS is constrained to
be consistent, then the objective functiahgnd are

2

: (®)

finding a consistent spectrograthwhich minimizesy
amounts to finding the global minimum ¢f + f>. f1
and f, are both proper lower semi-continuous convex
functions. This kind of minimization problem has been
studied in convex optimization theory, and can be ef-
ficiently solved using the so-called Douglas-Rachford
splitting algorithm for monotone operators. We shall re-
fer to [6] for more details and references. For everyg

equal, and one possibility to solve our problem is to min- CV7, the functionZ — 1[|Z — S||> + f;(Z) achieves
imize ¢ by minimizing+ under that constraint. Another its infimum at a unique point denoted by pProkS). The
one is to solve the problem directly in the time domain, uniquely-valued operator thus defined is called the prox-
by considering the signal as the parameter. Yet anotheimity operator off;. Here, prox, and prox, , where
possibility is to relax the consistency constraint by in- 5 > 0 is a constant which will be used later on, can be
troducing it as a penalty function: if the weight of the explicitely computed:

penalty is chosen sufficiently large, or is increased dur- ﬁaw,té‘w,t + %Sw

ing the course of the optimization, the estimated spectro- ProXsy, (S)w.t = 7 (7)
gram should finally be both consistent and minimizifng S) = G(S T2 8
among the consistent spectrograms. We shall now inves- proxﬁiKerm( ) =3(5). (8)

tigate these three possibilities. Eq. (7) is simply obtained by minimizing a second-order

3 Optimization algorithms function; Eq. (8) is thained py noticing that the mini-
. _ _ mum of £ || Z —5||* +iker7) (Z) is an element of KetF)

3.1 Time-domain formulaiion which minimizes||Z — S||?, i.e., a consistent spectro-
The consistent Wiener filtering optimization problem gram closest t&5. As shown by Griffin and Lim [5],
amounts to minimizing_,, , . ¢[Sw,c — Sw¢|* onthe  G(9) is such a spectrogram if we assume, as we shall
subspace of consistent spectrograms, while the probdo, that the inverse STFT is performed using the win-
lem of estimating the signal whose STFT spectrogramdowed overlap-add procedure with the synthesis window
is closest to the modified STFT spectrogramamounts  before normalization equal to the analysis window. Ap-
to minimizing >, [S..+ — S..+> on the same sub- plying the Douglas-Rachford splitting to this problem,

space [5]. The latter problem can be transformed throughwe obtain the following algorithm. Lef(® e CNT,
Parseval's theorem into the minimization of a simple 3 > 0, ()\,),en be a sequence if0,2) such that
quadratic form on the time signal parameters, but thes™ ) (2 — \,) = +oo, and define the recursion
weightsa make here the computation of the optimal sig-

. G gt _ g(p)
nal cumbersome as they hinder us from simplifying the = Pw,t w,
product of the Fourier matrix and its transpose. If we B +(Suwr —G(SP))y4) + %}“(S(P))w :
note 4, the N x N diagonal matrix with diagonal co- ~ +Ap———— : —, (9)

efficientsay, ;, F' the N x N Fourier transform matrix, Bow+ 5

wy the N x L matrix which computes theth windowed
frame of the signak (of length L), and s; the inverse
transform of the-th STFT frame of5, then we can show
that the optimal signat is given by

i= (Y wl FHAFw) Y wl FTAFs. (6)
t t

thenS®) — § andg(S) is a solution of the consistent
Wiener filtering problem, i.e., it is both consistent and
minimizing . If we assume that, = 1 and writey =

L then the update becomes

ﬁv
+1) Ot (Swe = F(S®))y, ) +7G(S®))
1) _

w,t
(10
ot (10)

S(p

w?

If A, were not present, as in Griffin and Lim’'s case,
then FZF would simplify to Nid and we would  which, as we shall see later, is very close to the up-
get the simple weighted overlap-add estimation=  date obtained when introducing consistency as a penalty
>, wf s,/ >, wiw,. However, the simplification can-  function.

not be done in the consistent Wiener filtering problem, . )

leading to a very largel(x L) matrix inversion problem. 3.3 Consistency as a penalty function

Still, this matrix is band-diagonal (and Hermitian), and  For an array of complex numbetg € CNT, F(W)
solving the system is possible in a reasonable amount ofepresents the relation betweBn and the STFT of its
time and using a reasonable amount of memory spacenverse STFT. Instead of enforcing consistency through
To reduce in particular the memory requirements, wethe “hard” constraint7 (W) = 0, which may be dif-
can split in practice the estimation of the time domain ficult to handle, we can relax that constraint by using
signal on overlapping blocks of a few frames, and recon-any vector norm ofF (W) to derive a numerical crite-
struct an approximate solution on the whole interval by rion which can be used to quantify how far an array of
overlap-add from the locally optimal signals. complex numbers is from being consistent. We consider



here in particular thé,?> norm of 7(W), which leads, as Table 1 Performance comparison results

shown in [2], to a criterion which is related to that used Time (S) P SNR (dB)
by Griffin and Lim to derive their iterative STFT algo- Wiener 0.1 1.91 x 10° 15.2
rithm [5]. Introducing the consistency penalty in (3), the  Griffin-Lim 1485 3.85 x 10% 9.9
new objective function to minimize reads Time domain 794.8 2.76 x 10* 17.8
_ 2 Splitting 133.7 2.90 x 10% 16.1

W (8) = 9(5) 7;' (St = S| 1) Penalty 6.8 2.90 x 107 17.2

An efficient iterative optimization algorithm for  pqr poth the splitting algorithm and the penalty-based
¥ can be derived through the auxiliary function igorithm, heuristically, the largey, the slower the con-
method [7]. A functiony (5, S) verifying ¢,(S) = yergence, but the better the solution. For the penalty
ming ¥ (5, 5), VS, is called an auxiliary function for  function algorithm, we noticed experimentally that the
¥,(S), and S an auxiliary variable. The minimization criterion ¢ monotonically decreased through the up-
of ¢, can be performed indirectly by alternating mini- date (14) withy fixed when starting from a point ob-
mizations ofy)t w.r.t. S andS. tained through updates with a smalter We thus de-

Assuming here again that the synthesis window beforesigned an automatic update scheme~fostarting from
normalization in the inverse STFT is equal to the anal-a very small valuey, (typically 10~°) for ~, we update
ysis window, it results from [5] tha@ (S5) is the closest S through (14) while slightly increasingby ¢ (initially
consistent spectrogram fin a least-squares sense:  set toy, as well) until the decrease gfbecomes slower

2 . G 2 than1 %, in which case we updateto 20 and restart the
; 19(S)ur= Sl = Seker(F) 2_|8u=Suul’, V5. S updates. The algorithm stops after two increases of
’ (12) 0 without significant improvement af, which typically
If we now define the functionzj;fyf :CNT x Ker(F) — R occurred after around 200 iterations. The monotonical
such thatvs € CNT, VS € Ker(F), decrease behavior was not as obvious for the splitting

Py 5 algorithm, and we thus ran it fat000 iterations with a
U8, 8) =v(S) + 7> [Swr = Sur| . (13)  largey experimentally fixed td0®.
w,t

. . . . 4.2 Separation under oracle conditions
we easily see from (12) thafyr is an auxiliary function
for . This leads to an iterative optimization scheme e evaluate here the performance of the proposed
in which, starting at step from a spectrogran$®, § methods in terms of computation time and final value
is first updated t@(s(p))’ and the new estimatg®+1) of the “true” Wiener criteriony for the separation of a
is simply estimated as the minimum of a second-order®-? S mixture of two female speakers under oracle con-

form with diagonal coefficients, altogether resulting in ditions, i.e., assuming that the true power spectrograms
the following update equation: of both sources are known. For comparison, we also

A give the results for the classical Wiener filter output
gD Qg tSw.t + ’VQ(SU(J’?Z) (14) (“Wiener”) and for the spectrogram whose magnitude is
Wyt Qo+ ' closest to the magnitude of the classical Wiener filter,
computed through Griffin and Lim’s phase reconstruc-
tion algorithm ran for4000 iterations (“Griffin-Lim”).
This way of obtaining a consistent spectrogram through
post-processing of the classical Wiener filter magnitude

w,t

We note that this update is very close but slightly dif-
ferent from the update (10) obtained through the appli-
cation of the Douglas-Rachford splitting.

4 Experimental evaluation seems indeed a natural method to attempt.
] ] ] The results are summarized in Table 1. Although the
4.1 Settings and implementations performance of the classical Wiener filter is already very

The sampling rate wass kHz. All the spectrograms good, we can see that the proposed methods all lead to
considered were built with a frame lengith = 1024, significant improvements in both the true Wiener crite-
a frame shiftR = 512 if not specified, and with a sine rion « and the signal-to-noise ratio (SNR), while simply
window for both analysis and synthesis. reconstructing the phase as a post-processing does not

The time-domain method was implemented as fol- solve the problem (highep, lower SNR). The increase
lows: the analytical solution is computed separately onin SNR may not seem straightforward, but it can be un-
blocks of 64 STFT frames; the blocks have(e% over-  derstood as a result of the fact that with our methods the
lap, and the resulting short-time signals are cross-fadeagpectrogram of the resynthesized signal is closer to the
on a small region (here 16 frames) around the centeintended ML solution. Computation of the analytical so-
of the overlap regions in order to throw away portions lution in the time domain is very costly, but enables us to
of signal near the block boundaries, as we can expecsee that the solution obtained in much less time with the
them to suffer from boundary effects. The above valuespenalty-based algorithm is close to optimal. We will use
for the block size and the amount of overlap and cross-this algorithm for the noise reduction experiments below.
fade were determined experimentally so as to minimize We also studied the influence of the frame shift on
computation and memory costs while still obtaining so- performance. Results are summarized in Table 2. We
lutions with a true Wiener criterion very close to that of can see that the SNR increases with the amount of over-
the analytical solution computed on the whole interval. lap between frames, especially for the analytical solu-



Table 2 Evolution of SNR (dB) w.r.t. overlap

50% 75% 87.5%
Wiener 152 15.6 15.6
Griffin-Lim 99 124 12.5
Time domain 17.8 19.4 20.3
Splitting 16.1 165 16.7
Penalty 172 177 17.9
Table 3 SNR (dB) of the denoised speech
Initial SNR —-10dB 0dB 10dB
Oracle Wiener 96 146 20.5
Penalty 10.5 156 21.4
Variance Wiener 8.8 13.8 19.8
Penalty 89 140 20.1
Subtraction Wiener -3.0 6.5 15.3
Penalty 41 10.3 17.0

tion. This could be expected as consistency constraints
become stronger when overlap increases. Computation
time of course also increases with the amount of overlap,
roughly linearly with the total number of spectrogram
frames for all the methods.

4.3 Noise reduction experiments
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Fig. 1 Example of speech denoising.
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