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Consistent Wiener filtering: designing generalized
time-frequency masks respecting spectrogram consistency∗

◎ Jonathan Le Roux (NTT CS Labs), Emmanuel Vincent (INRIA),
Yuu Mizuno (The University of Tokyo), Hirokazu Kameoka (NTT CS Labs),

Nobutaka Ono, Shigeki Sagayama (The University of Tokyo)

1 Introduction
Wiener filtering has been one of the most widely used

methods for source separation for several decades, in
particular in audio signal processing. To exploit the
short-term stationarity of audio signals, it is very often
applied on time-frequency representations [1], especially
the short-time Fourier transform (STFT). However, clas-
sical Wiener filtering does not take into account the in-
trinsically redundant structure of STFT spectrograms,
and its output is actually in general not the optimal so-
lution. We show here that by ensuring that the output
spectrograms are “consistent”, i.e., that they correspond
to actual time-domain signals, we can obtain a more ef-
ficient filtering. As Wiener filtering is widely used as a
post-processing for many methods involving the estima-
tion of the power spectrograms of the component signals
(non-negative matrix factorization, AR modeling, etc.)
or in time-frequency masking in computational auditory
scene analysis, it is of tremendous importance to ensure
that the information gathered by those algorithms is best
exploited. We generalize here the concept of Wiener fil-
tering to time-frequency masks which can involve a ma-
nipulation of the phase as well in order to find the true
Maximum-Likelihood solution, by focusing on the con-
cept of consistency, which we already exploited in [2]
for fast phase restoration and [3] to improve Kameoka et
al.’s complex NMF decomposition [4].

2 Wiener filtering and consistency
2.1 Maximum-Likelihood formulation of the

Wiener filtering problem

We assume that the observed signalx is the mixture of
two signals, a targets1 and an interference signals2, an-
alyzed using an STFT with frame shiftR. We further as-
sume that the STFT coefficientsS1 andS2 of the signals
s1 ands2 at each time framet and frequency binω are
modeled as statistically independent Gaussian random
variables with varianceσ2

1 andσ2
2 respectively. For con-

venience of notation, we shall writeν(i) = 1/σ2
i . Note

that the case of several interference signalss2, . . . , sI
can be reduced, without loss of generality, to that of two
sources only, as we assume in particular that the sources
are not correlated. We would then consider a global in-
terference sourcẽs2 =

∑I
i=2 si, and the variancẽσ2

2

would be equal to
∑I
i=2 σ

2
i .

Denoting byX the spectrogram of the observed sig-
nal, classical Wiener filtering consists in maximizing the
log-likelihood of the STFT coefficientsS1 andS2, which
can be written, under the constraint thatX=S1+S2, as
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a function ofS=S1 only:

L(S) = −1
2
( ∑
ω,t

ν
(1)
ω,t|Sω,t|2 +

∑
ω,t

ν
(2)
ω,t|Xω,t − Sω,t|2

)
+ C(ν(1), ν(2)), (1)

whereC is a constant depending only onν(1), ν(2). In-
troducing the classical Wiener filtering estimate forS1,

Ŝω,t =
ν

(2)
ω,t

ν
(1)
ω,t + ν

(2)
ω,t

Xω,t, (2)

the Maximum-Likelihood problem can be reformulated
as the minimization of the objective function

ψ(S) =
∑
ω,t

αω,t|Sω,t − Ŝω,t|2 (3)

whereαω,t = ν
(1)
ω,t + ν

(2)
ω,t.

2.2 Wiener filtering with consistency constraint

If no further constraint is assumed onS, the objective
function is obviously minimized forS = Ŝ. However,
we need to keep in mind that the STFT is a redundant
representation with a particular structure. Denoting by
N the number of frequency bins andT the number of
frames, STFT spectrograms of time-domain signals are
elements ofCNT , which we shall call “consistent spec-
trograms”, but one of the fundamental points of this pa-
per is that not all elements ofCNT can be obtained as
such [5, 2]. If we assume that inverse STFT is performed
in such a way that there is “perfect reconstruction”, i.e.,
that a signal can be exactly reconstructed from its spec-
trogram through inverse STFT, then we showed in [2]
that a necessary and sufficient condition for an arrayW
to be a consistent spectrogram is for it to be equal to the
STFT of its inverse STFT. The set of consistent spectro-
grams can thus be described as the null space Ker(F) of
theR-linear operatorF from CNT to itself defined by

F(W ) = G(W )−W, (4)

whereG(W ) = STFT(iSTFT(W )).
Going back to the Wiener filtering problem, if we

now impose that the solution be consistent, the prob-
lem amounts to finding a consistent spectrogramS min-
imizing ψ, or in other words to minimizeψ under the
constraint thatF(S) = 0. Imposing consistency is
not a mere elegance or theory-oriented concern, but a
truly fundamental problem. Indeed, the spectrogram of
the signal resynthesized from the classical Wiener filter
spectrogramŜ is actually different in general from̂S,
and is no longer maximizing the Wiener log-likelihood



(or minimizingψ), so that the final result of the process-
ing that we are listening to is in fact not the optimal so-
lution. What we really want to do is to find a signal
in the time domain such that its spectrogram minimizes
the Wiener criterionψ, or, formulating this in the time-
frequency domain, to minimize the following “true” ob-
jective function

ψ̃(S) =
∑
ω,t

αω,t
∣∣G(S)ω,t − Ŝω,t

∣∣2, (5)

whereG(S) is again the spectrogram of the signal resyn-
thesized fromS by inverse STFT. IfS is constrained to
be consistent, then the objective functionsψ̃ andψ are
equal, and one possibility to solve our problem is to min-
imize ψ̃ by minimizingψ under that constraint. Another
one is to solve the problem directly in the time domain,
by considering the signal as the parameter. Yet another
possibility is to relax the consistency constraint by in-
troducing it as a penalty function: if the weight of the
penalty is chosen sufficiently large, or is increased dur-
ing the course of the optimization, the estimated spectro-
gram should finally be both consistent and minimizingψ
among the consistent spectrograms. We shall now inves-
tigate these three possibilities.

3 Optimization algorithms
3.1 Time-domain formulation

The consistent Wiener filtering optimization problem
amounts to minimizing

∑
ω,t αω,t|Sω,t − Ŝω,t|2 on the

subspace of consistent spectrograms, while the prob-
lem of estimating the signal whose STFT spectrogram
is closest to the modified STFT spectrogramŜ amounts
to minimizing

∑
ω,t |Sω,t − Ŝω,t|2 on the same sub-

space [5]. The latter problem can be transformed through
Parseval’s theorem into the minimization of a simple
quadratic form on the time signal parameters, but the
weightsαmake here the computation of the optimal sig-
nal cumbersome as they hinder us from simplifying the
product of the Fourier matrix and its transpose. If we
noteAt theN × N diagonal matrix with diagonal co-
efficientsαω,t, F theN × N Fourier transform matrix,
wt theN ×Lmatrix which computes thet-th windowed
frame of the signalx (of lengthL), and ŝt the inverse
transform of thet-th STFT frame of̂S, then we can show
that the optimal signalx is given by

x̂ =
(∑

t

wHt F
HAtFwt

)−1 ∑
t

wHt F
HAtF ŝt. (6)

If At were not present, as in Griffin and Lim’s case,
then FHF would simplify to N Id and we would
get the simple weighted overlap-add estimationx =∑
t w

H
t ŝt/

∑
t w

H
t wt. However, the simplification can-

not be done in the consistent Wiener filtering problem,
leading to a very large (L×L) matrix inversion problem.
Still, this matrix is band-diagonal (and Hermitian), and
solving the system is possible in a reasonable amount of
time and using a reasonable amount of memory space.
To reduce in particular the memory requirements, we
can split in practice the estimation of the time domain
signal on overlapping blocks of a few frames, and recon-
struct an approximate solution on the whole interval by
overlap-add from the locally optimal signals.

3.2 Operator splitting

If we let f1 = ψ andf2 = iKer(F), whereiKer(F) is the
indicator function of Ker(F) defined byiKer(F)(S) = 0
if F(S) = 0 andiKer(F)(S) = +∞ if F(S) ̸= 0, then
finding a consistent spectrogramS which minimizesψ
amounts to finding the global minimum off1 + f2. f1
and f2 are both proper lower semi-continuous convex
functions. This kind of minimization problem has been
studied in convex optimization theory, and can be ef-
ficiently solved using the so-called Douglas-Rachford
splitting algorithm for monotone operators. We shall re-
fer to [6] for more details and references. For everyS ∈
CNT , the functionZ 7→ 1

2∥Z − S∥
2 + fi(Z) achieves

its infimum at a unique point denoted by proxfi
(S). The

uniquely-valued operator thus defined is called the prox-
imity operator offi. Here, proxβf1 and proxβf2 , where
β > 0 is a constant which will be used later on, can be
explicitely computed:

proxβψ(S)ω,t =
βαω,tŜω,t + 1

2Sω,t

βαω,t + 1
2

, (7)

proxβiKer(F)
(S) = G(S). (8)

Eq. (7) is simply obtained by minimizing a second-order
function; Eq. (8) is obtained by noticing that the mini-
mum of 1

2∥Z−S∥
2+iKer(F)(Z) is an element of Ker(F)

which minimizes∥Z − S∥2, i.e., a consistent spectro-
gram closest toS. As shown by Griffin and Lim [5],
G(S) is such a spectrogram if we assume, as we shall
do, that the inverse STFT is performed using the win-
dowed overlap-add procedure with the synthesis window
before normalization equal to the analysis window. Ap-
plying the Douglas-Rachford splitting to this problem,
we obtain the following algorithm. LetS(0) ∈ CNT ,
β > 0, (λp)p∈N be a sequence in(0, 2) such that∑
p λp(2− λp) = +∞, and define the recursion

S
(p+1)
ω,t = S

(p)
ω,t

+ λp
βαω,t(Ŝω,t − G(S(p)))ω,t) + 1

2F(S(p))ω,t
βαω,t + 1

2

, (9)

thenS(p) → Š andG(Š) is a solution of the consistent
Wiener filtering problem, i.e., it is both consistent and
minimizingψ. If we assume thatλp = 1 and writeγ =
1
2β , then the update becomes

S
(p+1)
ω,t =

αω,t(Ŝω,t−F(S(p)))ω,t)+γG(S(p))ω,t
αω,t + γ

, (10)

which, as we shall see later, is very close to the up-
date obtained when introducing consistency as a penalty
function.

3.3 Consistency as a penalty function

For an array of complex numbersW ∈ CNT , F(W )
represents the relation betweenW and the STFT of its
inverse STFT. Instead of enforcing consistency through
the “hard” constraintF(W ) = 0, which may be dif-
ficult to handle, we can relax that constraint by using
any vector norm ofF(W ) to derive a numerical crite-
rion which can be used to quantify how far an array of
complex numbers is from being consistent. We consider



here in particular theL2 norm ofF(W ), which leads, as
shown in [2], to a criterion which is related to that used
by Griffin and Lim to derive their iterative STFT algo-
rithm [5]. Introducing the consistency penalty in (3), the
new objective function to minimize reads

ψγ(S) = ψ(S) + γ
∑
ω,t

∣∣G(S)ω,t − Sω,t
∣∣2. (11)

An efficient iterative optimization algorithm for
ψγ can be derived through the auxiliary function
method [7]. A functionψ+

γ (S, S̄) verifying ψγ(S) =
minS̄ ψ+

γ (S, S̄), ∀S, is called an auxiliary function for
ψγ(S), andS̄ an auxiliary variable. The minimization
of ψγ can be performed indirectly by alternating mini-
mizations ofψ+

γ w.r.t.S andS̄.
Assuming here again that the synthesis window before

normalization in the inverse STFT is equal to the anal-
ysis window, it results from [5] thatG(S) is the closest
consistent spectrogram toS in a least-squares sense:∑
ω,t

∣∣G(S)ω,t−Sω,t
∣∣2 = min

S̄∈Ker(F)

∑
ω,t

∣∣S̄ω,t−Sω,t∣∣2, ∀S.
(12)

If we now define the functionψ+
γ : CNT ×Ker(F)→ R

such that∀S ∈ CNT ,∀S̄ ∈ Ker(F),

ψ+
γ (S, S̄) = ψ(S) + γ

∑
ω,t

∣∣Sω,t − S̄ω,t∣∣2, (13)

we easily see from (12) thatψ+
γ is an auxiliary function

for ψγ . This leads to an iterative optimization scheme
in which, starting at stepp from a spectrogramS(p), S̄
is first updated toG(S(p)), and the new estimateS(p+1)

is simply estimated as the minimum of a second-order
form with diagonal coefficients, altogether resulting in
the following update equation:

S
(p+1)
ω,t ←

αω,tŜω,t + γG(S(p)
ω,t)

αω,t + γ
. (14)

We note that this update is very close but slightly dif-
ferent from the update (10) obtained through the appli-
cation of the Douglas-Rachford splitting.

4 Experimental evaluation
4.1 Settings and implementations

The sampling rate was16 kHz. All the spectrograms
considered were built with a frame lengthN = 1024,
a frame shiftR = 512 if not specified, and with a sine
window for both analysis and synthesis.

The time-domain method was implemented as fol-
lows: the analytical solution is computed separately on
blocks of 64 STFT frames; the blocks have a50 % over-
lap, and the resulting short-time signals are cross-faded
on a small region (here 16 frames) around the center
of the overlap regions in order to throw away portions
of signal near the block boundaries, as we can expect
them to suffer from boundary effects. The above values
for the block size and the amount of overlap and cross-
fade were determined experimentally so as to minimize
computation and memory costs while still obtaining so-
lutions with a true Wiener criterion very close to that of
the analytical solution computed on the whole interval.

Table 1 Performance comparison results
Time (s) ψ̃ SNR (dB)

Wiener 0.1 1.91× 106 15.2
Griffin-Lim 148.5 3.85× 108 9.9
Time domain 794.8 2.76× 104 17.8
Splitting 133.7 2.90× 104 16.1
Penalty 6.8 2.90× 104 17.2

For both the splitting algorithm and the penalty-based
algorithm, heuristically, the largerγ, the slower the con-
vergence, but the better the solution. For the penalty
function algorithm, we noticed experimentally that the
criterion ψ̃ monotonically decreased through the up-
date (14) withγ fixed when starting from a point ob-
tained through updates with a smallerγ. We thus de-
signed an automatic update scheme forγ: starting from
a very small valueγ0 (typically 10−5) for γ, we update
S through (14) while slightly increasingγ by δ (initially
set toγ0 as well) until the decrease of̃ψ becomes slower
than1 %, in which case we updateδ to 2δ and restart the
S updates. The algorithm stops after two increases of
δ without significant improvement of̃ψ, which typically
occurred after around 200 iterations. The monotonical
decrease behavior was not as obvious for the splitting
algorithm, and we thus ran it for4000 iterations with a
largeγ experimentally fixed to104.

4.2 Separation under oracle conditions

We evaluate here the performance of the proposed
methods in terms of computation time and final value
of the “true” Wiener criterionψ̃ for the separation of a
5.5 s mixture of two female speakers under oracle con-
ditions, i.e., assuming that the true power spectrograms
of both sources are known. For comparison, we also
give the results for the classical Wiener filter outputŜ
(“Wiener”) and for the spectrogram whose magnitude is
closest to the magnitude of the classical Wiener filter,
computed through Griffin and Lim’s phase reconstruc-
tion algorithm ran for4000 iterations (“Griffin-Lim”).
This way of obtaining a consistent spectrogram through
post-processing of the classical Wiener filter magnitude
seems indeed a natural method to attempt.

The results are summarized in Table 1. Although the
performance of the classical Wiener filter is already very
good, we can see that the proposed methods all lead to
significant improvements in both the true Wiener crite-
rion ψ̃ and the signal-to-noise ratio (SNR), while simply
reconstructing the phase as a post-processing does not
solve the problem (higher̃ψ, lower SNR). The increase
in SNR may not seem straightforward, but it can be un-
derstood as a result of the fact that with our methods the
spectrogram of the resynthesized signal is closer to the
intended ML solution. Computation of the analytical so-
lution in the time domain is very costly, but enables us to
see that the solution obtained in much less time with the
penalty-based algorithm is close to optimal. We will use
this algorithm for the noise reduction experiments below.

We also studied the influence of the frame shift on
performance. Results are summarized in Table 2. We
can see that the SNR increases with the amount of over-
lap between frames, especially for the analytical solu-



Table 2 Evolution of SNR (dB) w.r.t. overlap
50 % 75 % 87.5 %

Wiener 15.2 15.6 15.6
Griffin-Lim 9.9 12.4 12.5
Time domain 17.8 19.4 20.3
Splitting 16.1 16.5 16.7
Penalty 17.2 17.7 17.9

Table 3 SNR (dB) of the denoised speech
Initial SNR −10 dB 0 dB 10 dB
Oracle Wiener 9.6 14.6 20.5

Penalty 10.5 15.6 21.4
Variance Wiener 8.8 13.8 19.8

Penalty 8.9 14.0 20.1
Subtraction Wiener -3.0 6.5 15.3

Penalty 4.1 10.3 17.0

tion. This could be expected as consistency constraints
become stronger when overlap increases. Computation
time of course also increases with the amount of overlap,
roughly linearly with the total number of spectrogram
frames for all the methods.

4.3 Noise reduction experiments

We performed noise reduction experiments on speech
by a female speaker mixed with Gaussian white noise,
under three conditions: 1) the power spectrograms of
both the speech and noise are known (“oracle”); 2) the
power spectrogram of speech is known, while only the
variance of the noise is known (“variance”); 3) only vari-
ance of the noise is known, and the power spectrogram
of speech is estimated by spectral subtraction (“subtrac-
tion”) [8]. We compare here the penalty-based algorithm
with the classical Wiener filter for three initial SNR set-
tings: −10 dB, 0 dB and10 dB. Average results on10
different noise signals for each SNR are summarized in
Table 3. We can see that using the penalty-based al-
gorithm leads to significant improvements in particular
in the spectral subtraction condition, which is also the
most realistic. Perceptually, although musical noise is
still strong, the residual noise present in the Wiener filter
estimate is much weaker in the penalty-based one. Fig. 1
shows the spectrograms of the noisy speech for 0 dB
SNR (top), of the denoised speech obtained using clas-
sical Wiener filter (middle) and of the denoised speech
obtained using the penalty-based updates (bottom). We
believe that the very important improvements obtained
with our method constitute a major result.

5 Conclusion
We presented a new framework for Wiener filtering

and more generally time-frequency masking which takes
into account the consistency of spectrograms to compute
the true optimal solution to the Wiener filtering problem.
We presented three methods to find optimal or near opti-
mal solutions, investigated their performance in compar-
ison with previous works, and showed in particular that
our method combined with spectral subtraction outper-
forms classical Wiener filtering. Future works include
the reduction of computation time by combining this
work with the fast approximations investigated in [9].
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Fig. 1 Example of speech denoising.

References

[1] E. J. Diethorn, “Subband noise reduction meth-
ods for speech enhancement,” inAudio Signal Pro-
cessing for Next-Generation Multimedia Commu-
nication Systems, Y. Huang and J. Benesty, Eds.
Kluwer, 2004, pp. 91–115.

[2] J. Le Roux, N. Ono, and S. Sagayama, “Explicit con-
sistency constraints for STFT spectrograms and their
application to phase reconstruction,” inProc. SAPA,
Sep. 2008, pp. 23–28.

[3] J. Le Roux, H. Kameoka, E. Vincent, N. Ono,
K. Kashino, and S. Sagayama, “Complex NMF un-
der spectrogram consistency constraints,” inProc.
ASJ Autumn Meeting, no. 2-4-5, Sep. 2009.

[4] H. Kameoka, N. Ono, K. Kashino, and S. Sagayama,
“Complex NMF: A new sparse representation for
acoustic signals,” inProc. ICASSP, Apr. 2009,
pp. 3437–3440.

[5] D. W. Griffin and J. S. Lim, “Signal estimation from
modified short-time Fourier transform,”IEEE Trans.
ASSP, vol. 32, no. 2, pp. 236–243, Apr. 1984.

[6] P. L. Combettes and J.-C. Pesquet, “A Douglas-
Rachford splitting approach to nonsmooth convex
variational signal recovery,”IEEE J. STSP, vol. 1,
no. 4, pp. 564–574, Dec. 2007.

[7] D. D. Lee and H. S. Seung, “Algorithms for non-
negative matrix factorization,” inProc. NIPS*2000.
The MIT Press, 2001, pp. 556–562.

[8] S. Boll, “Suppression of acoustic noise in speech us-
ing spectral subtraction,”IEEE Trans. ASSP, vol. 27,
pp. 113–120, Apr. 1979.

[9] J. Le Roux, H. Kameoka, N. Ono, and S. Sagayama,
“Fast phase estimation algorithms based on spec-
trogram consistency,” inProc. ASJ Spring Meeting,
no. 3-5-2, Mar. 2010.


