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Complex NMF under spectrogram consistency constraints ∗

◎ Jonathan Le Roux, Hirokazu Kameoka (NTT CS Labs),
Emmanuel Vincent (INRIA), Nobutaka Ono (The University of Tokyo),

Kunio Kashino (NTT CS Labs) and Shigeki Sagayama (The University of Tokyo)

1 Introduction

Many audio signal processing algorithms rely on
the estimation of magnitude or complex short-time
Fourier transform (STFT) spectrograms, but usu-
ally do not take into account the necessity for the es-
timated spectrograms to be consistent, i.e., to corre-
spond to the STFT of a real-valued time-domain sig-
nal. Consistency constraints were introduced in [1]
and applied there to phase reconstruction from mag-
nitude spectrograms. In this paper, we show how
to use them to introduce penalty functions on the
consistency of STFT spectrograms into the recently
introduced complex non-negative matrix factoriza-
tion (NMF) framework [2], which estimates recur-
ring patterns in the observed magnitude spectra,
their activations and their phases. We derive ana-
lytical update equations through an auxiliary func-
tion approach, and present preliminary results on a
supervised monaural source separation task.

2 Presentation of the model

The complex NMF model is a mixture model de-
fined in the complex time-frequency domain. We
assume that the modeled spectrogram Fω,t in fre-
quency bin ω and time frame t is the sum of K
component spectrograms W k

ω,t expressed as

W k
ω,t = Hk

ωUk
t ejϕk

ω,t , (1)

where Hk
ω ≥ 0 corresponds to recurring magnitude

spectral patterns, Uk
t ≥ 0 to time-varying activa-

tion coefficients and ϕk
ω,t to time-varying phase spec-

tra. Hk
ω is normalized to avoid scaling ambiguities:

∀k,
∑

ω Hk
ω = 1. The problem is now, given an ob-

served spectrogram Yω,t, to estimate the optimal
parameters θ = {H, U, ϕ} of the model. It was for-
mulated in [2] as the minimization of the L2 norm
between the observation and the model with a gen-
eralized Gaussian prior on U to promote sparsity.

We further introduce consistency penalty func-
tions on each W k. Let w and s be analysis and
synthesis windows of length N verifying the perfect
reconstruction conditions 1 =

∑Q−1
q=0 w(t− qR)s(t−

qR), ∀t, for a frame shift R, where Q = N/R. One
can show [1] that the set of consistent spectrograms
is the kernel of the R-linear operator from CMN (M
denoting the number of frames) to itself defined by
Fw,s(W ) = (STFTw ◦ iSTFTs − IMN )(W ). (2)

We use the L2 norm of Fw,s(W k) as a penalty to
promote consistency on each separated spectrogram.
The problem becomes that of minimizing
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f(θ) = ||Y − F ||2 + 2λ
∑
k,t

|Uk
t |p + γ

∑
k

||F(W k)||2,

where p is a shape parameter which promotes spar-
sity for 0 < p < 2, and λ and γ are prior weights.

3 Optimization

The optimization of the complex NMF model pa-
rameters was performed in [2] through an efficient
iterative algorithm based on an auxiliary function
approach. We derive here an auxiliary function for
the new consistency term.

Let (Aω,t
ω′,t′) be the matrix representation of F .

We then have F(W )ω,t =
∑

ω′,t′ Aω,t
ω′,t′Wω′,t′ . For

any auxiliary variables Z̄ω,t,k
ω′,t′ , Ȳ k, Ūk

t s.t. ∀ω,t,k,∑
ω′,t′ Z̄ω,t,k

ω′,t′ = 0,
∑

k Ȳ k
ω,t = Yω,t, Ūk

t ∈ R, and for
any βk

ω,t > 0, δω,t,k
ω′,t′ > 0 s.t. ∀ω,t,k,

∑
ω′,t′ δω,t,k

ω′,t′ = 1,∑
k βk

ω,t = 1, we can show that f(θ) ≤ f+(θ, θ̄) with
the auxiliary function f+ defined as

f+(θ, θ̄) =
∑
k,ω,t

|Ȳ k
ω,t −Hk

ωUk
t ejϕk

ω,t |2

βk
ω,t

+ λ
∑
k,t

(
p|Ūk

t |p−2(Uk
t )2 + (2− p)|Ūk

t |p
)

+ γ
∑

k,ω,t,ω′,t′

1

δω,t,k
ω′,t′

∣∣∣Z̄ω,t,k
ω′,t′ −Aω,t

ω′,t′H
k
ω′Uk

t′e
jϕk

ω′,t′
∣∣∣2, (3)

and θ̄ = {Ȳ , Ū , Z̄}. f+ is minimized w.r.t. θ̄ when

Ȳ k
ω,t = Hk

ωUk
t ejϕk

ω,t + βk
ω,t(Yω,t − Fω,t)

Ūk
t = Uk

t

Z̄ω,t,k
ω′,t′ = Aω,t

ω′,t′H
k
ω′Uk

t′e
jϕk

ω′,t′ − δω,t,k
ω′,t′ (F(W k))ω,t.

The update equation for ϕ can be obtained as

ϕk
ω,t ← Arg

( Ȳ k
ω,t

βk
ω,t

+ γ
(
ak

ω,tW
k
ω,t − (FHF(W k))ω,t

))
(4)

where ak
ω′,t′ =

∑
ω,t |A

ω,t
ω′,t′ |2/δω,t,k

ω′,t′ and FH denotes
the Hermitian adjoint of F , which can be computed
very efficiently by noticing that FH

w,s = Fs,w.
If we assume that first Ȳ then Ū then ϕ have

been updated, and if we note X̄k the term inside
the argument in Eq. (4), then the updates for H
and U become:

Hk
ω ←

Re
[∑

t |X̄k
ω,t|Uk

t

]∑
t(

1
βk

ω,t
+ γak

ω,t)|Uk
t |2

, (5)

Uk
t ←

Re
[∑

ω |X̄k
ω,t|Hk

ω

]∑
ω( 1

βk
ω,t

+ γak
ω,t)|Hk

ω|2 + λp|Ūk
t |p−2

. (6)



As in [2], βk is set to |W k|/
∑

n |Wn|. In order
for the update equations to be tractable, we need to
avoid the direct computation of δ when computing
ak

ω,t. If we consider δω,t,k
ω′,t′ = |Aω,t

ω′,t′ |q/
∑

ω′,t′ |A
ω,t
ω′,t′ |q

where q > 0 is a tunable exponent, and notice [1]
that |Aω,t

ω′,t′ | = |α(ω−ω′, t−t′)| where the coefficients
α depend on the windows w and s, then

ak
ω,t =

∑
ω′,t′

|α(ω′, t′)|2−q
∑
ω′,t′

|α(ω′, t′)|q = a. (7)

Intuitively, a acts as a learning weight in Eq. (4):
the larger a, the slower ϕ will move from its cur-
rent value. As convergence is guaranteed anyway,
we should thus look for a as small as possible, which
is the case for q = 1, where we have a = (

∑
|α|)2.

4 Phase reconstruction

Phase reconstruction with a given magnitude M
can be considered as a particular case of the present
framework. With W = Mejϕ, minimizing ||F(W )||2
gives the following update equation for ϕ:

ϕ← Arg
(
aW −FHF(W )

)
. (8)

It is interesting to note the link with the classical
update by Griffin and Lim [3], which can be written

ϕ← Arg
(
W + F(W )

)
, (9)

If w = s (e.g., for the sine window), then FH = F
and one can see that FHF(W ) = −F(W ). The only
difference is then the a factor. We have not been
able so far to find a setting for δ leading to a equal
to or close to 1, and noticed through experiments
that, due to that factor, Griffin and Lim’s update
was faster than the auxiliary approach one in terms
of the decrease of inconsistency per iteration. We
plan to investigate this issue in the future.

5 Experimental evaluation

We illustrate our method on a supervised speech-
music source separation task in monaural conditions
considered by Smaragdis [4]. Spectral bases are pre-
trained on data from various sound classes with dif-
ferent spectral properties, fixed and used on mix-
tures of sounds from different classes to separate
them. We use here chime sounds and speech uttered
by a male speaker from the TIMIT database [4].

We trained 20 bases with classical NMF on 10 s of
chime and speech data respectively. The sampling
frequency was 16 kHz, and the spectrograms were
built with a 32 ms length sine window and a 16 ms
frame shift. We then concatenated the two bases
and used 5 s of other parts of the chime and speech
data to create a 0 dB mixture on which we tested our
method, the original complex NMF without consis-
tency constraints and the classical NMF. The goal
of these experiments was to determine whether the
consistency constraints helped improve the perfor-
mance in a very simple setting. The sparsity param-
eters were set as in [2], the consistency parameter γ
to 1 and a to (

∑
|α|)2 ≈ 4.565. U was initialized
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Fig. 1 Evolution of the components of the objec-
tive function: least-square and sparsity error (left),
inconsistency (right).
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Fig. 2 Example of chime-speech separation: mix-
ture (left), separated chime (top right) and sepa-
rated speech (bottom right).

randomly, ejϕk
ω,t initially set to Yω,t/|Yω,t| and H

fixed to the concatenation of the trained bases.
We tested three different settings: our algorithm

by itself for 100 iterations; our algorithm after 500
iterations of the NMF algorithm; and finally our al-
gorithm after 100 iterations of the original complex
NMF. Each time, we computed the SNR of the sep-
arated sources. Our algorithm alone led to an im-
provement of +11.4 dB for the chime sounds and
+9.71 dB for speech. After NMF converged and
led to an improvement of +12.7 dB and +6.6 dB re-
spectively, 50 iterations of our algorithm further im-
proved the results to +13.1 dB and +9.8 dB. Finally,
after complex NMF converged and led to improve-
ments of +13.1 dB and +7 dB, 100 iterations of our
algorithm led to +12 dB and +10 dB. The evolu-
tion of the various terms of (3) is shown in Fig. 1,
and the final separation results in Fig. 2. The in-
troduction of the consistency constraints after 100
iterations can be clearly seen. Altogether, we see
that introducing the consistency constraints seemed
to enable further improvements in the results ob-
tained by NMF and complex NMF in terms of SNR
on this task. We need to investigate their behavior
more thoroughly in the future.
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