Extension of sparse, adaptive signal decompositions to semi-blind audio source separation

Andrew Nesbit 1 Emmanuel Vincent 2 Mark Plumbley 1
2 METISS - Speech and sound data modeling and processing
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : We apply sparse, fast and exible adaptive lapped orthogonal transforms to underdetermined audio source separation using the time-frequency masking framework. This normally requires the sources to overlap as little as possible in the time-frequency plane. In this work, we apply our adaptive transform schemes to the semi-blind case, in which the mixing system is already known, but the sources are unknown. By assuming that exactly two sources are active at each time-frequency index, we determine both the adaptive transforms and the estimated source coefficients using l1 norm minimisation. We show average performance of 12-13 dB SDR on speech and music mixtures, and show that the adaptive transform scheme offers improvements in the order of several tenths of a dB over transforms with constant block length. Comparison with previously studied upper bounds suggests that the potential for future improvements is significant.
Type de document :
Communication dans un congrès
8th Int. Conf. on Independent Component Analysis and Signal Separation (ICA), Mar 2009, Paraty, Brazil. pp.605--612, 2009
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00544153
Contributeur : Emmanuel Vincent <>
Soumis le : mardi 7 décembre 2010 - 13:57:19
Dernière modification le : mercredi 16 mai 2018 - 11:23:03
Document(s) archivé(s) le : mardi 8 mars 2011 - 04:18:50

Fichier

nesbit_ICA09.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : inria-00544153, version 1

Citation

Andrew Nesbit, Emmanuel Vincent, Mark Plumbley. Extension of sparse, adaptive signal decompositions to semi-blind audio source separation. 8th Int. Conf. on Independent Component Analysis and Signal Separation (ICA), Mar 2009, Paraty, Brazil. pp.605--612, 2009. 〈inria-00544153〉

Partager

Métriques

Consultations de la notice

276

Téléchargements de fichiers

251