Robust modeling of musical chord sequences using probabilistic N-grams

Ricardo Scholz 1 Emmanuel Vincent 1 Frédéric Bimbot 1
1 METISS - Speech and sound data modeling and processing
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : The modeling of music as a language is a core issue for a wide range of applications such as polyphonic music retrieval, automatic style identification, audio to symbolic music transcription and computer-assisted composition. In this paper, we focus on the modeling of chord sequences by probabilistic N-grams. Previous studies using these models have achieved limited success, due to overfitting and to the use of a single chord labeling scheme. We investigate these issues using model smoothing and selection techniques initially designed for spoken language modeling. This approach is evaluated over a set of songs by The Beatles, considering several chord labeling schemes. Initial results show that the accuracy of N-grams is increased but that additional improvements may still be achieved in the future using more advanced, possibly music-specific, smoothing techniques.
Type de document :
Communication dans un congrès
2009 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Apr 2009, Taipei, Taiwan. pp.53--56, 2009
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00544166
Contributeur : Emmanuel Vincent <>
Soumis le : mardi 7 décembre 2010 - 14:12:02
Dernière modification le : mercredi 16 mai 2018 - 11:23:03
Document(s) archivé(s) le : mardi 8 mars 2011 - 04:21:01

Fichier

scholz_ICASSP09.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : inria-00544166, version 1

Citation

Ricardo Scholz, Emmanuel Vincent, Frédéric Bimbot. Robust modeling of musical chord sequences using probabilistic N-grams. 2009 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Apr 2009, Taipei, Taiwan. pp.53--56, 2009. 〈inria-00544166〉

Partager

Métriques

Consultations de la notice

255

Téléchargements de fichiers

310