Performance measurement in blind audio source separation

Emmanuel Vincent 1 Rémi Gribonval 2 Cédric Févotte 3
2 METISS - Speech and sound data modeling and processing
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : In this article, we discuss the evaluation of Blind Audio Source Separation (BASS) algorithms. Depending on the exact application, different distortions can be allowed between an estimated source and the wanted true source. We consider four different sets of such allowed distortions, from time-invariant gains to time-varying filters. In each case we decompose the estimated source into a true source part plus error terms corresponding to interferences, additive noise and algorithmic artifacts. Then we derive a global performance measure using an energy ratio, plus a separate performance measure for each error term. These measures are computed and discussed on the results of several BASS problems with various difficulty levels.
Type de document :
Article dans une revue
IEEE Transactions on Audio, Speech and Language Processing, Institute of Electrical and Electronics Engineers, 2006, 14 (4), pp.1462--1469
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00544230
Contributeur : Emmanuel Vincent <>
Soumis le : mardi 7 décembre 2010 - 15:14:51
Dernière modification le : mercredi 16 mai 2018 - 11:23:03
Document(s) archivé(s) le : mardi 8 mars 2011 - 04:33:57

Fichier

vincent_TASLP06bis.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : inria-00544230, version 1

Citation

Emmanuel Vincent, Rémi Gribonval, Cédric Févotte. Performance measurement in blind audio source separation. IEEE Transactions on Audio, Speech and Language Processing, Institute of Electrical and Electronics Engineers, 2006, 14 (4), pp.1462--1469. 〈inria-00544230〉

Partager

Métriques

Consultations de la notice

564

Téléchargements de fichiers

11775