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ABSTRACT

We consider the problem of convolutive blind source sep-
aration of audio mixtures. We propose an Adaptive Stereo
Basis (ASB) method based on learning a set of basis vec-
tors pairs from the time-domain stereo mixtures. The basis
vector pairs are clustered using estimated directions of ar-
rival (DOAs) such that each basis vector pair is associated
with one source. The ASB method is compared with the
DUET algorithm on convolutive speech mixtures at dif-
ferent reverberation times and noise levels.

1 INTRODUCTION

The convolutive blind audio source separation problem
arises when an array of sensor microphones is placed in
a room, so that as well as recording a mixture of the
source signals, multipath copies of the sources are also
present. Many methods have been proposed for convolu-
tive source separation, including time-domain deconvolu-
tion and frequency-domain ICA [8].

One approach that has been found to be successful
in practical blind audio source separation applications is
the degenerate unmixing estimation technique (DUET)
[5]. DUET is a time-frequency (TF) masking method de-
signed to address the underdetermined blind source sepa-
ration (BSS) problem, where there are fewer mixtures than
sources. It separates an arbitrary number of source sig-
nals from two mixtures [5], under the assumption that in
the time-frequency domain each time-frequency point of a
mixture signal is due only to one of the sources, a property
denoted as W-disjoint orthogonality [10]. To estimate the
dominating source at each time-frequency point, DUET
assumes anechoic mixing,i.e. that only delays and atten-
uations are present in the mixture, with no echoes.

We proposed an approach to convolutive audio BSS
[2], using ideas of signal transforms and masking similar
to that used in DUET, but instead of using a fixed trans-
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form we use an adaptive dictionary of stereo basis vec-
tors. The method applies independent component analysis
(ICA) to the observed time-domain data to find a set of ba-
sis functions (dictionary elements), and then assigns each
basis function to one of the sources present in the sound
field using a dependency analysis. In [4], this approach
is modified, so that clustering is performed based on the
estimated direction of arrival (DOA) of the sources. We
call this the Adaptive Stereo Basis (ASB) method.

In this paper, our proposed ASB approach [4] is com-
pared to the DUET algorithm, and computer simulations
are carried out to assess their performance. The convolu-
tive BSS problem is described in section 2, and the DUET
is discussed in section 3, while the ASB method is sum-
marised in section 4. The performance of ASB and DUET
algorithm are compared in section 5, followed by discus-
sion and conclusions.

2 PROBLEM FORMULATION

The convolutive blind source separation problem arises
when a set of observations each contain mixtures of the
original source signals, at several delay times and ampli-
tude levels, as well as multipath copies of the sources, dis-
torted by the environment [8]. In audio, this is the typical
situation for recordings in an echoic room. This mixing
system can be modelled by

xq(n) =

P
∑

p=1

Lm−1
∑

l=0

aqp(l)sp(n − l), q = 1, . . . , Q

(1)
wherexq(n) is the signal recorded at theq-th microphone
at timen, sp(n) is thep-th source signal,aqp(l) denotes
the impulse response from sourcep to sensorq, andLm is
the maximum length of all impulse responses. The aim of
convolutive blind source separation is to recover the orig-
inal source signalssp(n) given only the mixturesxq(n).

3 DUET ALGORITHM

DUET uses the short-time Fourier transform (STFT) to
separate an arbitrary number of source signals from two
mixtures [5]. DUET assumes that the sources are W-
disjoint orthogonal,i.e. that each STFT time-frequency
point of a mixture signal is due only to one of the sources



[10]. An anechoic mixing model is assumed, given by

xq(n) =

P
∑

p=1

αqpsp(n − δqp), q = 1, 2 (2)

whereαqp andδqp are the attenuation and time delay co-
efficients associated with the path between thep-th source
and theq-th sensor [14]. Fixingα1p = 1 andδ1p = 0, ∀p,
for the first mixture, the subscriptq (= 2) for the re-
maining parameters can be dropped [5]. The parame-
ters for the dominating source in time-frequency bin(f, t)

can be estimated bŷα(f, t) =
∣

∣

∣

x2(f,t)
x1(f,t)

∣

∣

∣
and δ̂(f, t) =

− 1
2πf

∠

(

x2(f,t)
x1(f,t)

)

, where∠(·) denotes the phase of a com-

plex number taken between−π andπ. A weighted two-
dimensional histogram is then produced, with the num-
ber of sources estimated from the number of peaks, and
the position of the peaks determining the parameters for
each source. Binary masks are used to perform separa-
tion, based on the proximity of each time-frequency point
to the peak corresponding to that source [14].

With microphone spacing larger than half the wave-
length of the maximum audio frequency, the estimation
of δ(f, t) has a phase ambiguity [14], due to equivalent
phase differences of multiples of2π. Thus, the original
algorithm was designed under the assumption that sensor
spacing is small enough not to introduce these ambigui-
ties.

4 ADAPTIVE STEREO BASIS
APPROACH

Studies of time-domain analysis of sounds using indepen-
dent component analysis (ICA) in [1] and [7] reported
that features (basis vectors) learned from speech signals
are mostly well localised in time and frequency, yielding
representations that exhibit both wavelet- and Fourier-like
bases, depending on the characteristics of the data. In [2]
this analysis was extended to stereo audio observations,
where it was observed that each learned basis vector pair
appeared to correspond to a single source.

In our proposed ASB method, we take frames of
the observed vectorsx(n) and reshaped into a matrix̃X
where each column is a stereo frame pair [4]. The basis
vectors are learned with the ICA algorithm

∆B = η
(

I − E{f(u)uT }
)

B (3)

whereB ∈ R
K×K is a separating matrix givingu = BX̃,

η is the learning rate, andf(u) = −∆u log p(u) is the
activation function, with priorp(u) =

∏P

p=1 p(up). We
use a generalized exponential priorp(cp) ∝ exp(−|cp|

α),
with α estimated through maximum likelihood [2]. The
basis vector pairs are extracted from the columns ofB

−1.
For details, see [4].

Figure 1 shows some of the basis vectors (columns of
B

−1) obtained from two mixtures of male speech signals,
as described in more detail in section 5.

Most of the basis vectors are localised in time, allow-
ing the relative delay to be estimated (Fig. 2). We esti-

Figure 1: Examples of basis vectors extracted with the
stereo sparse coding algorithm.

Figure 2: Basis vector pair showing relative time delay.

mate the relative time delay using the GCC-PHAT algo-
rithm [6], corresponding to a direction of arrival (DOA)
for a particular source [4]. Figure 3 depicts the time-delay
estimates obtained with this method. It shows that ASB
correctly identifies the directions of the two sources (cor-
responding to a delay of about9 and−9 samples), and
most basis functions are associated with one of the direc-
tions of arrival. We cluster the basis functions according to
the associated direction of arrival. Finally we separate the
source by selecting only those output componentsu corre-
sponding to the source of interest, and invert the transform
to recover the source at the microphones [4].

5 EVALUATION

We evaluated DUET and ASB on several signals contain-
ing two male speech signals, sampled at 16 kHz and with
a duration of 1 minute. To allow precise control of the Re-
verberation Time (RT) and the Input Signal-to-Noise Ra-
tios (ISNR), we used simulated room impulse responses.
These were determined by the image technique [11] using
the Rir Matlab function1.

The positions of the microphones and the loudspeak-
ers are illustrated in Figure 4. Six different mixing con-
ditions were obtained by varying RT between 20 ms (320
samples), 80 ms (1300 samples), and 320 ms (5100 sam-
ples), and adding white noise to the mixture with ISNRs
of 40 dB and 20 dB. The frame length was set to 1024
samples for DUET and 512 samples for ASB. Excerpts
of the original mixture and source signals and of the es-
timated source signals are available for listening on our
demo webpage2.

1http://2pi.us/code/rir.m
2http://www.elec.qmul.ac.uk/people/mariaj/asbdemo/
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Figure 3: Time delays estimated for all basis vectors (up-
per plot), and histogram (lower plot).
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Figure 4: Experimental setup for simulated speech record-
ings. The reverberation times were set to 20 ms, 80 ms and
320 ms, respectively.

We evaluated the performance of each method using
the criteria of Signal-to-Distortion Ratio (SDR), Signal-
to-Interference Ratio (SIR), Signal-to-Noise Ratio (SNR)
and Signal-to-Artifacts Ratio (SAR) defined in [12]. SDR
measures the difference between an estimated source and
a target source in terms of a power ratio, allowing limited
linear distortion. In our evaluations, we allowed for time-
invariant filter distortions of length 1024 samples. SIR,
SNR and SAR provide a more detailed diagnosis of the
performance by distinguishing difference due to interfer-
ing sources, remaining noise and other distortions. These
criteria were measured on source images at the micro-
phones, to avoid problems with spectral shape ambiguity
[9], and we averaged across all sources and microphones
to obtain single performance figures.

Results are presented in Table 1. At low reverber-
ation times (RT=20 ms) we can see that ASB outper-
forms DUET by more than 7 dB SDR in clean conditions
(ISNR=40 dB), and by about 2 dB SDR in more noisy
conditions (ISNR=20 dB). However, the performance of
ASB degrades faster than the DUET algorithm in the pres-

ence of reverberation (RT=320 ms). In noisy reverberant
conditions (ISNR=20 dB, RT=320 ms), the clustering al-
gorithm associated with ASB failed to find both source
directions, resulting in a negative SDR. We investigated
using supervised clustering for ASB, using the known de-
lays. This improved the performance of ASB slightly in
noisy reverberant conditions, but did not change the per-
formance significantly in other conditions. The general
degradation of the performance of ASB in the presence of
reverberation may be due to the relatively short frame size
of 512 samples, instead of 1024 samples for DUET.

6 DISCUSSION

ASB and DUET are based on a similar approach. A trans-
formation is applied on the observed data in order to find
a set of basis vectors, followed by clustering to associate
each vector with a source. Both methods exploit direc-
tional information to perform separation. However, ASB
is based on an adaptive transform, such that the basis vec-
tors are estimated from the data, while DUET uses a fixed
transform (the STFT). Thus, ASB has the potential to pro-
vide a sparser representation of the data, which may help
separation. DUET and ASB achieve separation by explic-
itly clustering the dictionary elements, the former accord-
ing to phase and amplitude information, and the latter ac-
cording to phase only. In DUET the separation is achieved
by time-frequency masking,i.e. masking each(f, t) point
separately, while in ASB the masking depends on the ba-
sis vector only, not on the time frame.

DUET was designed under the assumption that the
microphone separation,d, is small enough so that am-
biguities do not arise in its narrowband phase estimation
method [14]. However, this is an assumption that cannot
always be satisfied [13]. ASB does not appear to suffer
from this phase ambiguity problem, since the basis vec-
tors are typically more wideband, and the GCC-PHAT al-
gorithm [6] we use to estimate the phase delays normally
produces a unique and sharp delay estimate.

It was found in [14] that, at a sampling rate of 16kHz,
a window length of 1024 provided the best performance
with DUET, On the other hand, ASB was found to pro-
vide good separation with shorter frame sizes (e.g. 512
samples, as used here), at least in less reverberant condi-
tions. Learning basis sets in much longer frame sizes in
ASB is currently very computationally expensive.

ASB does not use any assumptions regarding the mix-
ing channel, but relies on the learned basis pairs capturing
the nature of the channel. While this should make it robust
to dealing with reverberation, its performance on longer
reverberation times is currently poor. This seems to be
due to the current frame size limitations, in that perfor-
mance appears to decreases when the reverberation time
significantly exceeds the frame size. This emphasizes the
need for more efficient methods of adapting the stereo ba-
sis for larger frame sizes. In future work we plan to inves-
tigate alternative dictionary learning methods such as the
K-SVD [3].



Table 1: Performance of DUET and ASB with default frame sizeson simulated speech recordings. All values are ex-
pressed in decibels (dB). Bold numbers indicate the best SDRfor each mixing condition. See text for comments.

Mixing
conditions

ISNR 40 dB 20 dB
RT 20 ms 80 ms 320 ms 20 ms 80 ms 320 ms

DUET

SDR 7.9 8.2 5.3 6.3 5.7 3.5
SIR 13.4 13.8 10.0 14.7 12.7 8.9
SNR 21.0 21.0 20.3 11.8 11.8 11.5
SAR 10.3 10.2 7.9 9.3 9.0 7.3

ASB

SDR 15.4 7.7 1.3 8.3 6.8 -4.2
SIR 25.7 16.3 8.9 19.7 17.8 7.4
SNR 20.2 28.0 22.9 12.5 26.3 16.9
SAR 18.2 9.8 4.2 12.6 7.5 -2.1

7 CONCLUSIONS

The performance of our proposed adaptive stereo basis
(ASB) algorithm was compared to that of the DUET algo-
rithm, for speech signals mixed in simulated rooms. The
proposed ASB method performs well in small to medium
reverberation times. However, its performance degrades
significantly in more reverberant conditions (RT=320 ms),
most likely due to the frame size used (512 samples = 32
ms at 16 kHz).

In future we plan to investigate the use of longer frame
sizes in ASB on longer frame sizes, to attempt to improve
its performance with longer reverberation times. For com-
putational reasons this will require more efficient dictio-
nary learning methods, either through introducing some
structure into the basis, or through alternative methods
such as K-SVD [3]. We will also investigate the algorithm
performance on overcomplete mixtures, since the basis set
clustering is not theoretically limited to the same number
of sources as sensors.
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