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Abstract: We study the asymptotic behavior of the maximum likelihood estimator cor-
responding to the observation of a trajectory of a Skew Brownian motion, through a
uniform time discretization. We characterize the speed of convergence and the limiting
distribution when the step size goes to zero, which in this case are non-classical, under
the null hypothesis of the Skew Brownian motion being an usual Brownian motion. This
allows to design a test on the skewness parameter. We show that numerical simulations
can be easily performed to estimate the skewness parameter, and provide an application
in Biology.
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1 Introduction
The Skew Brownian Motion (SBm) has attracted interest within other facts, due to its re-
lations with diffusions with discontinuous coefficients or to media with permeable barriers,
being the first example of the solution of a stochastic differential equation with the local
time of the solution as drift (Harrison & Shepp, 1981): the SBm X = fXt : 0 � t � Tg
can be defined as the strong solution of the stochastic differential equation

Xt = x+Bt + �‘t; (1)

where B = fBt : 0 � t � Tg is a standard Brownian motion defined on a probability
space (
;F ;P), the initial condition is x � 0 (the case x < 0 is symmetrical), � 2 [�1; 1]
is the skewness parameter, and ‘ = f‘t : 0 � t � Tg is the local time at level zero of the
(unknown) solution X of the equation departing from x, defined by

‘t = lim
�!0

1
2�

Z t

0
1(��;�)(Xs)ds:

In the literature the skewness parameter is sometimes defined as p = (� + 1)=2; this
second parametrization being more convenient for an alternative construction of the SBm:
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depart from the reflected Brownian motion and choose, independently with probability
p 2 [0; 1], whether each particular excursion of the reflected Brownian motion remains
positive.

In the special case � = 1 (p = 1), the solution to (1) is the reflected Brownian motion.
The case � = 0 (p = 1=2) corresponds to the the standard Brownian motion.

Recently, several papers have considered the SBm in modelling or simulation issues,
as well as some optimization problems. Thanks to the Itô-Tanaka formula, the SBm
is strongly related to diffusion processes whose infinitesimal generator, both divergence-
form or non divergence-form, has discontinuous coefficients (Lejay & Martinez, 2006).
Hence, the SBm appears naturally for example in geophysics as a model of the diffu-
sion of a pollutant (Ramirez et al., 2006), in brain imaging by diffusion MRI or in elec-
tro/encephalography (Martinez, 2004), in population ecology (Cantrell & Cosner, 1999;
Ovaskainen & Cornell, 2003), in astrophysics (Zhang, 2000). See the review by Lejay
(2006) for references on the subject, as well as a survey of the various possible construc-
tions and applications of the SBm. In Lejay & Pichot (2012), it is shown how to simulate
exactly the position of the SBm after a constant time step.

In this paper we are interested in the statistical estimation of �, the skewness param-
eter, when we observe a trajectory of the process through an equally spaced time grid.
From the statistical point of view we find this problem interesting because it is in certain
sense intermediate between the classical problem of drift estimation in a diffusion, where
the measures generated by the trajectories of the process for different values of the param-
eter are equivalent (Kutoyants, 1984; Lipster & Shiryaev, 2001), and the estimation of the
variance (the volatility in financial terms) of a diffusion (see for instance Florens-Zmirou
(1993), or Jacod (2006) and the references therein), where the probability measures gen-
erated by the trajectories are singular for different values of the parameter. At the best
of our knowledge, the only estimator of � is the one constructed in Bardou & Martinez
(2010), where the authors assume that the SBm is reflected at levels 1 and �1 to ensure
ergodicity, considering a different scheme of observation of the trajectory.

The strategy proposed by O. Bardou and M. Martinez does not apply here, as it is
strongly related to ergodicity while the SBm is only null recurrent. The distribution of
the renormalized occupation time on the positive side A+(t)=t of the SBm up to time t
is computed in Lamperti (1958) (for � = 0, this is the famous Arc-Sine distribution).
Despite the mean of A+(t)=t is equal to (1 + �)=2, it has a positive variance and it may
not be used to set up an estimator of �, nor its discretized version (See Fujihara et al.
(2007) for example).

Indeed, only the behavior of the SBm close to 0 brings some information for estimat-
ing �. The expansion the log-likelihood provides indeed some weighted version of the
difference between upcrossings and downcrossings.

The main results of this article follows. First, we prove that under the distribution of
the Brownian motion, that is with � = 0, the MLE estimator �n from n equally spaced
observations of XkT=n on [0; T ] converges in probability to the true value � = 0. Second,
we prove that the scaled estimator n1=4�n converges stably to cT 1=4W (‘T )=‘T when the
trajectory hits zero, where c is a constant and W is a Brownian motion independent from
X. The convergence of n1=4�n is the Local Asymptotically Mixed Normality (LAMN)
property at the point � = 0 (Le Cam & Yang, 2000), but with a rate 1=4 while in general,
the rate is 1=2. This situation is typical for null recurrent estimation problems (Höpfner
& Löcherbach, 2003). Third, we obtain an expansion of �n as �(1)

n =n1=4 + �(2)
n =n1=2 +

�(3)
n =n3=4 + � � � where the �(i)

n are computed recursively.
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Numerical simulations show us that it is plausible that �n converges in probability
to � under the distribution of the SBm of parameter �. However, we have not been able
to prove that �n converges to � in probability in such a situation. The key argument we
used for � = 0, which are contained in some limit theorem studied in Jacod (1998), are
difficult to extend here, as the distribution of the SBm for � = 0 is singular with respect
to the one of the Brownian motion (Le Gall, 1984). However, if all the observations are
positive (resp. negative), then the MLE estimator gives 1 (resp. �1). Hence, under the
distribution of the reflected Brownian motion, the estimator always gives the right value
of �, but this corresponds to a degenerate case.

The rest of the paper is organized as follows. Section 2 describes the maximum like-
lihood methodology and the convergence results. In Section 3 we describe the limit
distribution. Section 4 presents a statistical test and some numerical simulations on the
likelihood function. Section 5 presents an application to diffusion of species in two dif-
ferent habitats, and Section 6 our conclusions. Finally, in the Appendix we provide the
theorems from Jacod (1998) used in the proof of our main results in Section 2.

2 The maximum likelihood estimator
Consider the SBm X with parameter � 2 [�1; 1] defined in (1) and the sampling scheme
denoted by Xi := XiT=n (i = 0; : : : ; n), and � = T=n. In this section we derive the
asymptotic behaviour of maximum likelihood estimator �n of the parameter � when we
observe the sample X1; : : : ; Xn. As shown in Walsh (1978), the transition density of the
SBm of parameter � 2 [�1; 1] is given by:

q�(t; x; y) := p(t; y � x) + sgn(y)�p(t; jxj+ jyj); (2)

where
p(t; x) =

1
p

2�t
exp

�
�
x2

2t

�

is the density of a Gaussian random variable with variance t and mean 0 and sgn(x) = 1
if x > 0, sgn(x) = �1 if x < 0 and sgn(x) = 0 if x = 0. The likelihood of the sample is
given by

�n(�) :=
n�1Y

i=0

q�(�; Xi; Xi+1):

The maximum likelihood estimator (MLE) is

�n := argmax�2[�1;1] �n(�):

The uniqueness of the MLE follows from simple computations.

Lemma 1. For each n, there exists a unique MLE �n.

Proof. The derivatives of Ln(�) = log(�n(�)) with respect to � are easily computed thanks
to the simple expression of the density q� in (2). As seen in (3), @2

�Ln(�) < 0. This proves
that � 7! Ln(�) is strictly concave so that �n is unique.

Remark 1. The SBm has the same scaling property as the Brownian motion. IfX is a SBm
of parameter �, so is cXt=c2 for c > 0. Hence, for fixed n and T , Y = f

p
n=TXtT=n : t 2

[0; n]g with X0 = 0 is a SBm of parameter � for a SBm X of parameter �. It is then
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easily seen that the maximum likelihood estimator applied to the sequence fYigi=0;:::;n
with a time-step � = 1 is distributed as the one for the sequence fXiT=ngi=0;:::;n with a
time-step � = T=n. In this case, high-frequency estimation and long-time estimation are
equivalent. In any case, we are in the situation of a statistical estimation problem for a
null-recurrent Markov process.

The difference between a SBm and a Brownian motion lies at x = 0, the origin, so
that the path should cross 0 in order to get a meaningful estimator.

Lemma 2. If all the Xi’s are positive (resp. negative) for i = 1; : : : ; n, then �n = 1 (resp.
�n = �1). This means that the estimator sees a positively (resp. negatively) reflected
Brownian motion.

Proof. From (2), for fixed x 2 R and y 6= 0, argmax q�(�; x; y) = sgn(y). Besides, if
y = 0, then p�(�; x; 0) does not depend on �. Hence, if all the observations X1; : : : ; Xn
are non-negative (resp. non-positive), then �n = 1 (resp. �n = �1) since �n(�) is the
product of the q�(�; Xi; Xi+1)’s. We exclude the degenerated case that all the Xi’s are
equal to 0, which is almost surely never observed whatever the value of �.

Lemma 3. If �n is the MLE associated to fXigi=0;:::;n, then ��n is the MLE associated
to f�Xigi=0;:::;n.

Proof. This is an easy consequence of (2): The likelihood is left unchanged when the signs
of � and of the Xi’s are changed.

2.1 The log-likelihood around � = 0
Instead of using the likelihood �n(�), it is often more convenient to use the log-likelihood
defined by

Ln(�) := log �n(�) =
n�1X

i=0

log q�(�; Xi; Xi+1):

The MLE is the point �n at which � 7! Ln(�) reaches its maximum. The MLE �n may
equivalently be defined as the solution to L(1)

n (�n) = 0.
For k � 1, its scaled (for notational convenience) k-th derivatives are

L(k)
n (�) =

1
(k � 1)!

@k

@�k
Ln(�);

that are computed as

L(k)
n (�) = (�1)k�1

n�1X

i=0

sgn(Xi+1)kp(�; jXij+ jXi+1j)k

q�(�; Xi; Xi+1)k
: (3)

An analytic development of L(1)
n (�) holds around 0:

L(1)
n (�) =

+1X

k=0

�kL(k+1)
n (0): (4)

The inequality

p(�; jxj+ jyj)
q0(�; x; y)

= exp
�
�
jxyj+ xy

�

�
= exp

�
�2(xy)+

�

�
� 1; x; y 2 R (5)
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implies that jL(k)
n (0)j � n and thus the series in (4) is absolutely convergent for j�j < 1.

Introduce, for k = 1; 2; : : : , the sequence of functions

hk(x; y) = h(x; y)k with h(x; y) = sgn(x+ y) exp
�
�(2=T )(x(x+ y))+� :

We can then rewrite L(k)
n (0), for k = 1; 2; : : : , as:

L(k)
n (0) = (�1)k�1

n�1X

i=0

hk(
p
nXi;

p
n(Xi+1 �Xi)):

We then see that the study of the limit behaviour of this type of sums, presented in the
next proposition, can be directly obtained from results in Jacod (1998) (For convenience,
we present these results in an Appendix).

2.2 Asymptotic behavior of the MLE under the Brownian distri-
bution

Let us set

�n := �n1=4L
(1)
n (0)

L(2)
n (0)

= �n1=4
Pn�1

i=0 sgn(Xi+1)h(
p
nXi;

p
n(Xi+1 �Xi))Pn�1

i=0 h(
p
nXi;

p
n(Xi+1 �Xi))2

:

Unlike the MLE, �n is pretty simple to compute from the Xi’s.
For a non-negative starting point x = X0, we consider the events

An := f! : inf
1�i�n

Xi(!) < 0 and sup
1�i�n

Xi(!) > 0g;

A := f! : inf
0�t�T

Xt(!) < 0g:

Let f‘t : 0 � t � Tg be the local time at 0 of the process X. The event A means
that the path X crossed zero between 0 and T . Hence, A = f‘T > 0g. If x = 0, then
P[A] = 1. Of course, An � A and P[A n [n�An] = 0. On the complementary event An of
An, Lemma 2 asserts that the MLE �n is equal to 1.

Let X be a SBm defined as the strong solution to (1) on a probability space (
;F ;P)
for a canonical Brownian motion W with a filtration fFt : t � 0g which satisfy the usual
hypotheses.

Our main theorem is the following. It proves the convergence of the MLE �n to 0 and
specify its speed of convergence. In addition, this show that the MLE may be expanded
as a series in terms of 1=n1=4, where �n plays a fundamental role.

Before stating our theorem, we review the notion stable convergence due to A. Renyi
(see Aldous & Eagleson (1978); Jacod & Shiryaev (1987); Rényi (1963)).

Definition 1 (Stable convergence). Consider a sequence of random variables Y; Y1; Y2; : : :
defined on a probability space (
;F ;P), and a �-algebra G � F .

We say that the sequence of random variables Y1; Y2 : : : converge G-stably in distribu-
tion to a random variable Y defined on an extension (
0;F 0;P0) of (
;F ;P), and denote

Yn
G-stably����!
n!1

Y

5



when
E (Zf(Yn)) ���!

n!1
E (Zf(Y ))

for any bounded G measurable random variable Z, and any bounded and continuous
function f .

Theorem 1. Assume that � = 0, i.e. let X be a Brownian motion on [0; T ] departing
from x. Let �k for k = 1; 2; 3; : : : be the constants given by (8) below.
(I) For � = ��1=�2,

�n1An

F-stably����!
n!1

��T

with

�T =

(
T 1=4W (‘T )=‘T if ‘T > 0;
0 if ‘T = 0;

where W is a Brownian motion independent from B.
(II) Let d(1)

n ; d(2)
n ; : : : be a sequence of random variables given the recursive relation d(1)

n = 1
and

d(m+1)
n = �

m+1X

k=1

L(k+1)
n (0)
L(2)
n (0)

X

1�i1;:::;ik�m
i1+���+ik=m+1

d(i1)
n � � � d

(ik)
n : (6)

Let d(1); d(2); : : : be a sequence of random variables defined recursively by d(1) = 1, d(2) = 0
and for m � 2,

d(m+1) = �
mX

k=1

�(k)
X

1�i1;:::;ik�m
i1+���+ik=m+1

d(i1)
n � � � d

(ik)
n

with �(2k+1) =
T 1=4�2k+1W (‘T )

�2‘T
and �(2k+2) = 0:

For any integer p � 0, the vector (1And
(1)
n ; : : : ;1And

(p+1)
n ) converges F-stably to (d(1); : : : ; d(p+1))

depending only on ‘T and W (‘T ). Besides, for any � > 0, there exists some integer n0
large enough and some K such that

P
h
n

p
4 + 1

2 j�n ��nj � K;An
i
� � for any n � n0;

where
�n =

�n
n1=4 + d(2)

n
�2
n

n1=2 + � � �+ d(p+1)
n

�p+1
n

n(p+1)=4 :

In addition, d(2)
n converges in probability to 0 and n1=4d(2)

n is bounded.
(III) It holds that �n1An converges in probability to 0 under the Brownian distribution and

n1=4�n1An

F-stably����!
n!1

��T : (7)

Remark 2. Using the scaling property of the Brownian motion and then of the local time,
and adjusting the initial condition of the process, �T is equal in distribution to �1 for
any T > 0.
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3 Proof of the Theorem

3.1 Convergence of the derivatives of the log-likelihood
The main points in the proof of Theorem 1 follows from the asymptotic behavior of the
derivative L(k)

n (0) of the log-likelihood. Let � be the cumulative distribution function of
the standard normal distribution.

Let us note that if X is a SBm of parameter � then from the scaling property, one
gets easily that the process Y defined by Yt = T�1=2XtT is also a SBm of parameter �
and ‘t(Y ) = T�1=2‘tT , where ‘t(Y ) is the symmetric local time at zero of Y . With this
remark, it is possible to apply the results from Jacod (1998) to Y with T = 1 and then
to transform then back on results on X.

Proposition 1. Assume that � = 0 in (1), i.e. let X be a Brownian motion on [0; T ]
departing from x, and let ‘ denote its symmetric local time at zero.

(a) Assume that k = 2; 4; : : : . Denote

�k = �2
Z 1

0

�
1 +

1
2k � 1

exp
�

2k(k � 1)x2

(2k � 1)2

��
�(�x) dx: (8)

Then
L(k)
n (0)
n1=2

prob.���!
n!1

�kp
T
‘T : (9)

(b) Assume that k = 1; 3; : : : . Then for �k = C(hk), where C has been defined by
(20) in Appendix and h(x; y) := sgn(x + y) exp (�(2=T )(x(x+ y))+), there exists a
Brownian motion W (k) independent from B such that

L(k)
n (0)
n1=4

F-stably����!
n!1

�k
T 1=4W

(k)(‘T ): (10)

Remark 3. The results of J. Jacod are given for multi-dimensional statistics. For any
integer k, the joint convergence in probability of n�1=2(L(2)

n (0); : : : ; L(2k)
n (0)) holds as well

as the joint F -stable convergence of n�1=4(L(1)
n (0); : : : ; L(2k+1)

n (0)). Hence, using the prop-
erty of stable convergence (see Aldous & Eagleson (1978, Theorem 1’ and subsequent
Remark)), this implies the joint F -stable convergence of

(n�1=4L(1)
n (0); n�1=2L(2)

n (0); : : : ; n�1=4L(2k+1)
n (0); n�1=2L(2k+2)

n (0))
F-stably�����!
n!1

(T�1=4�1W (1)(‘T ); T�1=2�2‘T ; : : : ; T�1=4�2k+1W (2k+1)(‘T ); T�1=2�2+2‘T ):

The correlations between the Brownian motions W (k) may be computed also thanks to
Theorem 1.2 in Jacod (1998), but we do not use them here.

Proof. We apply Theorem 2 in the Appendix to the process Yt = T�1=2XtT and then we
assume that T = 1. For T 6= 1, the scaling property has then to be used again. Observe
that

hk(x; y) � exp
�
�(x(x+ y))+� � exp

�
jyj � jx ^ x2j

�
:

We then have that (17) in Appendix holds with a = 1, ĥ(x) = exp (�jx ^ x2j) and
r = 0, then it holds for any r > 0. In consequence, by the after mentioned theorem,
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the convergence in (18) holds for h = hk with k = 2; 4; : : : . It remains to compute the
constant in (19). We have

c(hk) =
ZZ

R2
hk(x; y)p(1; y) dx dy = 2

Z 1

0
dx
Z �x

�1
p(1; y) dy

+
2
p

2�

Z 1

0
dx
Z 1

�x
exp

�
�

1
2
y2 � 2kxy � 2kx2

�
dy

= 2
Z 1

0
�(�x) dx

+
2
p

2�

Z 1

0
dx exp

�
2k(k � 1)x2�

Z 1

�x
exp

�
�

1
2

(y + 2kx)2
�
dy

= 2
Z 1

0
�(�x) dx+ 2

Z 1

0
exp

�
2k(k � 1)x2��(�(2k � 1)x) dx

= 2
Z 1

0
�(�x) dx+

2
2k � 1

Z 1

0
exp

�
2k(k � 1)x2

(2k � 1)2

�
�(�x) dx:

Taking into account that �k = �c(hk) we conclude that (9) holds with �k given in (8).
To prove (b) we rely on Theorem 3 in the appendix. Observe then that c(hk) = 0 for

odd k due to the property

hk(�x;�y) = �hk(x; y) for odd k:

In view of the fact that (17) holds for all hk with r = 4, we conclude the proof.

The proof of the following corollary is immediate from Proposition 1 since A = f‘T >
0g, Remark 3 and the continuous mapping theorem.

Corollary 1. Given the conditions of Proposition 1, for k = 0; 1; 2; : : : , we have:

L(2k+1)
n (0)
L(2)
n (0)

1An

prob.���!
n!1

0;
L(2k+2)
n (0)
L(2)
n (0)

1An

prob.���!
n!1

�2k+2

�2
1An ;

n1=4L
(2k+1)
n (0)
L(2)
n (0)

1An

F-stably����!
n!1

T 1=4�2k+1W (‘T )
�2‘T

1A:

In particular, for � = ��1=�2

�n1=4L
(1)
n (0)

L(2)
n (0)

1An

F-stably����!
n!1

T 1=4�
W (‘T )
‘T

1A:

Hence, part (I) of Theorem 1 is immediate from this corollary.

3.2 Asymptotic development of the MLE
We now study the development of the MLE �n as a series in 1=n1=4. This will prove Point
(II) of Theorem 1. Point (III) is an immediate consequence of Point (II).

Using the result of Remark 3, we consider the asymptotic behavior of the vector
�
n�1=4L(1)

n (0); n�1=2L(2)
n (0); : : : ; n�1=2L(2k)

n (0)
�

8



for some k � 1. We may then consider a probability space (b
; bF ; bP) such that this sequence
is equal in distribution to a sequence converging almost surely to (T�1=4�1W (1)(‘T ); T�1=2�2‘T ; : : : ; T�1=2�2k‘T ).
We now consider some point in this probability space such that ‘T > 0. If the starting
point is 0, then the event f‘T > 0g is of full measure.

Proposition 2. On the probability space (b
; bF ; bP) above, the random sequences d(i)
n given

by (6) are convergent and bounded in n. Besides, for m = 1; 2; 3; : : : ,

�n =
�n
n1=4 + d(2)

n
�2
n

n2=4 + d(3)
n

�3
n

n3=4 + � � �+ d(m)
n

�mn
nm=4

+ O
�

1
n(m+1)=4

�

almost surely in the event f‘T > 0g.

Let us start by a simple lemma to get a control over the finite Taylor expansion of
L(1)
n (�).

Lemma 4. For any � and any integer m � 1, there exists a random constant C such that
�����
L(1)
n (�)�

mX

k=0

L(k+1)
n (0)�k

�����
� sup
j�j�j�j

jL(m+2)
n (�)j � j�jm+1 � Cn1=2 j�jm+1

(1� j�j)m+2 : (11)

Proof. With (5) and for � 2 (�1; 1),

1� j�j �
q�(�; Xi; Xi+1)
q0(�; Xi; Xi+1)

� 1 + j�j: (12)

With (3), since L(k)
n (0)=n1=2 converges in probability (either to �k‘T or to 0 depending if

k is even or odd), there exists a random constant C such that

jL(k)
n (�)j �

n1=2C
(1� j�j)k

:

Hence �����
L(1)
n (�)�

mX

k=0

L(k+1)
n (0)�k

�����
� sup
j�j�j�j

jL(m+2)
n (�)j � j�jm+1:

With (9) and (10), this gives (11) because L(k)
n (0)=n1=2 is bounded in n.

Lemma 5. For n large enough, the function L(1)
n (�) is invertible. Besides, for n large

enough, the function (L(1)
n (�))�1 is Lipschitz in � with a constant 8=n1=2�2‘T on the event

An.

Proof. With (12),

�L(2)
n (�) �

 
n�1X

i=1

p(�; jXij+ jXi+1j)2

q0(�; Xi; Xi+1)2

!
1

(1 + j�j)2 �
L(2)
n (0)
4

:

Since L(2)
n (0) < 0 for n large enough as n�1=2L(2)

n (�) converges in probability to some
negative random variable (see (9)), we get that L(1)

n (�) is one-to-one. With the formula
@�(L

(1)
n (�))�1 = 1=L(2)

n (L(1)
n (�)), (L(1)

n (�))�1 is Lipschitz in � with constant 4=L(2)
n (0).

9



The idea of the proof is then the following: We construct an estimator �n such that
for some constant C and p � 0,

sup
n2N

np=4jL(1)
n (�n)j � C:

Since L(1)
n (�n) = 0, for n large enough,

j�n � �nj = j(L(1)
n )�1(L(1)

n (�n))� (L(1)
n )�1(L(1)

n (�n))j

�
8T 1=2

n1=2�2‘T
jL(1)

n (�n)j �
8CT 1=2

np=4+1=2�2‘T
: (13)

Proof of Proposition 2. For the sake of simplicity, let us set q = n1=4.
Set �n = �nq+�nq2 +nq3 + �nq4 for some �n, n and �n to be carefully chosen. Here,

we consider only the first terms in the development of �n. It is easily to convince oneself
that this method may be applied to any order and that the involved terms �n; n; �n; : : :
may be computed recursively and give rise to (6).

With (11) and m = 4, there exists a constant C such that

jL(1)
n (�n)� L(1)

n (0)� L(2)
n (0)�n

� L(3)
n (0)�2

n � L
(4)
n (0)�3

n � L
(5)
n (0)�4

nj � Cn1=2 j�nj5

(1� j�nj)6 :

Remark that L(1)
n (0)� L(2)

n (0)�nq = 0. In order to get rid of the terms in q2, set

�n =
�L(3)

n (0)
L(2)
n (0)

�2
n

Since the joint distribution of �n and n1=4L(3)
n (0)=L(2)

n (0) converges stably, n1=4�n con-
verges stably. Also, �n converges to 0.

In order to get rid of the terms in q3, set

n = �
L(4)
n (0)

L(2)
n (0)

�3
n �

L(3)
n (0)

L(2)
n (0)

�n�n:

From Corollary 1, n converges stably since �n and �n converges stably.
In order to get rid of the terms in q4, set

�n = �2
L(3)
n (0)

L(2)
n (0)

(�nn + �2
n)� 4

L(4)
n (0)

L(2)
n (0)

�2
n�n:

Again, �n converges thanks to Corollary 1.
Hence

L(1)
n (�n) =

20X

r=5

qrB(r)
n +Rn(�n);

where Rn(�n) � n1=2j�nj5=(1� j�nj)6 and B(r)
n are terms that depend linearly on L(k)

n (0)
and on the power of the �n, �n, n and �n. Since the L

(k)
n (0)=n1=2 are bounded, we obtain

that the n3=4B(r)
n are bounded.

10



In addition, n1=4�n is bounded in n, so that n3=4Rn(�n) is bounded in n. With (13),
this proves that for some constant K,

j�n � �nj �
K
n5=4 :

Finally, let us note that �n = �2
nd

(2)
n with d(2)

n = �L(3)
n (0)=L(2)

n (0). With (1), d(2)
n converges

in probability to 0 and n1=4d(2)
n is bounded in n. Remark that n = �3

nd
(3)
n and �n = �4

nd
(4)
n

where d(3)
n and d(4)

n are bounded in n. This result may be generalized to any order.

Proof of Theorem 1 Point (II). On the event f‘T > 0g, the local time has a density (see
Lemma 6 below). For each � > 0, one may find a set 
(�) as well as some values 0 < a0 < b0
and c0 such that ! 2 
(�) implies that ‘xT 2 (a0; b0) and jW (‘T )=‘T j � c0 and

bP[
(�)jf‘T > 0g] � 1� �=2:

From the joint convergence of the n1=4L(2k+1)
n (0) to �2k+1W (‘T ) and the joint conver-

gence of the n1=2L(2k)
n (0) to �2k‘T , we get for any � > 0, there exists 0 < k < a0 and K > b0

as well as a measurable set 
0(�; n) � 
(�) such that

L(k)
n (0) � K

p
n on 
0(�; n)

L(2)
n (0) � k

p
n on 
0(�; n)

and 8n � n0; bP[
0(n; �)jf‘T > 0g] � 1� �:

In the proof of Proposition 2, we constructed some estimator �n such that for some
p � 0, npL(1)

n (�n) is bounded by some constant depending the upper bounds of the
n1=2L(k)

n (0). Besides, we use the Lipschitz constant of (L(1)
n )�1 which depends on the

lower bound of n1=2L(2)
n (0). Thus, on 
0(�; n), we obtain that j�n��nj � C=np+1=2, where

C depends only on K and k, assuming that n � n0. This means that

np+1=2j�n ��nj � C:

Thus, for any � > 0, there exists n0 large enough such that

8n � n0; bP[np+1=2j�n ��nj � C] � �:

which yields the result.

3.3 The contrast function
In order to study the maximum likelihood, it is also possible to consider the contrast
function

Zn(�) =
exp(Ln(�))
exp(Ln(0))

:

Using the asymptotic development of Ln(u) around 0, we get that

logZn(�) = �L(1)
n (0) +

�2

2
L(2)
n (0) + O(�3):

Thus, with the result of Proposition 1, we see that

logZn(�=n1=4) F-stably�����!
n!1

��2

�
T�1=4��W (‘T )� T�1=2 �2

2
‘T
�
: (14)

11



From this convergence we can intuitively check our result in (7), based in the theory of
convergence of statistical experiments and the LAMN property in (14). The theory states
(under certain stringent conditions that we do not verify) that the maximum likelihood
estimator of the pre-limit experiments converges stably to the maximum likelihood esti-
mator of the limit experiment (Ibragimov & Has’minskii, 1981). It is direct, differentiating
with respect to � in the r.h.s. of (14), to obtain, when ‘T > 0, that the MLE in the limit
experiment is T 1=4�W (‘T )=‘T . We then obtain (7).

4 The limit distribution
In this section, we consider that the starting point is 0 and then that P[A] = 1. Otherwise,
on the event A, one may use the strong Markov property at the first time the process hit
zero.

As n1=4�n and �n converge to ��T with �T = T 1=4W (‘T )=‘T , we give the main char-
acteristics of this random variable. As noted in Remark 2, thanks to the scaling property
of the Brownian motion, we see that � is equal in distribution to W (‘1)=‘1, whatever the
value of T .

Indeed, this random variable is easy to simulate.

Lemma 6. Under P0, the distribution of � is symmetric. Besides, its density is

f�(x) =
dF�(x)

dx
=
Z +1

0
dy
Z 1

0

py
2�
p
t3

exp
�
�xy

2
�
y2

2t

�
dt (15)

and it is equal in distribution to

� =
G(H)
H

with H =
1
2

(U +
p
V + U2); (16)

where G(H), U and V are independent random variables, G(H) � N (0; H), U � N (0; 1)
and V � exp(1=2).

Proof. It is well known that the local time ‘1 at time 1 is equal in distribution to the
supremum of the Brownian motion supr2[0;1]Br on [0; 1]. It follows that

F‘1(y) = P0[‘1 < y] = P0[ sup
r2[0;1]

Br < y] = P0[�y > 1];

where �y = infft > 0 jBt = yg. The density �(t; y) of �y is equal to

�(t; y) =
1

p
2�t3

exp
�
�
y2

2t

�
;

so that

F‘1(y) = 1�
Z 1

0

1
p

2�t3
exp

�
�
y2

2t

�
dt;

and the density f‘1(y) of ‘1 is then equal to

f‘1(y) =
Z 1

0

2y
p

2�t3
exp

�
�
y2

2t

�
dt:

12



Thus, conditioning with respect to the value of ‘1,

F�(x) = P[� < x] =
Z +1

0
P[W (y) < xy]f(y) dy

and this leads to (15).
Expression (16) follows from the equality in distribution of ‘1 and 1

2(U +
p
V + U2).

This expression has been used in Lépingle (1993) and Lépingle (1995) in order to simulate
the reflected Brownian motion.

The variance of � is 3:16. We see in Figure 1 that the density of � is close to that of
the normal distribution, yet narrower.
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25
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30

Figure 1: Density of � (solid) and density of the normal distribution with variance
Var(�) (dashed).

5 Numerical tests and observations on the estimators
In order to simplify the notations, let us set

e�n =
�n
n1=4 = �

L(1)
n (0)

L(2)
n (0)

proba.���!
n!1

0:

Numerical tests are easy to perform, as all the formulae are easy to implement. For
example, the SBm is easily simulated: it could be approximated by random walks (Har-
rison & Shepp, 1981) or by the exact simulation algorithm proposed in Lejay & Pichot
(2012). As pointed out, the estimator e�n is easily computed from the data, while the
MLE may be found by a numerical optimization procedure since the density (2) of the
SBm has a simple, analytic expression. In Section 4, we saw how to simulate random
variates distributed as �.
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Figure 2: Statistics of �n and e�n: mean value (points), 1=4 and 3=4-quantiles (the upper and
lower boundaries of the rectangles) as well as the 1=10 and 9=10-quantiles (the extremities
of the segments) for n = 10;000 over the 10,000 realizations of paths.
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(b) e�n

Figure 3: Density of �n and e�n for � = 0, � = 5=10 and � = 9=10 and n = 10;000 sample
points.

5.1 Numerical behavior of the estimators for the SBM with � 6= 0
Of course, a natural question which arise is to know the behavior of the MLE �n and of
e�n when the observed points fXigi=0;:::;n arise from a SBm of parameter � 6= 0.

As noted in the introduction of this Section, numerical tests could easily be performed
for any value of �, so that one may for example construct some hypothesis test with
thresholds given numerical estimation of quantiles. This could indeed give better values
than the one obtained by simply using an asymptotic theorem.

In Figure 2, we plot for values of the skewness parameter � in the set f0; 5
100 ; : : : ;

95
100g

the mean values of �n and e�n over 10,000 paths with n = 10;000 samples points. We also
plot its 1=10, 1=4, 3=4 and 9=10-quantiles.

In Figure 3, we plot the density of �n and e�n for � 2 f0; 5
10 ;

9
10g for n = 10;000 sample

points and constructed from N = 10;000 paths. We see that the density of �n is skewed
for � 6= 0, as one could expect, and that the variance of �n seems to decrease as � increase
to one. This is not the case with e�n.
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n 100 250 500 1,000 2,500 5,000 10,000 50,000 100,000 250,000
1/10-q. �0.59 �0.76 �1.01 �1.06 �1.15 �1.20 �1.17 �1.34 �0.94 �1.48
9/10-q. 0.65 0.89 0.91 0.98 1.11 1.13 1.35 1.34 1.23 1.33
Sdev 1.20 1.94 2.89 4.38 6.38 9.95 13.00 31.95 30.80 80.47

Table 1: Quantiles and standard deviation for of n3=4(�n � e�n) over N = 10;000 paths.
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Figure 4: Densities of �n = n1=4e�n for the values of n give in Table 1 and Quantile-
Quantile plot of �n for n = 250;000 against n = 100 and �n against c� with c such that
Var(�n) = Var(c�). The straight lines are defined by y = x and show the concordance.

We see that the average value of �n is close � and that the MLE seems to be a consistent
estimator of �. On the other hand, the mean value of e�n is close to � only for small values
of � (say � < 5=10) and overestimates � for larger values.

5.2 Study of the estimator for small values of n and � = 0
Theorem 1 asserts that �n � e�n is of order O(1=n3=4). In Table 1, we give the 1=10 and
9=10-quantiles of n3=4(�n � e�n). for small values of n. However, the standard deviation
increases with n.

We also see in Figure 4(a) that the density of �n = n1=4e�n remains stable with values
of n, even for small values of n. Figure 4(b) presents Quantile-Quantile plot for �100
against �250000, which confirms the closeness of these two distributions. In Figure 4(c),
we see that the distribution of �250000 is also close to the one of � = cW (‘1)=‘1 with c
chosen to get equality of the variances.

6 An example of application: diffusion of species
As endowed in the introduction, the SBm is a fundamental tool when one has to model
a permeable barrier. In addition, it appears when one writes down the processes gener-
ated by diffusion equations with discontinuous coefficients in a one dimensional media:
this issue is presented in the survey article Lejay (2006) with references to the articles
where the SBm arises and covering various fields, such as ecology, finance, astrophysics,
geophysics, ...

We present here a possible application to ecology of our hypothesis test, which can be
surely applied to other fields.
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6.1 Has a boundary between two habitats an effect?
Diffusions are commonly used in ecology to explain the spread of a specie, at the level of
individual cells (See for example the book Berg (1993)) or the level of an animal in a wild
environment.

Several authors have proposed the use of biased diffusions to model the behavior
of a specie at the boundary between two habitats, such as Cantrell & Cosner (1999);
Ovaskainen & Cornell (2003), when the species diffuse with different species at speed in
each habitat.

Now, consider a situation where the dispersion of a specie in two different habitats is
well modelled by a diffusion process, and that the measurement of the diffusion coefficient
give the same value. Does it means that the boundary has no effect on the displacement
of the individuals?

Let us apply this in a one-dimensional world, where one habitat is [0;+1) and the
other is (�1; 0]. We assume that we may track the position of an individual, whose
displacement in each of the habitat is given by x+ �Bt.

Then, we may apply our hypothesis test to determine whether or not the position shall
be modelled by

(H0) Xt = x+ �Bt

or by
(H1) Xt = x+ �Bt + �‘0

t (X):

Under Hypothesis (H0), the boundary has no effect and is not seen. Under Hypothesis
(H1), the individual is more likely to go in one of the two habitat, depending on the sign
of �.

6.2 What is the underlying operator?
Now, let us consider that we have a measurement of the diffusion coefficients that gives
two different values a+ on R+ and a� on R�.

One may then wonder which differential operator shall be used to model the diffusive
behavior. For a = a+1[0;+1) + a�1(�1;0), is it

L =
1
2
r(ar�) or A =

1
2
a4 ?

On (0;+1) and (�1; 0), there is no difference between these two operators, which means
that the local dynamic of the particle/individual is not affected by the choice of L and A.
However, the difference arises at 0: the process X generated by L is solution to

Xt = x+
Z t

0

p
a(Xs) dBs +

a+ � a�
a+ + a�

‘0
t (X)

while the process Y generated by A is solution to

Yt = x+
Z t

0

p
a(Xs) dBs;

for a Brownian motion B (See for example Lejay (2006); Lejay & Martinez (2006)). From
the analytic point of view: the domain Dom(A) of A contains the functions of class
C2(R) which are bounded with bounded, first and second order derivatives. The domain
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Dom(L) of L contains functions of class C2(R n f0g) with bounded first and second order
derivatives which are furthermore continuous at 0, and such that a+rf(0+) = a�rf(0�).
This condition is called the flux condition. In many physical situations, it is assumed that
the flux aru is continuous and this is why divergence-form operators of type L arise.

Remark 4. Both L and A can be embedded in a single class of operators of type �
2r(ar�).

If � and a are constant on (0;+1) and (�1; 0), then we may use the following charac-
terization: let us consider

C =
1
2
r(ar�) with a = a+1[0;+1) + a�1(�1;0)

and

Dom(C) =

8
><

>:
f 2 C2(R n f0g)

f; f 0; f 00 are bounded on R n f0g
f(0�) = f(0+)
(1 + �)f 0(0+) = (1� �)f 0(0�); � 2 (�1; 1)

9
>=

>;
:

This class of operators is then specified by three parameters, a+ > 0, a� > 0 and � 2
(�1; 1). The operator A corresponds to � = 0, while L corresponds to � = (a+�a�)=(a++
a�).

For �(x) =
R x

0 dx=
p
a(x), bX = �(X) is solution to the SDE (Lejay, 2006; Lejay &

Martinez, 2006)
bXt = �(x) +Bt +

pa+ �
pa�

pa+ +pa�
‘0
t ( bX);

while bY = �(Y ) is solution to the SDE

bYt = �(x) +Bt +
pa� �

pa+
pa+ +pa�

‘0
t (bY ):

We then see that both bX and bY are Skew Brownian motions, but the coefficients in front
of their local time have opposite signs.

Even if we have not studied the asymptotic behavior of the MLE for the SBm with
skewness parameter different from 0, numerical experiments back the following hypotheses
test:

1. Given an observed X, estimate the diffusion coefficient for the process on each side
of 0.

2. Apply the function � to the observed process.

3. Compute the MLE �n of the Skewness parameter. If a+ > a� (resp. a+ < a�) and
�n > 0 then decided that the infinitesimal generator of X is L (resp. A). Otherwise,
decide that it is A (resp. L).

7 Conclusion
In this article, we have studied the behavior of the maximum likelihood for the Skew
Brownian motion when the parameter to estimate is 0.
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In particular, we have shown that the rate of convergence of the estimator �n is n1=4

and not n1=2 as in the classical case. This should not be surprising: indeed, away from 0,
the Skew Brownian motion behaves like a Brownian motion, and only its dynamic close
to 0 allows one to see the difference between a Skew Brownian motion with a parameter
� 6= 0 and a Brownian motion. It is also not surprising that the local time enters in the
limit distribution.

The case � 6= 0 remains open. One needs to prove results similar to the one of
Jacod (1998), when the Brownian motion is replaced by the Skew Brownian motion (its
distribution with respect to the Wiener measure is singular). Of course, one cannot expect
the limit law to be symmetric. Yet, it is pretty easy to simulate the Skew Brownian motion
and to estimate the maximum likelihood, so that numerical studies are easy to perform.

8 Appendix
In this Appendix we provide the theorems given in Jacod (1998) used for the proofs of
the main results in Section 2. We slightly change the notation and present the results in
the particular cases that are relevant to us in the present work.

Denote by X = fXt : 0 � t � 1g a Brownian motion on a probability space (
;F ;P).
Introduce a Borel function h : R2 ! R such that there exist a 2 R and ĥ : R ! R such
that

h(x; y) � eajyjĥ(x) and
Z
jxjrjĥ(x)j dx <1: (17)

Theorem 2 (Jacod (1998, Theorem 1.1, p. 508)). Consider h as above, satisfying (17)
with r = 0. Then

1
n1=2

n�1X

i=0

h(
p
nXi=n;

p
n(X(i+1)=n �Xi=n)) prob.���!

n!1
c(h)‘1; (18)

where
c(h) =

ZZ

R2
h(x; y)p(1; y) dx dy; (19)

and (‘t)t�0 denotes the local time of X at level zero.

Remark 5. It must be noticed that the convergence in (18), as stated in Jacod (1998), is
stronger, in the sense that both terms in (18) are processes (i.e. depend on t) and the
convergence is locally uniformly in time, in probability. Recall that a sequence (Zn)n�1
of processes is said to converges locally uniformly in time, in probability, to a limiting
processes Z if for any t 2 R+ the sequence sups�t jZn

s � Zsj goes to 0 in probability.

Let us assume now that h is such that c(h) = 0. Then set

C(h) = c(h2) + 2
Z

R

Z

R
p(1; y)h(x; y)H(x+ y) dy dx (20)

with

H(x) =
+1X

k=0

Z

R
p(k; y)

Z

R
p(1; z)h(x+ y; z) dz dy:
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Theorem 3 (Jacod (1998, Theorem 1.2, p. 511)). Consider h as above, satisfying (17)
with some r > 3, and assume that c(h) = 0 (see (19)). Then

1
n1=4

n�1X

i=0

h(
p
nXi=n;

p
n(X(i+1)=n �Xi=n)) F-stable in dist.���������!

n!1

p
C (h)W (‘1); (21)

where W = fWt : t � 0g is a Brownian motion independent of X, and (‘t)t�0 is the local
time of X at level zero. The constant C(h) is given by (20).

Remark 6. As in the previous remark, the theorem stated in Jacod (1998) is stronger,
now in the sense that both terms in (21) are processes, and the processes converge stably
in distribution in the Skorokhod space of càdlàg functions.
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