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Abstract: We study the asymptotic behavior of the maximum likelihood estimator cor-
responding to the observation of a trajectory of a Skew Brownian motion, through a
uniform time discretization. We characterize the speed of convergence and the limiting
distribution when the step size goes to zero, which in this case are non-classical, under
the null hypothesis of the Skew Brownian motion being an usual Brownian motion. This
allows to design a test on the skewness parameter. We show that numerical simulations
can be easily performed to estimate the skewness parameter, and provide an application
in Biology.

Keywords: maximum likelihood, skew Brownian motion, statistical estimation,

1 Introduction

The Skew Brownian Motion (SBm) has attracted interest within other facts, due to its re-
lations with di [udions with discontinuous coe [ciehts or to media with permeable barriers,
being the first example of the solution of a stochastic di[erkntial equation with the local
time of the solution as drift (Harrison & Shepp, 1981): the SBm X =fX:0 t Tg
can be defined as the strong solution of the stochastic di Lerkntial equation

Xt:X+Bt+ ‘t; (1)

where B = fBy: 0 't Tg is a standard Brownian motion defined on a probability
space ( ; F;P), the initial condition is x 0 (the case x < 0 is symmetrical), 2[ 1;1]
is the skewness parameter, and “ = f“.: 0 t Tg is the local time at level zero of the
(unknown) solution X of the equation departing from X, defined by
1 Z
= |I!rT(1)2— . 10 .H(Xs)ds:

In the literature the skewness parameter is sometimes defined as p = ( + 1)=2; this
second parametrization being more convenient for an alternative construction of the SBm:
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2The author’s research is supported by CMAT-UDELAR, and by project SAMP Network, of the
MathAmSud program.

3The author was supported by Dipuv grant 26/2009, Fondecyt Grant N. 1130586, ACT1112,
CONICYT-PIA: Stochastic Analysis Research Network.



depart from the reflected Brownian motion and choose, independently with probability
p 2 [0; 1], whether each particular excursion of the reflected Brownian motion remains
positive.

In the special case =1 (p = 1), the solution to (1) is the reflected Brownian motion.
The case =0 (p = 1=2) corresponds to the the standard Brownian motion.

Recently, several papers have considered the SBm in modelling or simulation issues,
as well as some optimization problems. Thanks to the It6-Tanaka formula, the SBm
is strongly related to diludion processes whose infinitesimal generator, both divergence-
form or non divergence-form, has discontinuous coe Lciehts (Lejay & Martinez, 2006).
Hence, the SBm appears naturally for example in geophysics as a model of the dilud
sion of a pollutant (Ramirez et al., 2006), in brain imaging by di[udion MRI or in elec-
tro/encephalography (Martinez, 2004), in population ecology (Cantrell & Cosner, 1999;
Ovaskainen & Cornell, 2003), in astrophysics (Zhang, 2000). See the review by Lejay
(2006) for references on the subject, as well as a survey of the various possible construc-
tions and applications of the SBm. In Lejay & Pichot (2012), it is shown how to simulate
exactly the position of the SBm after a constant time step.

In this paper we are interested in the statistical estimation of , the skewness param-
eter, when we observe a trajectory of the process through an equally spaced time grid.
From the statistical point of view we find this problem interesting because it is in certain
sense intermediate between the classical problem of drift estimation in a di [udion, where
the measures generated by the trajectories of the process for di Lerknt values of the param-
eter are equivalent (Kutoyants, 1984; Lipster & Shiryaev, 2001), and the estimation of the
variance (the volatility in financial terms) of a di[udion (see for instance Florens-Zmirou
(1993), or Jacod (2006) and the references therein), where the probability measures gen-
erated by the trajectories are singular for diLerknt values of the parameter. At the best
of our knowledge, the only estimator of is the one constructed in Bardou & Martinez
(2010), where the authors assume that the SBm is reflected at levels 1 and 1 to ensure
ergodicity, considering a di Lerent scheme of observation of the trajectory.

The strategy proposed by O. Bardou and M. Martinez does not apply here, as it is
strongly related to ergodicity while the SBm is only null recurrent. The distribution of
the renormalized occupation time on the positive side A*(t)=t of the SBm up to time t
is computed in Lamperti (1958) (for = 0, this is the famous Arc-Sine distribution).
Despite the mean of A*(t)=t is equal to (1 + )=2, it has a positive variance and it may
not be used to set up an estimator of , nor its discretized version (See Fujihara et al.
(2007) for example).

Indeed, only the behavior of the SBm close to 0 brings some information for estimat-
ing . The expansion the log-likelihood provides indeed some weighted version of the
di Lerence between upcrossings and downcrossings.

The main results of this article follows. First, we prove that under the distribution of
the Brownian motion, that is with = 0, the MLE estimator , from n equally spaced
observations of X,r=, on [0; T] converges in probability to the true value = 0. Second,
we prove that the scaled estimator n*=* , converges stably to ¢T W (‘r)=*; when the
trajectory hits zero, where c is a constant and W is a Brownian motion independent from
X. The convergence of n'** | is the Local Asymptotically Mixed Normality (LAMN)
property at the point =0 (Le Cam & Yang, 2000), but with a rate 1=4 while in general,
the rate is 1=2. This situation is typical for null recurrent estimation problems (HOopfner

& Locherbach, 2003). Third, we obtain an expansion of , as (=n¥™ + @P=ni=2 +

®=p3=4 4 where the & are computed recursively.



Numerical simulations show us that it is plausible that , converges in probability
to under the distribution of the SBm of parameter . However, we have not been able
to prove that " converges to in probability in such a situation. The key argument we
used for = 0, which are contained in some limit theorem studied in Jacod (1998), are
di Ccult to extend here, as the distribution of the SBm for = 0 is singular with respect
to the one of the Brownian motion (Le Gall, 1984). However, if all the observations are
positive (resp. negative), then the MLE estimator gives 1 (resp. 1). Hence, under the
distribution of the reflected Brownian motion, the estimator always gives the right value
of , but this corresponds to a degenerate case.

The rest of the paper is organized as follows. Section 2 describes the maximum like-
lihood methodology and the convergence results. In Section 3 we describe the limit
distribution. Section 4 presents a statistical test and some numerical simulations on the
likelihood function. Section 5 presents an application to di[udion of species in two dif-
ferent habitats, and Section 6 our conclusions. Finally, in the Appendix we provide the
theorems from Jacod (1998) used in the proof of our main results in Section 2.

2 The maximum likelihood estimator

Consider the SBm X with parameter 2 [ 1;1] defined in (1) and the sampling scheme
denoted by X; := Xjr=n (i = 0;:::;n), and = T=n. In this section we derive the
asymptotic behaviour of maximum likelihood estimator |, of the parameter when we

SBm of parameter 2 [ 1;1] is given by:

g (Exy) :=p(ty X)+sgn(y) p(t;jxj +jyi); &)
where
(tx) = p—l ex X—2
PRO=PS™ &
is the density of a Gaussian random variable with variance t and mean 0 and sgn(x) =1
if x>0,sgn(x) = 1if x<0andsgn(x) =0 if x =0. The likelihood of the sample is
given by
l\(l
n( )= q( ;X Xj+):

i=0
The maximum likelihood estimator (MLE) is
n=argmax o g7 nl ):
The uniqueness of the MLE follows from simple computations.
Lemma 1. For each n, there exists a unique MLE .

Proof. The derivatives of L,( ) = log( n( )) with respect to are easily computed thanks
to the simple expression of the density ¢ in (2). As seen in (3), @?L,( ) < 0. This proves
that A L,( ) is strictly concave so that |, is unique. ]

Remark 1. The SBm has the same scaling property as the Brownian moti%. If X isa SBm
of parameter , so is cX2 for ¢ > 0. Hence, for fixed nand T, Y =f n=TXgon: t 2
[0; n]g with X, = 0 is a SBm of parameter for a SBm X of parameter . It is then

3



with a time-step = 1 is distributed as the one for the sequence TXir=nGi=o:::n With a
time-step = T=n. In this case, high-frequency estimation and long-time estimation are
equivalent. In any case, we are in the situation of a statistical estimation problem for a

null-recurrent Markov process.

The dilerknce between a SBm and a Brownian motion lies at x = 0, the origin, so
that the path should cross 0 in order to get a meaningful estimator.

n = 1). This means that the estimator sees a positively (resp. negatively) reflected
Brownian motion.

Proof. From (2), for fixed x 2 R and y & 0, argmaxq ( ;X;y) = sgn(y). Besides, if
y =0, then p ( ;x;0) does not depend on . Hence, if all the observations Xj;:::; X,
are non-negative (resp. non-positive), then , =1 (resp. , = 1) since () is the
product of the q ( ;X; Xj+1)’s. We exclude the degenerated case that all the X;’s are
equal to 0, which is almost surely never observed whatever the value of . H

Lemma 3. If , is the MLE associated to fX;gi=o:-n, then  , is the MLE associated

.....

.....

Proof. This is an easy consequence of (2): The likelihood is left unchanged when the signs
of and of the X;’s are changed. O

2.1 The log-likelihood around =0

Instead of using the likelihood ,( ), it is often more convenient to use the log-likelihood
defined by

>
Lo():=log ()= logq ( ;Xi; Xj+1):
i=0
The MLE is the point , at which A L,( ) reaches its maximum. The MLE , may
equivalently be defined as the solution to L$”( ,,) = 0.

For k 1, its scaled (for notational convenience) k-th derivatives are
1 @k

L) =
that are computed as

< sgn(Xis)*p( ;Xij + Xiw )X

LA Yy=( 1)k 1 3
PO=C0 " 10X X ®
An analytic development of Lﬁl)( ) holds around O:
>X
LP() = “LATD(0): 4)
k=0
The inequality
p( ;ixi +Jyi) jxyj + xy 2(xy)”"
= ex = ex 1, X;y2R )
do( ;%Y) P P y ©)



implies that jLﬂ‘)(O)j n and thus the series in (4) is absolutely convergent for j j < 1.
Introduce, for k = 1;2;:::, the sequence of functions

hk(;y) = h(x;y)“ with h(x;y) =sgn(x +y)exp  (2=T)(x(x +y))" :

We can then rewrite Lﬁk)(O), fork =1;2;:::, as:

<
L®@O)=( Dk hﬂpﬁXﬁpﬁOQﬂ_ Xi)):
i=0

We then see that the study of the limit behaviour of this type of sums, presented in the
next proposition, can be directly obtained from results in Jacod (1998) (For convenience,
we present these results in an Appendix).

2.2 Asymptotic behavior of the MLE under the Brownian distri-
bution

Let us set

P _ _
L0 | edsonoenPix: Pickn X0,
LP(0) o h(TNXi (X1 X0))?

Unlike the MLE,  is pretty simple to compute from the X;’s.
For a non-negative starting point x = Xg, we consider the events

A, :=F1l: inf Xij(1)<0and sup X;(1) > 0g;
1in 1in

= Fl - 1 .
A:=T! .Olrt1fTXt(-)<0g.

Let f°;: 0 t Tg be the local time at 0 of the process X. The event A means
that the path X crossed zero between 0 and T. Hence, A = ‘¢ > 0g. If x = 0, then
P[A] = 1. Of course, A, A and P[An [~ A,] =0. On the complementary event A, of
A, Lemma 2 asserts that the MLE  is equal to 1.

Let X be a SBm defined as the strong solution to (1) on a probability space ( ;F;P)
for a canonical Brownian motion W with a filtration fF;: t  0g which satisfy the usual
hypotheses.

Our main theorem is the following. It proves the convergence of the MLE |, to 0 and
specify its speed of convergence. In addition, this show that the MLE may be expanded
as a series in terms of 1=n'** where , plays a fundamental role.

Before stating our theorem, we review the notion stable convergence due to A. Renyi
(see Aldous & Eagleson (1978); Jacod & Shiryaev (1987); Rényi (1963)).

Definition 1 (Stable convergence). Consider a sequence of random variables Y;Yq; Yy :
defined on a probability space ( ;F;P),and a -algebraG F.

We say that the sequence of random variables Yy; Y, ::: converge G-stably in distribu-
tion to a random variable Y defined on an extension ( % F’% P") of ( ;F;P), and denote

G -stabl¥
nega”

Yn



when
E@Zf(Ya) 2 E@F(Y)

for any bounded G measurable random variable Z, and any bounded and continuous
function f.

Theorem 1. Assume that = 0, i.e. let X be a Brownian motion on [0; T] departing
from x. Let  for k =1;2;3;::: be the constants given by (8) below.
() For = 1= 5,
F-stabl*
n:I-An nva- T
with

C
_ THEW(r)=r  if >0
T o if “+ =0;
where W is a Brownian motion independent from B.

(1) Let d$?;d?:::: be a sequence of random variables given the recursive relation d§” = 1

and
ml Lgkﬂ) (0) <X

2
k=1 Lﬁ)(O) 1 ik m

i1+ +ig=m+1

i) = di i ©)

Let d®;d®;::: be a sequence of random variables defined recursively by d® =1, d® =0
and for m 2,

> <
1) — K i i
dm+D — ® div g

k=1 1 ignie m
i1+ +ig=m+1
with @+ — T W (‘1) and @+ — ¢

2T

For any integer p 0, the vector (1a,.d$”; 111 ;14,dP*Y) converges F-stably to (d®;:::; d®+D)
depending only on “t and W (“7). Besides, for any > 0, there exists some mteger No
large enough and some K such that

h i

P41, .
P ni*zj o KGA, for any n  nq;
where
n ) '?1 (p+1) p+l
N pi=4 +0q ni=2 +  +dy n(p+1) =g

In addition, d? converges in probability to 0 and n*=*d%? is bounded.
(111) 1t holds that 14, converges in probability to O under the Brownian distribution and

n1=4 nlAn F—stabI! T (7)

nt 1
Remark 2. Using the scaling property of the Brownian motion and then of the local time,
and adjusting the initial condition of the process, 1 is equal in distribution to ; for
any T > 0.



3 Proof of the Theorem

3.1 Convergence of the derivatives of the log-likelihood

The main points in the proof of Theorem 1 follows from the asymptotic behavior of the
derivative Lﬁk)(O) of the log-likelihood. Let be the cumulative distribution function of
the standard normal distribution.

Let us note that if X is a SBm of parameter then from the scaling property, one
gets easily that the process Y defined by Yy = T 12X, is also a SBm of parameter
and ‘(YY) =T 24, where “((Y) is the symmetric local time at zero of Y. With this
remark, it is possible to apply the results from Jacod (1998) to Y with T = 1 and then
to transform then back on results on X.

Proposition 1. Assume that = 0 in (1), i.e. let X be a Brownian motion on [0; T]
departing from x, and let * denote its symmetric local time at zero.

(@) Assume that k = 2;4;:::. Denote
Z 1

k= 2 . 1+2k—11exp th—gzz ( x)dx: (8)

Then Lﬂ‘)(O) - k
T e PET ©
(b) Assume that k = 1;3;:::. Then for , = C(hX), where C has been defined by

(20) in Appendix and h(x;y) :=sgn(x +y)exp ( (2=T)(X(x +y))*), there exists a
Brownian motion W ® independent from B such that

LS\k) (0) F -stabl¥ k

n=4  nra” T1=4W(k)(‘T): (10)

Remark 3. The results of J. Jacod are given for multi-dimensional statistics. For any
integer Kk, the joint convergence in probability of n 1=2(L$12)(0); il Lﬁz")(O)) holds as well

erty of stable convergence (see Aldous & Eagleson (1978, Theorem 1’ and subsequent
Remark)), this implies the joint F-stable convergence of

F-stabl = < . = € v ee s = c . = [ .
ns.ali (T 2 WOCEDT 22 s T 5 e WEDE) T 2 0050):

The correlations between the Brownian motions W& may be computed also thanks to
Theorem 1.2 in Jacod (1998), but we do not use them here.

Proof. We apply Theorem 2 in the Appendix to the process Y; = T ¥2X and then we
assume that T = 1. For T & 1, the scaling property has then to be used again. Observe
that

he(y) exp  (x(x+y)™  exp jyi XX

We then have that (17) in Appendix holds with a = 1, ﬁ(x) = exp( jx~x?) and
r = 0, then it holds for any r > 0. In consequence, by the after mentioned theorem,

7



the convergence in (18) holds for h = hy with k = 2;4;:::. It remains to compute the
constant in (19). We have

77 zZ, Z
ch) = h(y)py)dxdy =2 dx  p(Ly)dy
R2 7 1 7 1 . 0 1
+ p— dx  exp Zy? 2kxy 2kx® dy
Z 2 0 X 2
1
=2 ( x)dx
O2 Za Za 1
+ p— dxexp 2k(k 1)x? exp E(y +2kx)?  dy
7 2 0 7 X
1 1
=2 ( X)dx+2 exp 2k(k 1x*> ( 2k 1)x)dx
21 y Za 2k(k  1)x?
=2 . ( X)dX+2k 1 . eXp W ( X)dX:

Taking into account that = c(hx) we conclude that (9) holds with  given in (8).
To prove (b) we rely on Theorem 3 in the appendix. Observe then that c(hx) = 0 for
odd k due to the property

he( X; y) = he(x;y) forodd k:
In view of the fact that (17) holds for all h, with r = 4, we conclude the proof. O

The proof of the following corollary is immediate from Proposition 1 since A = 1 >
0g, Remark 3 and the continuous mapping theorem.

Corollary 1. Given the conditions of Proposition 1, for k =0;1;2;:::, we have:
|—§12k+1)(0) probl Lg2k+2)(0) prob' 2k+21 .
ng)(o) An ne :E ’ L'(’]z)(o) An ne :E 9 An1
1=4 L$2k+1)(0) F-stably —1=4 kW (),
n Tl R P T = 2 1A:
In particular, for = 1= 2

1=4 Ls]l) (0) 1., F-stabI! T1=4 W(*r) 1a:
LY (0)

nt1 T

Hence, part (I) of Theorem 1 is immediate from this corollary.

3.2 Asymptotic development of the MLE

We now study the development of the MLE |, as a series in 1=n*=*. This will prove Point
(1) of Theorem 1. Point (I11) is an immediate consequence of Point (I1).
Using the result of Remark 3, we consider the asymptotic behavior of the vector



forsomek 1. We may then consider a probability space (P; B; P) such that this sequence

We now consider some point in this probability space such that “+ > 0. If the starting
point is 0, then the event ¥t > Og is of full measure.

Proposition 2. On the probability space (P; ©;P) above, the random sequences d{’ given
by (6) are convergent and bounded in n. Besides, for m =1;2;3;:::,

2 3 m 1
— n 2_n @)_n (m_n -
n = ot +dy 2 +dp 3 + + dj e +0 N EE

almost surely in the event 1 > 0g.

, )Let us start by a simple lemma to get a control over the finite Taylor expansion of
LY ().

Lemma 4. For any and any integer m 1, there exists a random constant C such that

X _ J jm+l
L() L3P0 ¢ sup jLEM™D()j ™t Cntto (11)
k=0 i @ i
Proof. With (5) and for 2 ( 1;1),
g (X Xie) .
Lol Qo 5 Xi; Xis1) L+l (12)

With (3), since LE,k)(O):nl=2 converges in probability (either to “t or to 0 depending if
k is even or odd), there exists a random constant C such that

1:2C
-L(k) i n—
Hence
(€8} X k+1 k ; +2 o oim+l
LE() LED©O) ¢ sup jLE™P()) ™
k=0 ININ
With (9) and (10), this gives (11) because LS (0)=n?<2 is bounded in n. O

Lemma 5. For n large enough, the function Lﬁl)( ) is invertible. Besides, for n large

enough, the function (Lﬁl)( )) !is Lipschitz in with a constant 8=n'? ,*; on the event
An.

Proof. With (12),

|
DL p( 5iXi] + Xira))? 1 LP(0).
Go( ;Xi; Xie1)2 (A +]j)? 4

L2()

i=1

Since Lﬁz)(O) < 0 for n large enough as n 1=2Lﬁz)( ) converges in probability to some
negative random variable (see (9)), we get that LS ( ) is one-to-one. With the formula
0 (L)) L=1=LP WP (), (LP( ) tis Lipschitz in - with constant 4=L?(0). O



The idea of the proof is then the following: We construct an estimator | such that
for some constant C and p 0,

supn”iLP( ) C:

n2N

Since Lﬁ,l)( n) = 0, for n large enough,

TN e (500 T (ST Q) I (B Bl (R{ @)
gT1=2 8CT 12
IR 1 €Y i .
ni=2 Z‘TJLn ( I’I)J np=4+1=2 Z‘T. (13)

Proof of Proposition 2. For the sake of simplicity, let us set q = n'™.

Set = a0+ n0®+ g3+ ,q*forsome ,, ,and ,to be carefully chosen. Here,
we consider only the first terms in the development of . It is easily to convince oneself
that this method may be applied to any order and that the involved terms ,; n; n;:::
may be computed recursively and give rise to (6).

With (11) and m = 4, there exists a constant C such that

iLPCn) LPO  LPO) n
i’
(T j )

Remark that Lﬁl)(O) Lﬁz)(O) a0 = 0. In order to get rid of the terms in g?, set

L&) 2 LY©O 3 LO@O) i cCn'?

_ LY ,
LP©) "
Since the joint distribution of , and n¥*L$(0)=L?(0) converges stably, n*** |, con-

verges stably. Also, |, converges to 0.
In order to get rid of the terms in g3, set

L) 5 L)
LP0) " P "

From Corollary 1, , converges stably since ,, and , converges stably.
In order to get rid of the terms in g*, set

L) ,

LS (0) .
L@@ " "

L$1T(())(nn+ )

Again, , converges thanks to Corollary 1.
Hence

L@ X Q) :
()= 4By +Ra( n);

r=5
where Ra( n) nY¥?j oj°=(1 j nj)® and B are terms that depend linearly on Lﬁk)(O)
and on the power of the ,, ,, nand ,. Since the Lﬂ‘)(O):nlz2 are bounded, we obtain
that the n3**B{” are bounded.

10



In addition, n*** , is bounded in n, so that n®*R,( ,) is bounded in n. With (13),
this proves that for some constant K,

. . K
Jon 1l PEE

Finally, let us note that , = 2d@ withd® = L (0)=LP(0). With (1), d? converges
in probability to 0 and n***d? is bounded in n. Remark that , = 3d® and ,= 4d{
where d and d$ are bounded in n. This result may be generalized to any order. O
Proof of Theorem 1 Point (I1). On the event ‘1 > 0g, the local time has a density (see

Lemma 6 below). Foreach >0, one may findaset () aswell as some values0 < a’ < b’
and ¢’ such that ¥ 2 () implies that X 2 (a%;b") and jW (‘t)=*7j ¢’ and

P[ ()ifr>0g] 1 =2

From the joint convergence of the n1=4L§,2k+1)(0) to k+1W (‘1) and the joint conver-
gence of the n2L&(0) to  »“r, we get for any > 0, there exists 0 < k < a’ and K > b
as well as a measurable set ‘( ;n) () such that

p_
L®@O) K non °(;n)

L@ (0) kP on "(;n)
and 8n  no; P[ '(n; )jf‘r >0g] 1

In the proof of Proposition 2, we constructed some estimator , such that for some
p 0, an,ﬂl)( n) is bounded by some constant depending the upper bounds of the

n=2L{2(0). Besides, we use the Lipschitz constant of (LSY) ! which depends on the
lower bound of n*2L(0). Thus, on °( ;n), we obtainthatj » nj C=n*"2, where
C depends only on K and k, assuming that n  ng. This means that

P af G
Thus, for any > 0, there exists ng large enough such that
8n ng; PP j C]

which yields the result. O

3.3 The contrast function

In order to study the maximum likelihood, it is also possible to consider the contrast

function L0 )
exp(Ln

Z = =

"= o)

Using the asymptotic development of L,(u) around 0, we get that
2
logZn( ) = L(0) + 3L§3)(O) +0( °):

Thus, with the result of Proposition 1, we see that

F—stabl¥

2
1=4 3 1=2  « .
= TEOW(e) T P (14)

log Zn( =n**)

11



From this convergence we can intuitively check our result in (7), based in the theory of
convergence of statistical experiments and the LAMN property in (14). The theory states
(under certain stringent conditions that we do not verify) that the maximum likelihood
estimator of the pre-limit experiments converges stably to the maximum likelihood esti-
mator of the limit experiment (Ibragimov & Has’minskii, 1981). It is direct, di Lerkntiating
with respect to in the r.h.s. of (14), to obtain, when “t > 0, that the MLE in the limit
experiment is T W (“1)=“r. We then obtain (7).

4 The limit distribution

In this section, we consider that the starting point is 0 and then that P[A] = 1. Otherwise,
on the event A, one may use the strong Markov property at the first time the process hit
zero.

As n** ,and |, converge to 1 with 1 =T¥W(‘r)="7, we give the main char-
acteristics of this random variable. As noted in Remark 2, thanks to the scaling property
of the Brownian motion, we see that is equal in distribution to W (“1)="1, whatever the
value of T.

Indeed, this random variable is easy to simulate.

Lemma 6. Under Py, the distribution of is symmetric. Besides, its density is

Z YA pP-
_dF () _ "t ! xy oy’
foo="g0= a Tg?exp 2L (15)

and it is equal in distribution to

_ G(H)
T H

where G(H), U and V are independent random variables, G(H) N (O;H), U N (0;1)
and V. exp(1=2).

with H = %(U + pV + U?); (16)

Proof. It is well known that the local time “; at time 1 is equal in distribution to the
supremum of the Brownian motion sup, .y Br on [0; 1]. It follows that

F (y) = Pol*1 <y] =Po[ sup Br <y]=Po[ y >1];
r2[0;1]

where , = infft > 0jB; =yg. The density (t;y) of , is equal to

(ty) = p—l ex y_z ;
SARLC TR T
so that zZ, . /2 |
F- =1 — = ;

) . %EXP ot t;

and the density f-, (y) of “; is then equal to
yA 1
2y y>
T = —— — .
) . %GXP o1 dt
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Thus, conditioning with respect to the value of “y,

Z .4
FX)=P[ <x]= . PIW(y) < xylf(y) dy
and this leads to (15). p
Expression (16) follows from the equality in distribution of “; and %(U + V +U32).
This expression has been used in Lépingle (1993) and Lépingle (1995) in order to simulate
the reflected Brownian motion. ]

The variance of is 3:16. We see in Figure 1 that the density of s close to that of
the normal distribution, yet narrower.

0.10 0.15 0.20 0.25 0.30

0.05

0.00

Figure 1: Density of  (solid) and density of the normal distribution with variance
Var( ) (dashed).

5 Numerical tests and observations on the estimators

In order to simplify the notations, let us set

@
Ln (0) proba' 0:

Numerical tests are easy to perform, as all the formulae are easy to implement. For
example, the SBm is easily simulated: it could be approximated by random walks (Har-
rison & Shepp, 1981) or by the exact simulation algorithm proposed in Lejay & Pichot
(2012). As pointed out, the estimator e, is easily computed from the data, while the
MLE may be found by a numerical optimization procedure since the density (2) of the
SBm has a simple, analytic expression. In Section 4, we saw how to simulate random
variates distributed as

13
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Figure 2: Statistics of ,, and e,: mean value (points), =2 and *4-quantiles (the upper and
lower boundaries of the rectangles) as well as the =10 and ®*=10-quantiles (the extremities
of the segments) for n = 10;000 over the 10,000 realizations of paths.

@ n (b) en

Figure 3: Density of , and e, for =0, =%=10and = %10 and n = 10;000 sample
points.

5.1 Numerical behavior of the estimators for the SBM with &0

Of course, a natural question which arise is to know the behavior of the MLE |, and of
en When the observed points TX;gi=o....n arise from a SBm of parameter & 0.

As noted in the introduction of this Section, numerical tests could easily be performed
for any value of , so that one may for example construct some hypothesis test with
thresholds given numerical estimation of quantiles. This could indeed give better values
than the one obtained by simply using an asymptotic theorem.

In Figure 2, we plot for values of the skewness parameter in the set f0; 13—0; i 1%—509
the mean values of , and e, over 10,000 paths with n = 10;000 samples points. We also
plot its =10, =4, ¥4 and %=10-quantiles.

In Figure 3, we plot the density of , and e, for 2 f0; %; %g for n = 10;000 sample
points and constructed from N = 10;000 paths. We see that the density of |, is skewed
for & 0, as one could expect, and that the variance of ,, seems to decrease as increase

to one. This is not the case with e.
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n 100 250 500 1,000 2,500 5,000 10,000 50,000 100,000 250,000
Y10-g.| 059 0.76 1.01 1.06 115 120 117 1.34 0.94 1.48
910-q.| 065 0.89 091 098 111 113 135 134 1.23 1.33
Sdev | 1.20 1.94 289 438 6.38 995 13.00 31.95 30.80 80.47

Table 1: Quantiles and standard deviation for of n®*( , e,) over N = 10;000 paths.

-4 -2 0 2 4 4 2 0 2 -1.0 -0.5 0.0 05 1.0

(a) Densities (b) Q-Q for 100 VS. 250000 (€) Q-Q for 250000 VS. C

Figure 4. Densities of ,, = n'™e, for the values of n give in Table 1 and Quantile-
Quantile plot of |, for n = 250;000 against n = 100 and , against ¢ with c such that
Var( ) = Var(c ). The straight lines are defined by y = x and show the concordance.

We see that the average value of , isclose and that the MLE seems to be a consistent
estimator of . On the other hand, the mean value of e, is close to only for small values
of (say < ®=10) and overestimates for larger values.

5.2 Study of the estimator for small values of nand =0

Theorem 1 asserts that , ep is of order O(1=n*). In Table 1, we give the =10 and
%=10-quantiles of n>4( , e,). for small values of n. However, the standard deviation
increases with n.

We also see in Figure 4(a) that the density of ,, = n'**e,, remains stable with values
of n, even for small values of n. Figure 4(b) presents Quantile-Quantile plot for 199
against 550000, Which confirms the closeness of these two distributions. In Figure 4(c),
we see that the distribution of 250000 IS also close to the one of = cW (*1)="; with ¢
chosen to get equality of the variances.

6 An example of application: di[udion of species

As endowed in the introduction, the SBm is a fundamental tool when one has to model
a permeable barrier. In addition, it appears when one writes down the processes gener-
ated by dil[udion equations with discontinuous coe [ciehts in a one dimensional media:
this issue is presented in the survey article Lejay (2006) with references to the articles
where the SBm arises and covering various fields, such as ecology, finance, astrophysics,
geophysics, ...

We present here a possible application to ecology of our hypothesis test, which can be
surely applied to other fields.

15



6.1 Has a boundary between two habitats an e [edt?

Di[udions are commonly used in ecology to explain the spread of a specie, at the level of
individual cells (See for example the book Berg (1993)) or the level of an animal in a wild
environment.

Several authors have proposed the use of biased diludions to model the behavior
of a specie at the boundary between two habitats, such as Cantrell & Cosner (1999);
Ovaskainen & Cornell (2003), when the species di[ude with di[erknt species at speed in
each habitat.

Now, consider a situation where the dispersion of a specie in two di [erknt habitats is
well modelled by a di [udion process, and that the measurement of the di [udion coe [cieht
give the same value. Does it means that the boundary has no e[edt on the displacement
of the individuals?

Let us apply this in a one-dimensional world, where one habitat is [0; +1.) and the
other is ( 1;0]. We assume that we may track the position of an individual, whose
displacement in each of the habitat is given by x + B;.

Then, we may apply our hypothesis test to determine whether or not the position shall
be modelled by

(Ho) X¢=x+ By

or by
(H) X¢=x+ Be+ “UX):

Under Hypothesis (Hp), the boundary has no el[edt and is not seen. Under Hypothesis
(H,), the individual is more likely to go in one of the two habitat, depending on the sign
of .

6.2 What is the underlying operator?

Now, let us consider that we have a measurement of the di[udion coe Lciehts that gives
two dilerknt values ar on R, anda onR .

One may then wonder which di Lerkntial operator shall be used to model the di [udive
behavior. For a=a+lp+1)+a 1 1), isit

1 1
L:Er(ar)orA=§a4 ?

On (0;+1) and ( 1;0), there is no di Lerence between these two operators, which means
that the local dynamic of the particle/individual is not a[edted by the choice of L and A.
However, the dilerknce arises at 0: the process X generated by L is solution to

Z t

o)
X, =x+ a(Xe)dB+ ot 2
0 a, +a

2(X)

while the process Y generated by A is solution to
YA t
P
Yy =X+ a(Xs) dBg;
0

for a Brownian motion B (See for example Lejay (2006); Lejay & Martinez (2006)). From
the analytic point of view: the domain Dom(A) of A contains the functions of class
C2(R) which are bounded with bounded, first and second order derivatives. The domain

16



Dom(L) of L contains functions of class C?(R n f0g) with bounded first and second order
derivatives which are furthermore continuous at 0, and such thata. rf(0+) =a rf(0 ).
This condition is called the flux condition. In many physical situations, it is assumed that
the flux aru is continuous and this is why divergence-form operators of type L arise.

Remark 4. Both L and A can be embedded in a single class of operators of type 5 r(ar ).
If and a are constant on (0;+21) and ( A;0), then we may use the following charac-
terization: let us consider
1
= Er(ar Ywitha=a,lp+q)+a 1¢ 1.

and

IV ©

f; £, ¥ are bounded on R n f0g
f 2C?(Rnfog)| F(0 ) =F(0+)

Dom(C) = .-
@+ H)FOH =00 HFO ) 2( L1’

W N

This class of operators is then specified by three parameters, a, >0,a >0and 2
( 1;1). The operator A correspondsto =0, while L correspondsto = (a+ a )=(a++

a).
R -
For (x) = ¢ dx:pa(x), R = (X) is solution to the SDE (Lejay, 2006; Lejay &
Martinez, 2006) P P

R, = ®+&+ﬁ—ﬂ%-m)

while ¥ = (Y) is solution to the SDE
Py pa+
ﬂ:(m+&+a——ﬁ—ﬂ%:

We then see that both R and ¥ are Skew Brownian motions, but the coe [ciehts in front
of their local time have opposite signs.

Even if we have not studied the asymptotic behavior of the MLE for the SBm with
skewness parameter di Lerkent from 0, numerical experiments back the following hypotheses
test:

1. Given an observed X, estimate the di[udion coe [cieht for the process on each side
of 0.

2. Apply the function to the observed process.
3. Compute the MLE |, of the Skewness parameter. If a, >a (resp. a+ <a ) and
n = 0 then decided that the infinitesimal generator of X is L (resp. A). Otherwise,
decide that it is A (resp. L).
7 Conclusion

In this article, we have studied the behavior of the maximum likelihood for the Skew
Brownian motion when the parameter to estimate is 0.
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In particular, we have shown that the rate of convergence of the estimator ,, is n*
and not n'2 as in the classical case. This should not be surprising: indeed, away from 0,
the Skew Brownian motion behaves like a Brownian motion, and only its dynamic close
to 0 allows one to see the dilerence between a Skew Brownian motion with a parameter

& 0 and a Brownian motion. It is also not surprising that the local time enters in the
limit distribution.

The case & 0 remains open. One needs to prove results similar to the one of
Jacod (1998), when the Brownian motion is replaced by the Skew Brownian motion (its
distribution with respect to the Wiener measure is singular). Of course, one cannot expect
the limit law to be symmetric. Yet, it is pretty easy to simulate the Skew Brownian motion
and to estimate the maximum likelihood, so that numerical studies are easy to perform.

8 Appendix

In this Appendix we provide the theorems given in Jacod (1998) used for the proofs of
the main results in Section 2. We slightly change the notation and present the results in
the particular cases that are relevant to us in the present work.

Denote by X =fX;: 0 t 1g a Brownian motion on a probability space ( ;F;P).
Introduce a Borel function h: R? ¥ R such that there exist a 2 R and i: R ¥ R such
that VA

h(x;y) e%¥ifi(x) and xjfifi(x)jdx < 1 (17)

Theorem 2 (Jacod (1998, Theorem 1.1, p. 508)). Consider h as above, satisfying (17)
with r = 0. Then

1Np_ b

n(PiXian; P ryen Xien)) " c(h) (18)

ni=2 ni1l

i=0
where 27
c(h) = i h(x;y)p(1;y) dxdy; (19)

R
and (“t)¢ o denotes the local time of X at level zero.

Remark 5. It must be noticed that the convergence in (18), as stated in Jacod (1998), is
stronger, in the sense that both terms in (18) are processes (i.e. depend on t) and the
convergence is locally uniformly in time, in probability. Recall that a sequence (Z"), 1
of processes is said to converges locally uniformly in time, in probability, to a limiting
processes Z if for any t 2 R the sequence supg jZ& Zsj goes to 0 in probability.
Let us assume now that h is such that c(h) = 0. Then set
YA
C(h) = c(h*) +2 p(L;y)h(x;y)H (x +y) dy dx (20)
R R
with >z Z 7
H(x) = R|O(k:y) R|0(1;Z)h(><+y:2)dz dy:

k=0
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Theorem 3 (Jacod (1998, Theorem 1.2, p. 511)). Consider h as above, satisfying (17)
with some r > 3, and assume that c(h) = 0 (see (19)). Then
1 X P— P—
—  h( nXizn; " n(Xg+=n  Xi=n))
i=0

Faaleindsy Peimwen: @

nl:4
where W = fW;: t 0g is a Brownian motion independent of X, and (“¢)t o is the local
time of X at level zero. The constant C(h) is given by (20).

Remark 6. As in the previous remark, the theorem stated in Jacod (1998) is stronger,
now in the sense that both terms in (21) are processes, and the processes converge stably
in distribution in the Skorokhod space of cadlag functions.
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