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FAST FACTORIZATION-BASED INFERENCE FOR BAYESIAN HARMONIC MODELS
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Department of Electronic Engineering, Queen Mary, University of London

Mile End Road, London E1 4NS, United Kingdom

ABSTRACT

Harmonic sinusoidal models are a fundamental tool for au-
dio signal analysis. Bayesian harmonic models guarantee
a good resynthesis quality and allow joint use of learnt pa-
rameter priors and auditory motivated distortion measures.
However inference algorithms based on Monte Carlo sam-
pling are rather slow for realistic data. In this paper, we
investigate fast inference algorithms based on approximate
factorization of the joint posterior into a product of indepen-
dent distributions on small subsets of parameters. We dis-
cuss the conditions under which these approximations hold
true and evaluate their performance experimentally. We sug-
gest how they could be used together with Monte Carlo al-
gorithms for a faster sampling-based inference.

1. INTRODUCTION

Music and speech involve different types of sounds, includ-
ing periodic, transient and noisy sounds. Short-term station-
ary periodic sounds composed of sinusoidal partials at har-
monic frequencies are particularly important perceptually,
since they represent most of the energy of musical notes and
vowels. Harmonicity means that at each instant the frequen-
cies of the partials are multiples of a single frequency called
the fundamental frequency. Estimating the periodic sounds
underlying a given signal, i.e. estimating their fundamental
frequencies and the amplitudes and phases of their partials,
is required or useful for many applications, such as audio
indexing, browsing by content, source separation, low bi-
trate compression, musical score transcription and interac-
tive content manipulation. This problem is particularly dif-
ficult for polyphonic signals, i.e. signals containing several
concurrent periodic sounds, since different periodic sounds
may exhibit partials overlapping at the same frequencies.

Existing methods for polyphonic fundamental frequency
estimation are often based on one of two approaches: ei-
ther validation of fundamental frequency candidates given
by the peaks of a short-term auto-correlation function [1, 2]
or inference of the hidden states of a probabilistic model of
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the signal short-term power spectrum using detailed prior
information [3, 4]. These approaches have achieved a lim-
ited performance on complex polyphonic excerpts so far [2].
Moreover neither approach estimates the parameters of the
partials, which are needed for some applications.

A promising way to address these issues is to rely on a
probabilistic model of the signal waveform involving fun-
damental frequency, amplitude and phase parameters. A
family of such models has been proposed in the literature
for music signals, along with Markov Chain Monte Carlo
(MCMC) methods to infer their parameters [5, 6, 7]. These
methods converge to the right solution asymptotically, but
tend to be rather slow on realistic examples [8]. Thus the pa-
rameter priors chosen in these models are partly motivated
by computational issues. For instance, the prior over the
number of partials per note favors a small number of par-
tials independently of the fundamental frequency in [5, 6],
while the amplitudes of the partials are modeled by conju-
gate priors [8] such as a uniform prior in [5] and zero-mean
Gaussian priors with various covariance matrices in [6, 7].
These priors do not penalize partials with zero amplitude,
which can lead to erroneous fundamental frequency esti-
mates or bad quality separated note signals. To help solving
these limitations, we recently proposed a harmonic model
[9] including probabilistic priors motivated by observation
of empirical parameter distributions and used the diagonal
Laplace method [10] for fast parameter inference.

In this paper, we develop improved fast inference meth-
ods for Bayesian harmonic models, based on factorization
of the joint posterior into a product of independent distri-
butions on subsets of parameters. These methods are illus-
trated in the particular case of the proposed model, but could
be applied to some other types of harmonic models.

The structure of the rest of the paper is as follows. In
section 2, we briefly introduce our harmonic model and the
associated parameter priors. Then, we describe the pro-
posed inference methods in section 3 and discuss the con-
ditions under which they give a precise result. In section 4,
we evaluate their performance for musical score transcrip-
tion on short time frames. We conclude in section 5 and
suggest a way of combining these methods with MCMC.



2. MODEL DEFINITION

The model proposed in [9] represents a music signal as a
collection of notes, each composed of harmonic sinusoidal
partials. For simplicity, we assume in the following that
parameters on different time frames are independent. On
each time frame, the model exhibits the four-layer Bayesian
network structure shown in figure 1. Each layer models the
observed signal frame x(t) at a different abstraction level.

2.1. Structure of the proposed model

The bottom layer represents the underlying musical score.
In western music, the normalized fundamental frequency
fpn of each note may vary but remains close to a discrete
pitch of the form

µf
p =

440

Fs
2

p−69

12 (1)

where Fs is the sampling frequency and p an integer value
on the MIDI semitone scale. Each discrete pitch p is associ-
ated with a binary state Sp determining whether a note with
that discrete pitch is active or not. The signal sp(t) corre-
sponding to each active note is then defined in the middle
layers for 0 ≤ t ≤ T − 1 by

sp(t) = w(t)

Mp
∑

m=1

apm cos(2πmfpt + φpm), (2)

where w(t) is the framing window and fp, apm and φpm are
respectively its normalized fundamental frequency and the
amplitude and the phase of its m-th partial. The number of
partials Mp is constrained to Mp = min(1/(2µf

p),Mmax).
Finally, the observed signal is modeled in the top layer as

x(t) =
∑

p/Sp=1

sp(t) + e(t), (3)

where e(t) is the residual.

2.2. State and parameter priors

In order to penalize transcriptions containing too many ac-
tive notes, the global state S = (Sp)P≤p≤P ′ is modeled by
a product of independent Bernoulli distributions

P (S) =
∏

p/Sp=1

(1 − PZ)
∏

p/Sp=0

PZ , (4)

where PZ is the mean inactivity probability. Given the note
states, the parameters of different notes are assumed to be
independent. The normalized fundamental frequency of each
note is modeled by a log-Gaussian prior enforcing proxim-
ity to the underlying discrete pitch

P (log fp) = N (log fp; log µf
p , σf ), (5)
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x: observed signal frame

(sp): note signals
e: residual

(fp): fundamental frequencies
(rp): global amplitude factors
(apm): amplitudes of the partials
(φpm): phases of the partials

(Sp): note states

Fig. 1. Graphical representation of the proposed model.
Subscripts are omitted for legibility.

where N (·;µ, σ) is the univariate Gaussian density of mean
µ and standard deviation σ. Similarly, the amplitudes of the
partials are represented as

P (log apm|rp) = N (log apm; log(rpµ
a
pm), σa

p), (6)

where (µa
pm)1≤m≤Mp

is a fixed (learnt) normalized spectral
envelope helping to avoid partials with zero amplitude and
rp a global amplitude factor for this note, modeled by

P (log rp) = N (log rp; log µr
p, σ

r
p). (7)

The phases of the partials are assumed to be independent
and uniformly distributed

P (φpm) = 1/2π. (8)

2.3. Distortion measure

The distortion between the observed signal and the model
is measured by the auditory motivated weighted Euclidean
norm D =

∑T−1
f=0 γf |Ef |2, where (Ef )0≤f≤T−1 are the

discrete Fourier transform coefficients of e(t) and the con-
stant frequency weights (γf )0≤f≤T−1 are given in [9]. The
residual prior is derived by P (e) ∝ exp(−D/(2(σe)2)),
resulting in the weighted Gaussian distribution

P (e) =

T−1
∏

f=0

N (Ef ; 0, σeγ
−1/2
f ). (9)

3. INFERENCE ALGORITHMS

The aim of musical score transcription is to estimate the
Maximum A Posteriori (MAP) state Ŝ = arg max P (S|x).
The posterior probability of S equals the integral P (S|x) =
∫

P (S, f, r, a, φ|x) df dr da dφ, where the joint posterior is
expressed by Bayes law P (S, f, r, a, φ|x) ∝ P (e)P (a|r, S)
P (φ|S)P (r|S)P (f |S)P (S). The computation of this inte-
gral is known as the Bayesian marginalization problem [8].



Numerical integration is intractable since the number of pa-
rameters is typically of the order of one hundred per frame.

Fast inference can be achieved by estimating the MAP
parameters (f̂ , r̂, â, φ̂) = arg max P (Ŝ, f, r, a, φ|x) using
a standard optimization algorithm1 and approximating the
joint posterior around these values by a simpler distribution
which can be integrated analytically. Popular methods in-
clude the full Laplace approximation [10], which replaces
the posterior by a Gaussian distribution with full covariance
matrix, and the diagonal Laplace approximation [10], which
factorizes the posterior into a product of parameter-wise
univariate Gaussian distributions. Both approximations are
better used on log-parameters log fp, log rp and log apm,
which are unbounded [10]. The diagonal Laplace approxi-
mation also allows bounded integration over each phase pa-
rameter φpm in [−π, π].

The proposed inference methods generalize the diago-
nal Laplace approximation by factorizing the posterior as a
product of Gaussian and non-Gaussian distributions. These
factorizations are obtained in several steps.

3.1. Conditional posterior factorization over the partials

Let us assume initially that the harmonic partials correspond-
ing to the hypothesized fundamental frequencies have “dif-
ferent enough” frequencies. This is true for a single hypoth-
esized note, but generally not for several notes. Mathemati-
cally, this translates into the fact that the windowed complex
sinusoidal signals

zpm(t) = w(t)e2iπmfpt (10)

corresponding to different partials are mutually orthogonal

〈zpm, zp′m′〉 = 0 ∀(p,m) 6= (p′,m′) (11)

according to the dot product consistent with the distortion
measure D, defined for two signals z(t) and z′(t) by

〈z, z′〉 =
T−1
∑

f=0

γfZf Z̄ ′
f , (12)

where Zf and Z ′
f are the discrete Fourier transform coef-

ficients of z(t) and z′(t) and Z̄ ′
f is the complex conjugate

of Z ′
f . This orthogonality property does not depend on the

value of the frequency weights. When the frequencies of the
partials are not too close to Nyquist, the negative frequency
sinusoidal signals z̄pm(t) = w(t)e−2iπmfpt are also orthog-
onal to their positive counterparts: 〈zpm, z̄p′m′〉 = 0 for all
(p,m) and (p′,m′). The observed signal x(t) can then be
decomposed into a sum of sinusoidal signals at the frequen-
cies of the hypothesized partials by orthogonal projection

1In the following, we use Matlab’s lsqnonlin function.

onto the two-dimensional subspaces spanned by (zpm, z̄pm)

x(t) =
1

2

∑

p,m

ãpm(eiφ̃pmzpm(t) + e−iφ̃pm z̄pm(t)) + ẽ(t).

(13)
The projection coefficients, given by

ãpmeiφ̃pm = 2〈x, zpm〉/‖zpm‖2 (14)

with ‖z‖2 = 〈z, z〉, represent the amplitude and phase val-
ues of each partial resulting in the minimal distortion. Given
hypothesized values apm and φpm, the residual e(t) can be
decomposed as a sum of mutually orthogonal terms

e(t) =
1

2

∑

p,m

(

ãpmeiφ̃pm − apmeiφpm

)

zpm(t)

+
(

ãpme−iφ̃pm − apme−iφpm

)

z̄pm(t) + ẽ(t). (15)

The resulting distortion D = ‖e‖2 then equals by analytical
computation

D =
∑

p,m

Dpm + D0 (16)

where D0 = ‖ẽ‖2 and

Dpm =
1

2
‖zpm‖2

(

(apm − ãpm)2

+ 4ãpmapm sin2((φpm − φ̃pm)/2)
)

. (17)

This decomposition results in the factorization of the poste-
rior as a product of partial-wise bivariate conditional distri-
butions over amplitude and phase parameters

P (S, f, r, a, φ|x) ∝ P0(x, f)P (r|S)P (f |S)P (S)

×
∏

p,m

Ppm(apm, φpm;x, fp)P (apm|rp)P (φpm), (18)

where P0(x, f) = (2πσe 2)−T/2 e−D0/(2σe 2) is a constant
and Ppm(apm, φpm;x, fp) = exp(−Dpm/(2σe 2)) a bivari-
ate parametric distribution depending on three hyper-para-
meters only: ‖zpm‖2, ãpm and φ̃pm. The top plot of figure
2 illustrates the validity of this factorization.

3.2. Validity of the conditional factorization

In the general case where several partials may have close
frequencies, the amplitude and phase values ãpm and φ̃pm

minimizing the distortion for each partial given the MAP
values of other parameters can be obtained similarly by

ãpmeiφ̃pm = 2〈ê, zpm〉/‖zpm‖2 + âpmeiφ̂pm , (19)

where ê(t) is the residual corresponding to the MAP param-
eters (â, φ̂) depending on f and r. Consequently, the quanti-
ties D0, Dpm, P0(x, f) and Ppm(apm, φpm;x, fp) can still
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Fig. 2. Shape of the joint posterior for a signal containing
two partials (p,m) and (p′,m′) with 60 dB amplitudes as
a function of their hypothesized amplitudes. Dark areas de-
note high probability. Top: partials with different frequen-
cies and mean prior amplitudes of 50 dB and 60 dB. Middle:
partials with the same frequency but different mean prior
amplitudes of 40 dB and 60 dB. Bottom: partials with the
same frequency and same mean prior amplitudes of 60 dB.

be computed. However, the above factorization of the pos-
terior does not always hold true.

This factorization remains valid in the particular case
where several partials are located at the same frequency,
but only one (masker) has a mean prior amplitude rpµ

a
pm

close to the observed amplitude, while others (masked) have
much smaller mean prior amplitudes. Indeed, on the one
hand, when the hypothesized amplitude values are far from
their prior values, the posterior is small because the factors
P (apm|rp) are small and the error on P (e) due to factoriza-
tion does not matter. On the other hand, when the hypoth-
esized amplitudes are close to their prior values, the distor-
tion remains relatively constant as a function of the ampli-
tudes of the masked partials. Thus P (e) depends only on the
amplitude of the masker partial and factorizes as above with
Ppm(apm, φpm;x, fp) = 1 for the masked partials. The

bottom plots of figure 2 illustrate this in the case of two
partials. The partial-wise factorization appears to be valid
when the mean prior amplitude of the masked partial is 20
dB below the amplitude of the masker partial, but not when
both amplitudes are equal.

In the latter case, it is still possible to group partials
into subsets according to their frequencies such that partials
from different subsets are orthogonal, but partials within
each subset are not. Similar arguments as above then lead
to factorize the posterior as a product of multivariate con-
ditional distributions over subsets of amplitude and phase
parameters ag = (apm)(p,m)∈g and φg = (φpm)(p,m)∈g

P (S, f, r, a, φ|x) ∝ P0(x, f)P (r|S)P (f |S)P (S)

×
∏

g

Pg(ag, φg;x, f)P (ag|r)P (φg). (20)

3.3. Full posterior factorization over the partials or sub-
sets of partials

The exact conditional factorizations in equations (18) and
(20) can be exploited for numerical integration of the pos-
terior. Indeed integration over amplitude and phase param-
eters can be achieved by multiplying lower dimension in-
tegrals over the parameters of each partial or each subset
of partials. Denoting by N the number of grid points for
each scalar variable, P the number of hypothesized notes
and M =

∑

p Mp their total number of partials, equation
(18) requires N2 evaluations of the posterior for each par-
tial and each value of f and r, resulting in a complexity of
O(MN2P+2). Similarly, equation (20) results at most in a
complexity of O(M

P N4P ). This is faster than the complex-
ity of O(N2P+2M ) associated with straightforward integra-
tion, but still intractable.

In order to get faster integration, it is necessary to re-
place conditional factorization over amplitude and phase pa-
rameters by full factorization. An approximate solution is to
replace the free parameters in the expression of the condi-
tional distributions by their MAP values. This gives

P (S, f, r, a, φ|x) ≈ P0(x, f̂)P (r|S, f̂ , â, φ̂)P (f |S, â, φ̂)

× P (S)
∏

p,m

Ppm(apm, φpm;x, f̂p)P (apm|r̂p)P (φpm)

(21)

when the partials have “different enough” frequencies and

P (S, f, r, a, φ|x) ≈ P0(x, f̂)P (r|S, f̂ , â, φ̂)P (f |S, â, φ̂)

× P (S)
∏

g

Pg(ag, φg;x, f̂)P (ag|r̂)P (φg) (22)

in the general case. These equations allow approximate nu-
merical integration of the posterior with a complexity of
O(MN2 + NP ) and O(M

P N2P ) respectively.



3.4. Full posterior factorization over the parameters

An even faster integration can be obtained by factorizing the
posterior as a product of parameter-wise univariate distribu-
tions and replacing these distributions by simple parametric
forms that are easily integrated analytically or by tabulation.
The posterior distributions of log-amplitude factors given
other parameters are Gaussian. Equation (17) shows that the
posterior distributions of phase parameters are proportional
to exp(−‖zpm‖2ãpmâpm sin2((φpm− φ̃pm)/2)/σe 2), thus
depending on the single parameter ‖zpm‖2ãpmâpm/σe 2 up
to phase rotation. Further analytical computation shows
that the posterior distributions of the log-amplitudes of the
partials have a complex (possibly multimodal) shape de-
pending on four hyper-parameters: ãpm, r̂pµ

a
pm, σa

p and
‖zpm‖/σe. Similarly, the posterior distributions of log-fun-
damental frequencies depend on many hyper-parameters.
Therefore the two latter distributions are approximated by
simple Gaussians. Integration of these distributions gives

P (S|x) ≈ P (S, f̂ , r̂, â, φ̂|x)
∏

p

I(ĉlog fp
)I(ĉlog rp

)

×
∏

m

I(ĉlog apm
)J (ĉφpm

), (23)

where ĉlog fp
, ĉlog rp

, ĉlog apm
and ĉφpm

denote the curvature
of the posterior at its maximum with respect to the parame-
ters, defined by ĉy = −∂2 log P (S, f, a, r, φ|x)/∂y2, and

I(c) =

∫ +∞

−∞

e−
1

2
cy2

dy = (2π/c)
1

2 , (24)

J (c) =

∫ +π

−π

e−2c sin2 y

2 dy. (25)

This equation, resulting in a complexity of O(M + P ), is
identical to the diagonal Laplace approximation, except that
phase parameters are modeled by their true posteriors in-
stead of Gaussian approximations. Figure 3 suggests that
the proposed factorization is generally not exact, but may
be more accurate than the diagonal Laplace approximation
at phase values far from the optimum.

4. EVALUATION

The proposed marginalization algorithms were compared
for the task of score transcription on short signal frames
without assuming knowledge of the true number of notes.
Model hyper-parameters σf , µa

pm, σa
p , µr

p and σr
p were learnt

on a subset of the RWC Musical Instrument Database2, while
test signals were obtained by selecting and mixing isolated
note signals played by five different wind instruments from
the University of Iowa Musical Instrument Samples3. More

2http://staff.aist.go.jp/m.goto/RWC-MDB/
3http://theremin.music.uiowa.edu/MIS.html
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Fig. 3. Shape of the joint posterior for a signal containing
a partial with 55 dB amplitude and zero phase as a function
of the hypothesized amplitude and phase. Dark areas denote
high probability. The mean prior amplitude equals 45 dB.

precisely, the test set included 100 one-note signals span-
ning all discrete pitches from p = 40 to 87 and 100 two-
note signals corresponding to all possible pitch intervals be-
tween 1 and 25 semitones with four different lowest pitches
p = 40, 47, 54 and 61. All signals were sampled at 22.05
kHz and framed with a Hanning window of length 1024 (46
ms). Numerical integration involved N = 50 grid points
per variable and partials were grouped into subsets accord-
ing to a difference threshold of 41 Hz, resulting in at most 2
partials per subset.

In order to avoid testing all possible states, 6 candidate
states (3 with one note and 3 with two notes) were pre-
selected for each test signal as those minimizing the resid-
ual of the orthogonal projection of the observed magnitude
spectrum on the subspace spanned by the typical magnitude
spectra of the active notes, derived from their mean spectral
envelopes µa

pm. The performance was measured in terms of
recall R = Ncor/Nref and precision P = Ncor/Nest, where
Nref is the true number of notes, Nest the estimated number
of notes and Ncor the number of correctly transcribed notes.

The average computation time including optimization
was 31 s per candidate for the factorization over subsets of
partials, 1.7 s for the factorization over partials, 1.2 s for the
full Laplace approximation and 1.1 s for the factorization
over parameters and the diagonal Laplace approximation.

Results are shown in table 1. The full Laplace approxi-
mation performed worst both for one-note and two-note sig-
nals, since unbounded integration of the posterior tended to
over-estimate the posterior state probability and select can-



Method 1 note 2 notes
R/P (%) R/P (%)

Fact. subsets of partials 100 / 100 94.5 / 99.5
Fact. partials 100 / 100 88.5 / 97.8
Fact. parameters 100 / 100 88.0 / 97.8
Diagonal Laplace 100 / 100 88.0 / 98.9
Full Laplace 94.0 / 54.7 74.0 / 80.9

Table 1. Score transcription performance of the proposed
marginalization methods, corresponding to equations (22),
(21) and (23) respectively, compared with Laplace methods
in terms of recall R and precision P .

Method Fsub Fprt Fprm DLap FLap
Fsub N/S
Fprt 5×10−4 N/S
Fprm 2×10−4 1 N/S
DLap 2×10−4 1 N/S N/S
FLap 1×10−10 3×10−5 4×10−5 4×10−5 N/S

Table 2. McNemar statistics of the marginalization methods
(sorted as in table 1) on two-note signals. Values smaller
than 0.05 indicate significantly different performance, while
N/S indicates empirically identical performance.

didates with a larger number of partials. All other algo-
rithms provided perfect transcription on one-note signals.
The factorization over subsets of partials lead to the best
performance on two-note signals, while other factorizations
and the diagonal Laplace approximation achieved similarly
lower performances. McNemar statistics [11] displayed in
table 2 support the significance of these conclusions. This
suggests that dependencies between the parameters of dif-
ferent partials must be taken into account to achieve a good
performance on multi-note signals, while the distribution of
the parameters of each partial can be approximated by sim-
pler factored distributions without consequence.

5. CONCLUSION

We investigated several factorizations of the posterior dis-
tribution of the parameters of a harmonic model and ex-
ploited them for Bayesian inference. Analytical computa-
tion resulted in an exact conditional factorization over sub-
sets of partials with close frequencies. Further approxima-
tions leading to tractable inference were proposed by re-
moving some conditional dependencies. These factoriza-
tions rely on the fact that the dependencies between the
partials are modeled using a limited number of parameters,
namely a fundamental frequency and a global amplitude pa-
rameter. Thus they could be applied to other harmonic mod-
els following this assumption. Score transcription experi-
ments showed that all factorizations performed perfectly on

one-note signals but that the non-modeling of dependencies
between parameters of different partials degraded the per-
formance on two-note signals.

In the future, we plan to improve the computational ef-
ficiency of inference based on the factorization of the pos-
terior over subsets of partials. Replacing numerical inte-
gration over each subset of parameters by MCMC sampling
when appropriate seems a promising approach. We think
this could potentially result in a faster inference than straight-
forward MCMC with only a small performance decrease.
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