Music transcription with ISA and HMM

Abstract : We propose a new generative model for polyphonic music based on nonlinear Independent Subspace Analysis (ISA) and factorial Hidden Markov Models (HMM). ISA represents chord spectra as sums of note power spectra and note spectra as sums of instrument-dependent log-power spectra. HMM models note duration. Instrument-dependent parameters are learnt on solo excerpts and used to transcribe musical recordings as collections of notes with time-varying power and other descriptive parameters such as vibrato. We prove the relevance of our modeling assumptions by comparing them with true data distributions and by giving satisfying transcriptions of two duo recordings.
Type de document :
Communication dans un congrès
5th Int. Conf. on Independent Component Analysis and Blind Signal Separation (ICA), Sep 2004, Granada, Spain. pp.1197--1204, 2004
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00544697
Contributeur : Emmanuel Vincent <>
Soumis le : mercredi 8 décembre 2010 - 16:46:03
Dernière modification le : mardi 24 octobre 2017 - 17:14:02
Document(s) archivé(s) le : jeudi 10 mars 2011 - 12:33:33

Fichier

vincent_ICA04bis.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00544697, version 1

Collections

Citation

Emmanuel Vincent, Xavier Rodet. Music transcription with ISA and HMM. 5th Int. Conf. on Independent Component Analysis and Blind Signal Separation (ICA), Sep 2004, Granada, Spain. pp.1197--1204, 2004. 〈inria-00544697〉

Partager

Métriques

Consultations de la notice

91

Téléchargements de fichiers

99