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ABSTRACT

Finding a sparse approximation of a signal from an arbitrary dictionary is a very useful tool to solve many problems
in signal processing. Several algorithms, such as Basis Pursuit (BP) and Matching Pursuits (MP, also known as
greedy algorithms), have been introduced to compute sparse approximations of signals, but such algorithms a priori
only provide sub-optimal solutions. In general, it is difficult to estimate how close a computed solution is from the
optimal one. In a series of recent results, several authors have shown that both BP and MP can successfully recover a
sparse representation of a signal provided that it is sparse enough, that is to say if its support (which indicates where
are located the nonzero coefficients) is of sufficiently small size.

In this paper we define identifiable structures that support signals that can be recovered exactly by `1 mini-
mization (Basis Pursuit) and greedy algorithms. In other words, if the support of a representation belongs to an
identifiable structure, then the representation will be recovered by BP and MP. In addition, we obtain that if the
output of an arbitrary decomposition algorithm is supported on an identifiable structure, then one can be sure that
the representation is optimal within the class of signals supported by the structure.

As an application of the theoretical results, we give a detailed study of a family of multichannel dictionaries with
a special structure (corresponding to the representation problem X = ASΦT ) often used in, e.g., under-determined
source separation problems or in multichannel signal processing. An identifiable structure for such dictionaries is
defined using a generalization of Tropp’s Babel function which combines the coherence of the mixing matrix A
with that of the time-domain dictionary Φ, and we obtain explicit structure conditions which ensure that both `1

minimization and a multichannel variant of Matching Pursuit can recover structured multichannel representations.
The multichannel Matching Pursuit algorithm is described in detail and we conclude with a discussion of some
implications of our results in terms of blind source separation based on sparse decompositions.

1. INTRODUCTION

Approximating a signal with a sparse linear expansion from a dictionary of atoms is a useful tool to solve many
problems in signal processing. However, finding the best approximation of a signal from an arbitrary dictionary with
a prescribed number of atoms is an NP-hard problem [1] so, in general, one settles for sub-optimal approximations.
Several algorithms have been introduced that try to decompose a signal in a sparse way. We mention Matching
Pursuit [2, 3], Basis Pursuit [4, 5], but there are many more. A significant problem with such algorithms is that it is
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difficult to know how close a computed solution is to the representation which minimizes the approximation error
under the sparsity constraint.

Several recent papers [6, 4, 7, 8, 9, 10] have identified situations where algorithms such as Basis Pursuit actually
compute an optimal representation of a given signal, in the sense that they solve the best approximation problem
under a sparsity constraint. In this paper we build on these results and study identifiable classes of representations
that can be recovered exactly using constructive algorithms such as Basis Pursuit or greedy algorithms.

First let us fix the notation that will be used throughout this paper. Let F and G be two finite index sets. Let
H = CG be the signal space. A dictionary for H is a linear map D : CF → CG from the coefficient space CF

onto the signal space (note that the theory developed in this paper is also valid if we replace CF and CG with RF

and RG). The atoms associated with D are the columns of the matrix representation of D wrt. the canonical bases
for CF and CG, i.e., D = [gi]i∈F . We will always assume that the dictionary is normalized with respect to the
`2 norm, i.e, that ‖gi‖ = 1, for i ∈ F . The support of a coefficient sequence S = (si)i∈F ∈ CF is defined as
supp(S) = {i ∈ F : si 6= 0} ⊆ F . With this notations the sparse approximation problem can be expressed as

min
S
‖X −D(S)‖ subject to |supp(S)| ≤ m (1)

where X = (xi)i∈G ∈ CG and |I| denotes the cardinal of the set I .
We generalize this problem by considering, for any family S of subsets of F , the following structured approxi-

mation problem, or approximation with structure constraint S

min
S
‖X −D(S)‖ subject to supp(S) ∈ S. (2)

A particular instance of the structured approximation problem is the sparse approximation problem (1), which cor-
responds to the family Sm = {I ⊆ F : |I| ≤ m}. That is to say, we simply put as a constraint a bound on the
allowed number of nonzero coefficients in S. However, in many cases it also makes sense to consider families S
taking into account not only the sparsity of I but also properties that may be related to the “geometry” of F and G.
A typical example that we will consider in details since it appears in multichannel signal processing and blind source
separation problems is when F = [1, N ]× [1,K], G = [1,M ]× [1, T ] and CF (resp. CG) can be identified with a
linear space ofN ×K (resp. M ×T ) matrices and the action of the dictionary isD(S) = ASΦ. TheM ×N matrix
A is usually called the mixing matrix while the K × T matrix Φ is itself a dictionary of atomic waveforms. Often,
the size of the class S grows exponentially with the length |I| of its largest elements, and the optimization problem
(2), which is combinatorial in nature, is hard to approach directly. To study this problem more closely, we introduce
the concept of identifiable structures.

Definition 1 A family S of subsets ofF is called an identifiable structure ifD(S) = D(S ′) with supp(S), supp(S ′) ∈
S implies that S = S ′.

Notice that for S an identifiable structure, any subfamily S ′ ⊆ S is also an identifiable structure.
The significance of Definition 1 is the following.

1. if a signal X satisfies the model X = D(S) with S supported on an identifiable structure S, then the repre-
sentation S is the unique representation of X supported on S, and it can be recovered as the unique solution
of the optimization problem (2).

2. if an algorithm (supposedly computationally efficient) provides some representation X = D(Salg) where Salg
is supported on an identifiable structure S, then one can be sure that this representation is optimal within the
class of representations supported by S, thus bypassing the (generally hard) combinatorial optimization in (2).

Based on existing results [9, 6], it is known that for a general dictionaryD with coherence µ(D) := maxk 6=` |〈gk,g`〉|,
the family Sm with m < b(1 + 1/µ)/2c is identifiable.
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The structure of the paper is as follows. In Section 2 we define two special (abstract) identifiable structures
SLP ⊃ SG which have the following additional interesting property: if a signal X satisfies the model X = D(S)
with S supported on an SLP (resp. SG), then the representation S can be recovered by Basis Pursuit (resp. Basis
Pursuit and Matching Pursuit(s)). A more explicit (but also smaller) identifiable structure SB is defined in Section 2.3
using a generalized version of Tropp’s Babel function, see [8]. We conclude Section 2 with a concrete example
(based on the results in [9, 8]) of identifiable structure for dictionaries made up of a union of incoherent orthonormal
bases. Section 3 contains an application of the theory to a study of the identifiability of structured multichannel
representations, with an application to the analysis of sparse underdetermined source separation. We obtain several
explicit identifiability conditions, one of which is expressed as follows

Theorem 1 Consider A and Φ two matrices and let µ(A) and µ(Φ) be their coherence. If a matrix X has two
representations ASΦT and AS ′ΦT where

• each column of the matrices S and S ′ has at most one nonzero entry,

• both S and S ′ have no more than C columns with nonzero entries,

• the integer C satisfies

C <
1
2

(
1 +

1
µ(Φ)

)
−max

(
0 ,

µ(A)
µ(Φ)

− 1
)
, (3)

then S = S ′. Moreover, this unique representation of X = ASΦT with at most C columns and at most one nonzero
entry per column is recovered by the Basis Pursuit and Matching Pursuit(s) algorithms.

We conclude the section with a complete description of the multichannel Matching Pursuit algorithm which can be
used to recover structured multichannel representations under the conditions of our theorems.

In Section 4 we conclude the paper by considering identifiable structures that support some signals which cannot
be recovered by the Basis Pursuit algorithm. In particular, we give examples of a structure supporting signals that
can only be recovered by combinatorial optimization.

2. ABSTRACT IDENTIFIABLE STRUCTURES

In this section we consider identifiable structures as defined in Definition 1. The main goal is to define identifiable
structures which support signals that can be recovered by constructive algorithms. We fix the dictionary D : CF →
CG throughout this section.

2.1. Recovery by linear programming

The first identifiable structure we define is not only identifiable : it also allows signal recovery using the Basis Pursuit
algorithm based on linear programming. For I ⊂ F , we define

P1(I) = sup
Z∈Ker(D),Z 6=0

∑
i∈I |zi|
‖Z‖1

,

with ‖Z‖1 :=
∑

i∈F |zi| and Ker(D) the null space of D.
The following was proven by the authors [10, Corollary 1].

Lemma 1 Let X = D(S). Let I be such that supp(S) ⊆ I , and suppose

P1(I) := sup
Z∈Ker(D),Z 6=0

∑
i∈I |zi|
‖Z‖1

<
1
2
. (4)

Then S is the unique solution of min
∑

i∈F |s ′i| subject to X = D(S ′).
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Lemma 1 motivates the following definition.

Definition 2 We define the class SLP by

SLP =
{
I ⊆ F : P1(I) <

1
2
}
.

The following theorem is an immediate consequence of Lemma 1.

Theorem 2 The structure class SLP is identifiable: if a signal X has two representations S and S ′ satisfying
supp(S), supp(S ′) ∈ SLP, then S = S ′. Moreover, the unique representation of X = D(S) with supp(S) ∈ SLP is
the solution of the `1 minimization problem

min
∑
i∈F

|s ′i| subject to X = D(S ′),

and it can therefore be recovered by the Basis Pursuit algorithm.

Proof. Since supp(S) ∈ S , S is the unique solution of the `1 minimization problem, and the same holds for S ′.
Being both the unique solution of the same `1 minimization problem, S and S ′ must coincide. �

One problem with SLP is its rather abstract definition: it is not easy to check the condition given by (4). In the
following sections we will introduce subclasses of SLP with more transparent definitions.

2.2. Recovery by greedy algorithms

Now we consider an identifiable structure supporting signals that can be recovered by both Basis Pursuit and Match-
ing Pursuit. The definition of the structure is inspired by the work of Tropp [8]. For I ⊆ F we define (in matrix
notations) DI = [gi]i∈I , the restriction of D to the atoms in I . We let D+

I denote the pseudo-inverse of DI , and re-
call that D+

I = (D?
IDI)−1D?

I (whenever D?
IDI is invertible) with D?

I the adjoint of DI . Tropp proved the following
result.

Lemma 2 ([8]) Let X = D(S) and suppose that supp(S) = I satisfies the Exact Recovery Condition

max
i 6∈I
‖D+

I gi‖1 < 1. (5)

Then P1(I) < 1/2, and both Basis Pursuit and Orthogonal Matching Pursuit exactly recover the representation S
of X .

In [11], one of the authors extended this result (in some slightly weaker sense) to plain Matching Pursuit and other
variants of Matching Pursuit. Guided by Lemma 2 we have the following definition.

Definition 3 We define the class SG ⊂ SLP by

SG =
{
I ⊆ F : max

i 6∈I
‖D+

I gi‖1 < 1}.

Note that for I ∈ SG and J ⊆ I , it is not clear whether we have J ∈ SG, but we do have J ∈ SLP.
An application of Lemma 2 and [11, Theorem 1] gives.

Theorem 3 The structure class SG is identifiable: if a signal X has two representations S and S ′ satisfying
supp(S), supp(S ′) ∈ SG, then S = S ′. The unique representation of X = D(S) with supp(S) ∈ SG is recov-
ered by the Basis Pursuit and Matching Pursuit(s) algorithms.
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2.3. Identifiable structures defined using the Babel function

It is not always easy to estimate maxi 6∈I ‖D+
I gi‖1 directly, which makes it hard to apply Lemma 2. Below we

consider a more explicit condition based on the so-called Babel function. For an individual set I we define the
setwise Babel function

µ1(D, I) := max
i/∈I

∑
j∈I

|〈gi,gj〉|. (6)

For S a family of subsets of F , we define the structured Babel function

µ1(D,S) := sup
I∈S

µ1(D, I). (7)

The structured Babel function µ1(D,S) generalizes the Babel function µ1(D,m) introduced by Tropp in [8]. In
fact, let Sm = {I ⊆ F : |I| = m}, m = 1, 2, . . . , |F |. Then µ1(D,m) = µ1(D,Sm).

The Babel function can be used to get a sufficient condition implying the Exact Recovery Condition (5). We
have the following lemma.

Lemma 3 Suppose I ⊆ F is such that

µ1(D, I) + max
`∈I

µ1(D, I\{`}) < 1. (8)

Then the Exact Recovery Condition maxi 6∈I ‖D+
I gi‖1 < 1 is satisfied and P1(I) < 1/2.

The proof of Lemma 3 follows [8], but we include it for the sake of completeness.
Proof. We have D+

I = (D?
IDI)−1D?

I so

max
i 6∈I
‖D+

I gi‖1 ≤ ‖(D?
IDI)−1‖`1→`1{max

i 6∈I
‖D?

Igi‖1} (9)

We notice that
max
i 6∈I
‖D?

Igi‖1 = max
i 6∈I

∑
j∈I

|〈gi,gj〉| = µ1(D, I). (10)

To estimate ‖(D?
IDI)−1‖`1→`1 we follow [8] and write D?

IDI = Id+ A, where A contains the off-diagonal part of
D?

IDI , which is made of inner products 〈g`,gj〉, `, j ∈ I , ` 6= j. Notice that by (8) and a standard estimate of the
‖ · ‖`1→`1 operator norm,

‖A‖`1→`1 = max
`∈I

∑
j∈I\{`}

|〈g`,gj〉| ≤ max
`∈I

µ1(D, I\{`}) < 1,

so we can expand (Id+A)−1 in a Neumann series

‖(D?
IDI)−1‖`1→`1 = ‖(Id+A)−1‖`1→`1

=
∥∥∥∥ ∞∑

k=0

(−A)k

∥∥∥∥
`1→`1

≤
∞∑

k=0

‖A‖k`1→`1

=
1

1− ‖A‖`1→`1

≤ 1
1−max`∈I µ1(D, I\{`})

. (11)
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Hence, combining (8), (9), (10), and (11) gives the estimate

max
i 6∈I
‖D+

I gi‖1 ≤
µ1(D, I)

1−max`∈I µ1(D, I\{`})
< 1.

The conclusion then follows directly from Lemma 2. �

Guided by Lemma 3 we introduce yet a new class.

Definition 4 The class SB ⊆ SG is defined by

SB =
{
I ⊆ F : µ1(D, I) + max

`∈I
µ1(D, I\{`}) < 1}.

Lemma 3 gives the following Theorem.

Theorem 4 The structure class SB is identifiable: if a signal X has two representations S and S ′ satisfying
supp(S), supp(S ′) ∈ SB, then S = S ′. The unique representation of X = D(S) with supp(S) ∈ SB is recov-
ered by the Basis Pursuit and Matching Pursuit(s) algorithms.

2.4. An example of an explicit identifiable structure

In [9] the authors considered the special case of dictionaries made up of a union of mutually incoherent orthonormal
bases B` = [g`,i]1≤i≤N , that is to say D = [g`,i](`,i)∈F with F = [1 , L] × [1 , N ]. Using the overall mutual
coherence µ := max(`,i)6=(`′,j) |〈g`,i,g`′,j〉| between atoms coming from different bases, they proved the following
result [9, Theorem 2], which we have reworded here using the concepts introduced in the present paper.

Lemma 4 Let I =
⋃L

`=1

(
{`} × I`

)
⊆ F be an index set (I` indexes the atoms from the `-th basis B` which belong

to I) and denote |I`? | = max1≤`≤L |I`|. If

L∑
`=1

µ|I`|
1 + µ|I`|

<
1

2(1 + µ|I`? |)
+

µ|I`? |
1 + µ|I`? |

=
1 + 2µ|I?

` |
2(1 + µ|I`? |)

(12)

then P1(I) < 1/2.

Tropp showed [8] that the Exact Recovery Condition (5) also holds when the condition (12) is satisfied. In the special
case L = 2, i.e., the case of a union of two orthonormal bases, condition (12) can be restated more simply as

2µ2|I1||I2|+ µmin(|I1|, |I2|) < 1, (13)

which is the major result of [7].
Defining the class1 SUONB ⊆ SG of index sets I =

⋃L
`=1{`} × I` ⊆ F which satisfy (12) with |I`? | =

max1≤`≤L |I`|, we conclude from the previous machinery that this class is identifiable. In the simple case L = 2,
this implies in particular that if some algorithms provides a representation X = B1S1 + B2S2 of a signal where
I` = supp(S`), ` = 1, 2 satisfy (13), then this representation is the only one with this property and it is the one
which minimizes the `1 norm over all possible representations of X .

The problem of finding an optimal decomposition of a signal in a union of orthonormal bases arises in audio
compression: multilayer “hybrid” representations with a tonal part and a transient part (plus a residual) were pro-
posed in [12], where the tonal part has a sparse representation in a local cosine basis (MDCT) while the transient part
is sparse in a wavelet basis (DWT). The considered bases have a rather high overall mutual coherence, so the theory
of identifiable representations in incoherent bases only yields trivial results (typically, if I satisfies (13) then I?

` must

1It is not hard to show that there exist constants c, C such that Sbc/µc ⊆ SUONB ⊆ SbC/µc.
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correspond to a single atom!). However, one can group the elements of both bases into time-frequency blocks of
2j elements which essentially live in the time interval [n2j , (n + 1)2j [ and the frequency band [2j , 2j+1], and the
coherence within such a block is of the order of 2−j/2. If an audio signal has a hybrid representation where on each
time-frequency block the numbers |IMDCT| and |IDWT| of elements coming from each basis satisfy a condition of the
type (13), then it seems reasonable to extrapolate from the theoretical results that Basis Pursuit and Matching Pursuit
will stably (almost) recover it. The authors are currently investigating a possible formal proof of this result based on
an estimate of the generalized Babel function for sets I with the described structure.

3. IDENTIFIABILITY OF STRUCTURED MULTICHANNEL REPRESENTATIONS

In this section we investigate a particular type of overcomplete dictionary D which corresponds to problems often
encountered in under-determined source separation problems or multichannel signal processing. Typically, the blind
source separation (BSS) problem –in its linear instantaneous instantiation– consists in finding a factorization of a
matrix X of observed data (which rows xm(t) are signals) as X = AC where A is an unknown mixing matrix and
the rows cn(t) of C are the unknown source signals, generally assumed to be realizations of independent random
variables. The traditional approach to BSS is based on Independent Component Analysis [13] but Pearlmutter and
Zibulevsky [14] introduced a new approach based on sparse representations: the sources cn(t) are modeled as sparse
expansions from a dictionary Φ of atoms φk(t), that is to say we assume cn(t) =

∑
k sn,kφk(t), or in matrix form

C = SΦT with S a matrix of sparse coefficients. Overall, BSS is performed by jointly optimizing A and S to get
maximally sparse coefficients S in the representation X = ASΦT . Even though the mixing matrix A is unknown,
a common approach is to perform either sequentially, or iteratively

• a learning step where an estimate of A is computed or updated;

• an inference step where the source coefficients are computed using the current estimate of A.

Our goal in this section is to show that, under sufficient structure of the coefficient matrix S, the inference step can
be successfully performed with Basis Pursuit or Matching Pursuit(s) if the mixing matrix was correctly estimated
during the learning step. Looking back at our formalism from the previous section, the data vector X is “folded”
into a matrix X = (xmt) with M rows which we wish to represent as

X = ASΦT , (14)

with A = [a1, . . . ,aN ] a M ×N mixing matrix, S = (snk) a N ×K matrix of coefficients and Φ = [φ1, . . . ,φK ]
a monochannel dictionary of K monochannel atoms. In other words, we consider F = [1 , N ] × [1 , K]. In the
unfolded world where the data X and (especially) the coefficients S are considered rather as vectors than matrices
we have an “unfolded” multichannel dictionary

D(S) := ASΦT =
N∑

n=1

K∑
k=1

snk anφT
k (15)

which is made of multichannel atoms gn,k = anφT
k . Measuring the approximation error between X and D(C) with

the Froebenius norm ‖X − D(C)‖Frob corresponds to considering X as living in a Hilbert space equipped with the
inner product [X,Y ] = Trace(XY H). It is easy to check that for this inner product we have

[gn,k,gn′,k′ ] = 〈an,an′〉 · 〈φk,φk′〉 (16)

with 〈·, ·〉 the standard inner product between vectors.
Without any originality we will assume that the columns an of the mixing matrix, just as the atoms φk of the

dictionary, are normalized. In BSS terms, this is one way of fixing the gain indeterminacy of the source estimation
problem, and it
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will make it possible to estimate the generalized Babel function µ1(D, I) of the multichannel dictionary in terms
of the standard Babel functions µ1(A, R) and µ1(Φ, C), where R and C are related to the number (or the size) of
rows / columns of I . We will use this estimate together with the theory of the previous section to obtain identifiability
results for certain structured representations of multichannel data. We will then proceed to give a sufficiently explicit
description of multichannel Matching Pursuit, which is able to recover such representations.

3.1. Estimate of the Babel function

For any index set I ⊂ [1,M ]× [1,K] we denote

colk(I) := {n, (n, k) ∈ I}, Cols(I) := {k, colk(I) 6= ∅},
rown(I) := {k, (n, k) ∈ I}, Rows(I) := {n, rown(I) 6= ∅}.

We have the following lemma:

Lemma 5 Let I be an index set with at most C non-empty columns, each of size at most R, that is to say assume
|Cols(I)| ≤ C and maxk |colk(I)| ≤ R. Then we have

µ1(D, I) ≤ max
(
µ1(Φ, C) · (1 + µ1(A, R− 1)) , µ1(A, R) + µ1(Φ, C − 1) · (1 + µ1(A, R− 1))

)
. (17)

Proof. First, we write ∑
(n′,k′)∈I

|[gn′,k′ ,gn,k]| =
∑

k′∈Cols(I)

|〈φk,φk′〉|
∑

n′∈colk′ (I)

|〈an,an′〉|.

Then, for (n, k) /∈ I , there are only two possible cases : either k /∈ Cols(I), or k ∈ Cols(I) with n /∈ colk(I). We
can estimate the supremum in the first case

sup
k/∈Cols(I)

sup
n

∑
(n′,k′)∈I

|[gn′,k′ ,gn,k]| ≤ sup
k/∈Cols(I)

∑
k′∈Cols(I)

|〈φk,φk′〉| · sup
n

∑
n′∈colk′ (I)

|〈an,an′〉|

≤ sup
k/∈Cols(I)

∑
k′∈Cols(I)

|〈φk,φk′〉| · (1 + µ1(A, R− 1))

= µ1(Φ, C) · (1 + µ1(A, R− 1))

and in the second case

sup
k∈Cols(I)

sup
n/∈colk(I)

∑
(n′,k′)∈I

|[gn′,k′ ,gn,k]| ≤ sup
k∈Cols(I)

∑
k′∈Cols(I)

|〈φk,φk′〉| · sup
n/∈colk(I)

∑
n′∈colk′ (I)

|〈an,an′〉|

≤ sup
k∈Cols(I)

(
|〈φk,φk〉| · sup

n/∈colk(I)

∑
n′∈colk(I)

|〈an,an′〉|

+
∑

k′∈Cols(I)\{k}

|〈φk,φk′〉| · sup
n/∈colk(I)

∑
n′∈colk′ (I)

|〈an,an′〉|
)

≤ sup
k∈Cols(I)

(
µ1(A, R) +

∑
k′∈Cols(I)\{k}

|〈φk,φk′〉| · (1 + µ1(A, R− 1))
)

= µ1(A, R) + µ1(Φ, C − 1) · (1 + µ1(A, R− 1))

Since the supremum over (n, k) /∈ I is the maximum of the suprema corresponding to the two possible cases, overall
we obtain the claimed result (17). �
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3.2. Simplified identifiability conditions for structured multichannel representations

In many underdetermined audio BSS applications where the problem of representing X = ASΦT arose in prac-
tice, the dictionary ΦT is simply chosen to be a (nonredundant) orthonormal Modified Discrete Cosine Trans-
form (MDCT) basis [14]. In this case, the Babel function µ1(Φ, C) is zero and Lemma 5 gives the estimate
µ1(D, I) ≤ µ1(A, R) whenever maxk |colk(I)| ≤ R. Applying the general results from the previous section
we get the sufficient recovery condition µ1(A, R) + µ1(A, R− 1) < 1 of Tropp [15]: S can be recovered provided
that each of its columns is sparse enough.

When Φ is overcomplete, µ1(Φ, C) is no longer zero and it has to be taken into account. In BSS, it is common
[16] to assume that at most one source cn(t) uses each given atom φk in its representation. The heuristic argument
is that the sources have mutually independent and sparse representations, so the probability that two sources activate
the same atom is small [17]. This corresponds to considering index sets I in Lemma 5 with R = 1. Theorem 1 is
simply the consequence of Lemma 5 together with the general results from the previous section in this special case.
To state it in its simple form, we replaced the Babel functions µ1(A, R) and µ1(Φ, C) with their upper estimates
µ1(A, R) ≤ R · µ(A) and µ1(Φ, C) ≤ C · µ(Φ) (see [8]) in terms of the coherence

µ(A) := µ1(A, 1) = max
n 6=n′
|〈an,an′〉|

µ(Φ) := µ1(Φ, 1) = max
k 6=k′
|〈φk,φk′〉|.

For the convenience of the reader, let us state Theorem 1 again right now.

Theorem 5 If a multichannel signal X has two representations ASΦT and AS ′ΦT where each column of S and
S ′ has at most one nonzero entry and both S and S ′ have no more than C columns with nonzero entries where the
integer C satisfies

C <
1
2

(
1 +

1
µ(Φ)

)
−max

(
0 ,

µ(A)
µ(Φ)

− 1
)

(18)

then S = S ′. Moreover, this unique representation of X = ASΦT with at most C columns and at most one nonzero
entry per column is recovered by the Matching Pursuit(s) and Basis Pursuit algorithms.

Note that in statistical words, Basis Pursuit corresponds to the Maximum Likelihood estimator of S under a Laplacian
model, and we have just showed that it will recover the true S provided that it has the right structure: each atom can
be activated by at most one source, and the total number of atoms activated by the sources altogether cannot exceed
a certain limit. In the rare practical cases where the coherence µ(A) of the mixing matrix would be smaller than that
of the dictionary µ(Φ), the limit on the number of activated atoms matches the sparsity limit (1 + 1/µ(Φ))/2 that
guarantees the recovery of a representation of a monochannel signal with Φ [6, 9]. As could be expected, the limit
becomes more restrictive when the mixing matrix has a larger coherence than the dictionary.
Proof. Consider the structure class

Scol
1,C :=

{
I, |Cols(I)| ≤ C, max

k
|colk(I)| ≤ 1

}
(19)

of index sets I with at most C non-empty columns, each of size at most 1. For any I ∈ Scol
1,C by Lemma 5

µ1(D, I) ≤ max
(
µ1(Φ, C) , µ1(A, 1) + µ1(Φ, C − 1)

)
≤ max

(
C · µ(Φ) , (C − 1) · µ(Φ) + µ(A)

)
≤ C · µ(Φ) + max

(
0 , µ(A)− µ(Φ)

)
.

Moreover, for ` ∈ I we have I ∈ Scol
1,C−1, so by using a similar estimate for µ1(D, I\{`}) we get

µ1(D, I) + max
`∈I

µ1(D, I\{`}) ≤ (2C − 1) · µ(Φ) + 2 ·max
(
0 , µ(A)− µ(Φ)

)
.
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Under the assumption (18) we obtain µ1(D, I) + max`∈I µ1(D, I\{`}) < 1 and it follows that Scol
1,C ⊆ SG is an

identifiable structure. �

3.3. General multichannel identifiability results

Based on Lemma 5 and the general theory developed in the previous sections, we can also get more general theorems
(not restricted to R = 1 nonzero entry per columns of S) on the recovery of structured multichannel representations
by `1 minimization and greedy algorithms.

Theorem 6 If a multichannel signal X has two representations ASΦT and AS ′ΦT where the pair (R,C) :=(
maxk |colk(I)|, |Cols(I)|

)
satisfies

max
(
µ1(Φ, C) · (1 + µ1(A, R− 1)) , µ1(A, R) + µ1(Φ, C − 1) · (1 + µ1(A, R− 1))

)
<

1
2

(20)

for both I = support(S) and I = support(S ′), then S = S ′. The unique representation of X = ASΦT for which
the pair

(
R,C

)
satisfies (20) is recovered by the Matching Pursuit(s) and Basis Pursuit algorithms.

Proof. Consider the structure class

Scol
R,C :=

{
I, |Cols(I)| ≤ C, max

k
|colk(I)| ≤ R

}
(21)

of index sets I with at most C non-empty columns, each of size at most R. If (R,C) satisfies (20), then by Lemma 5
we have for any I ∈ Scol

R,C

µ1(D, I) + max
`∈I

µ1(D, I\{`}) ≤ 2 µ1(D, I) < 1.

It follows that Scol
R,C ⊆ SG is an identifiable structure. Considering Ecol the set of all pairs (R,C) which satisfy (20)

we have indeed
Scol

Mult :=
⋃

(R,C)∈Ecol

Scol
R,C ⊆ SG

which means that Scol
Mult itself is an identifiable structure and each representation S supported in Scol

Mult is unique and
can be recovered by the Matching Pursuit(s) algorithm and the Basis Pursuit algorithm, the latter corresponding to
the `1 minimization problem

min
∑
n,k

|s ′nk| subject to X = AS ′ΦT (22)

�

Exchanging the role of rows and columns we immediately get a similar result

Corollary 1 If a multichannel signal X has two representations ASΦT and AS ′ΦT where the pair (R,C) :=(
|Rows(I)|,maxn |rown(I)|

)
satisfies

max
(
µ1(A, R) · (1 + µ1(Φ, C − 1)) , µ1(Φ, C) + µ1(A, R− 1) · (1 + µ1(Φ, C − 1))

)
<

1
2

(23)

for both I = support(S) and I = support(S ′), then S = S ′. The unique representation of X = ASΦT for which
the pair

(
R,C

)
satisfies (20) is recovered by the Matching Pursuit(s) and Basis Pursuit algorithms.
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Notice that this corresponds to the identifiability of S row
Mult :=

⋃
(R,C)∈Erow S row

R,C ⊆ SG where the definition of Erow

and S row
R,C mimics those of Ecol and Scol

R,C . It follows immediately that the structure S row
Mult∪Scol

Mult ⊆ SG is identifiable
and can be recovered by the Matching Pursuit(s) and Basis Pursuit algorithms. We get the corollary:

Corollary 2 Consider two representations ASΦT and AS ′ΦT of the same multichannel signal X , and let I =
support(S), I ′ = support(S ′). If

(
maxk |colk(I)|, |Cols(I)|

)
satisfies (20) or

(
|Rows(I)|,maxn |rown(I)|

)
satis-

fies (23), and if the same holds for I ′, then

• S = S ′;

• S can be recovered by the Matching Pursuit(s) and Basis Pursuit algorithms.

3.4. Multichannel greedy algorithms

It might not be obvious what multichannel greedy algorithms look like, and since they are proved to perform well on
the structured representations we have just described, it is worth describing them in more details. In the multichannel
setting, the greedy algorithm starts with X(0) = X and iteratively computes residuals X(J) as follows.

1. Compute the inner product

[X(J),gn,k] = Trace(X(J)φkaT
n ) = aT

nX
(J)φk, 1 ≤ n ≤ N, 1 ≤ k ≤ K. (24)

2. Select an atom gnJ ,kJ that reaches the maximum absolute value of this inner product.

3. Compute the new residual. This step has essentially two flavors

(a) Matching Pursuit (MP):

X(J+1) = X(J) − [X(J),gnJ ,kJ ] · gnJ ,kJ = X(J) − [X(J),gnJ ,kJ ] · anJφ
T
kJ

; (25)

(b) Orthonormal Matching Pursuit (OMP):

X(J+1) = X − PJ(X) (26)

where PJ is the orthogonal projector onto the linear span of the atoms gnj ,kj , 0 ≤ k ≤ J .

4. Test if a stopping criterion is reached, else increment J and go back to Step 1.

We will not document here the multichannel orthonormal projection (26) for OMP, rather we give a short but explicit
description of standard Matching Pursuit in the multichannel framework, which should make it fairly easy to imple-
ment. Writing the multichannel residual X(J) as a collection of M rows, each of which is a signal x(J)

m , we observe
that the multichannel inner products [X(J),gn,k] are equal to

[X(J),gn,k] = 〈y(J)
n ,φk〉, 1 ≤ n ≤ N, 1 ≤ k ≤ K. (27)

with y(J)
n :=

∑M
m=1 am,nx

(J)
m 1 ≤ n ≤ N . As a result, multichannel MP can be implemented as follows:

1. Compute the signals (which correspond to the rows of the multichannel data Y := AHX)

y(0)
n :=

M∑
m=1

am,nx
(0)
m 1 ≤ n ≤ N. (28)
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2. Compute the inner products [X(J),gn,k] using (27) and select a pair (nJ , kJ) which maximizes |[X(J),gn,k]|.

3. Update the residuals channel-wise as

y(J+1)
n = y(J)

n − [X(J),gnJ ,kJ ] ·

(
M∑

m=1

am,nam,nJ

)
· φkJ , 1 ≤ n ≤ N (29)

x(J+1)
m = x(J)

m − [X(J),gnJ ,kJ ] · am,nJ · φkJ , 1 ≤ m ≤M. (30)

4. Test if a stopping criterion is reached, else increment J and go back to Step 2.

One should note that the multichannel Matching Pursuit described here is different from greedy algorithms for
simultaneous approximation of several channels [18, 19, 17, 15, 20]: the latter are not even aware of a mixing matrix,
and their goal is to represent the data as X = CΦT with an M ×K coefficient matrix C rather than X = ASΦT .
In these algorithms, the atom φkJ which is selected at each step is the one which reaches the maximum value of the
multichannel energy

M∑
m=1

|〈x(J)
m ,φk〉|2

(or more generally of some multichannel norm
∑M

m=1 |〈x
(J)
m ,φk〉|p). As for the residual, it is updated channel-wise

as

x(J+1)
m = x(J)

m − 〈x(J),φkJ 〉φkJ .

Even though both versions of “multichannel Matching Pursuit” enjoy the usual convergence properties (the residual
‖X(J)‖Frob tends to zero [3, 21, 18, 19]), our recovery results only hold for the version we have described since the
other is not even aware of a mixing matrix. Greedy algorithms for simultaneous sparse approximation also enjoy
other types of recovery properties, see [15].

4. BEYOND `1-IDENTIFIABLE STRUCTURES

The largest identifiable structure SLP introduced in Section 2 is characterized by the fact that it supports signals that
can be recovered exactly by `1 minimization. Below we will consider other identifiable structures supporting signals
that are not necessarily recoverable by `1 minimization.

4.1. `0-identifiability without `1-identifiability

Let D be a dictionary, and recall that Sm = {I ⊆ F : |I| ≤ m}. Let m0(D) be the largest integer m satisfying:
for all S ∈ CF with supp(S) ∈ Sm, S is the unique minimizer of minC∈CF ‖C‖0 subject to D(C) = D(S), where
‖C‖0 := |supp(C)|. Similarly, let m1(D) be the largest integer m satisfying: for all S ∈ CF with supp(S) ∈ Sm,
S is the unique minimizer of minC∈CF

∑
i∈F |Ci| subject to D(C) = D(S). A detailed discussion of the numbers

m0(D) and m1(D) can be found in [10]. In particular, it was shown in [10] that m0(D) ≥ m1(D) and that
m0(D) = bZ0(D)/2c, where Z0(D) := minz∈Ker(D),z 6=0 ‖z‖0 is the so-called spark of D [6]. Using the same
reasoning as in the proof of Theorem 2, we deduce that Sm1(D) ⊆ Sm0(D) are identifiable structures. We also notice
for dictionaries with m0(D) > m1(D), there are elements supported on Sm0(D) which cannot be recovered exactly
by `1 minimization, but they are recoverable by `0 minimization (i.e., by a costly combinatorial optimization).
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4.2. Example: union of bases

Let us consider a specific example where m0(D) � m1(D). An example is given in [22] of a pair of orthonormal
bases B1,B2 for RN , N = 22j+1, for which the coherence µ([B1,B2]) = 1/

√
N is miminum and

m1([B1,B2]) = b(
√

2− 1/2)/µc = b(
√

2− 1/2)
√
Nc ≈ 0.914

√
N.

However, for a general union of two orthonormal bases with mutual coherence µ = 1/
√
N ,

m0([B1,B2]) ≥ b1/µc = b
√
Nc > 0.914

√
N,

see [7]. For such a dictionary, there is a large family of signals that can be recovered exactly by `0 minimization but
not by `1 minimization.

4.3. Multichannel case

Returning to the multichannel case, let us see what can be said when condition (20) is weakened.

Theorem 7 Keep the notations of Theorem 6 and assume that, instead of (20), we have

max
(
µ1(Φ, 2C) · (1 + µ1(A, 2R− 1)) , µ1(A, 2R) + µ1(Φ, 2C − 1) · (1 + µ1(A, 2R− 1))

)
< 1 (31)

Then, X has no other representation S′ with |Cols(I ′)| ≤ C and maxk |colk(I ′)| ≤ R, where I ′ = supp(S ′).

Note that this result is much weaker than what we have with the stronger requirement (20):

1. we do not claim that `1 minimization or a greedy algorithm will recover S.

2. S is only unique within the representations constrained by |Cols(I ′)| ≤ C and maxk |colk(I ′)| ≤ R, with
R := maxk |colk(I)|, C := |Cols(I)| and I := supp(S). This does not rule out the fact that there could
be another representation S′ for which I ′ := supp(S ′), R′ := maxk |colk(I ′)| and C ′ := |Cols(I ′)| also
satisfy (31).

3. neither can we mix as simply as before the role of columns and rows to get a result similar to Corollary 2.

This is only natural, since condition (31) is indeed (although not obviously . . . ) a weaker requirement than (20).
Proof. Consider S′ such a representation and let J be the support of S − S′. From the assumptions, we easily

get that J ⊂ I ∪ I ′ ∈ Scol
2R,2C as defined in (21). Based on Lemma 5 and the hypothesis (31) we conclude that

µ1(D, J) < 1. This implies (by an easy adaptation of [15, Lemma 2.3]) that for any sequence Z supported in J ,
‖D(Z)‖2Frob ≥ (1 − µ1(D, J))‖Z‖2Frob. Since Z = S − S′ is supported in J and D(Z) = D(S) − D(S′) = 0 we
conclude that Z = 0, that is to say S′ = S. �

5. CONCLUSION

We have introduced the notion of an identifiable structure for a general overcomplete dictionary of atoms. Several
(abstract) identifiable structures supporting signals that can be recovered exactly by `1 minimization and greedy
algorithms are considered. For signals supported on such an identifiable structure, the Basis Pursuit/Matching Pursuit
algorithms recover the unique sparsest representation of the signal.

A particular family of structured dictionaries corresponding to multichannel representations is studied in detail.
Such dictionaries are often used in under-determined source separation problems or in multichannel signal process-
ing. A corresponding identifiable structure is defined using a generalized version of Tropp’s Babel function. Signals
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supported on this multichannel structure can be recovered exactly by both the Basis Pursuit and the multichannel
greedy algorithm.

We are currently investigating several extensions or consequences of the results presented in this paper. Besides
estimating the generalized Babel function for unions of MDCT and wavelet bases, our main goal is now to define
and study structures that are robustly identifiable in the presence of noise / approximation error, since it seems a
necessary step to make identifiability results usable in practice. Similarly, to better understand sparsity based source
separation, it is worth understanding the robustness of the sparse representation estimation under errors in the mixing
matrix estimate.
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