N

N
N

HAL

open science

Omnidirectional Photometric Visual Servoing
Guillaume Caron, Eric Marchand, E. Mouaddib

» To cite this version:

Guillaume Caron, Eric Marchand, E. Mouaddib. Omnidirectional Photometric Visual Servoing.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, TROS’10, Oct 2010, Taipei, Taiwan.

pp-6202-6207. inria-00544782

HAL 1d: inria-00544782
https://inria.hal.science/inria-00544782
Submitted on 9 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00544782
https://hal.archives-ouvertes.fr

Omnidirectional Photometric Visual Servoing

Guillaume Caron, Eric Marchand and El Mustapha Mouaddib

Abstract— Visual servoing has been based on geometric
features for a long time. Recent works have highlighted the
interest of taking into account the photometric information
of the entire image. This approach was tackled with images
of perspective cameras. We propose, in this paper, to adapt
this technique to central cameras. This generalization allows
to apply this kind of method to wide field of view cameras.
We also propose to adapt gradient computation to take into
account distorsions of such cameras. Several experiments have
been successfully done with a fisheye camera.

I. INTRODUCTION

Moving a robot to a precise position can be done using
vision. In this field, visual servoing [1] is a technique that
aims to control the robot motion to a desired position only
defined by an image. Usually, geometric features are detected
in the reference image and visual servoing moves the cam-
era to the reference position minimizing the error between
reference features and their correspondences detected in the
current image.

Geometric features (points, lines, circles, moments) have
been widely used for visual servoing. These features and
their different representations can bring interesting properties
for the servoing process, such as, when well chosen, a nice
decoupling between the camera degrees of freedom [2].
However, detecting, tracking and matching features effec-
tively is still a hard problem [3]. So an interesting idea
is to directly use the image as a whole rather than extract
features. It withdraws the detection and matching problems
and, moreover, brings a lot more information.

This kind of idea was developped by Nayar et al. [4]
and then by Deguchi [5]. In these works, to reduce the
dimensionality of image data, an eigen decomposition is
done. The control is then performed in the eigenspace and the
interaction matrix related to the eigenspace is learnt offline.

Collewet and Marchand [6] proposed to use directly pho-
tometric features, i.e. pixel intensities of the entire image, as
input of the control scheme. Benhimane et al. [7] used also
a direct intensity based visual servoing approach. Despite
the fact that, as in our case, image intensity is used as the
basis of the approach, an important image processing step
is necessary to estimate the homography used to build the
control law.

This paper adresses the problem of visual servoing for
central omnidirectional cameras using photometric features
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(b) An omnidirectional im-
age from a fisheye camera.

(a) The used fisheye camera for
the visual servoing.

Fig. 1. Vision sensor used for omnidirectional visual servoing experiments.

in the whole image. We propose to extend the work of [6]
investigating different representations and modeling issues
directly induced by omnidirectional vision. A spherical pro-
jection model for central cameras is used and we propose to
formulate the omnidirectional photometric visual servoing on
the sphere of this model. We also considered the normalized
plane representation for a fair comparison process.

The motivation of using omnidirectional vision for photo-
metric visual servoing is to maximize the chances of sensing
textured zones of the environment, the work of [6] being
particularly efficient with textured images.

This paper is organized as follows. First, the camera model
is presented and then omnidirectional visual servoing is
recalled for points. After that the photometric visual servoing
for omnidirectional camera is developped. To finish, visual
servoing results obtained on a Gantry robot are presented
and behaviours between the various proposed control law
are compared.

II. CAMERA MODEL

Barreto et al. [8] proposed a unified projection model for
central cameras. This model describes a family of cameras
from perspective to catadioptric ones with particular shape
mirrors. Furthermore, Ying et. al. [9] show this model can
be used for fisheye cameras.

According to this model, the world is first projected on
a sphere with coordinates (0 0 §)T in the camera frame
followed by a perspective projection on the image plane.
Such a model can be defined using parameter ¢ which
depends intrinsically on the omnidirectional camera type.

Knowing intrinsic parameters v = {p, py, wo,v0,&}, @
3Dpoint X = (X Y Z )T is first projected on a unitary



sphere and then in the image plane as x = (x Y 1)T. The
relationship between X and x can be expressed as:
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where p = VX2 + Y2+ Z2. x is the point on the virtual
normalized plane and the image point in pixelic coordinates
is obtained by:
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Since this paper deals with methods using data lying on
the equivalent sphere, let us define the spherical projection
function of a 3D point:

Xs =
Vs =
Zs =

Xs =prs(X) with 3)

o < 1 [

where Xg = (Xs Ys ZS)T. This parameterization is
redundant on a sphere since a coordinate can be written as
a linear combination of the two other. Hence, two angular
coordinates (azimuth and elevation) are sufficient to represent
a point on a sphere: S = (¢ 0)T with ¢ = arccos(Zs)
and 0 = arctan(Ys / Xs).

Eventually, the inverse projection function pr 1 allows to
retrieve the point on the sphere corresponding to x:
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III. OMNIDIRECTIONAL VISUAL SERVOING

To control the degrees of freedom of a robot using visual
servoing, image points can be used as features. Then the
design of the control law aims to minimize the error between
the current visual features s(r) observed from the pose r and
their desired position in the image s*. The interaction matrix
L, linking the motion of features s to the camera velocity
v, has also to be defined. This link is formally expressed as:

s = Lgv %)

T. . .
where v = (v w)  is respectively the linear and angular
camera velocity. Eventually, a control law is designed to try
to have an exponential decoupled decrease of the error s—s*:

v=-ALf (s —s") (6)

with A a tunable gain to modify the convergence rate and
L;r , the pseudo-inverse of a model of L.

A. Image Plane Visual Servoing

To define the visual servoing of an omnidirectional camera
using points x = (z,y) in the image plane as visual feature,
we have to express the interaction matrix Ly, linking the
feature point x motion to the camera velocity v. For feature
s = X, the associated interaction matrix is the product of
two Jacobians [11]:

Os 0P  0x 0X

L = oP or  0X oOr ™

where P is the real world feature. The second jacobian is

well known for points [11] and does not depend on the

projection model which is encapsulated in the first jacobian.

Hence, for image plane VS (IP-VS), the partial derivatives

of x wrt. X are computed from eq. (1) and lead to the

interaction matrix for a point in the omnidirectional image
plane [12].

B. Spherical Visual Servoing

Spherical visual servoing has a very similar formulation
than image plane based one. However, the representation of
features and the interaction matrix are different.

1) Cartesian Spherical Visual Servoing: This parameteri-
zation (CS-VS) of visual servoing uses 3-coordinates points
onto the equivalent sphere (s = X, from eq. (3)) and the
interaction matrix Lx is defined by [13]:

X s 0X
Lx, = TXSE = (((XsX§-L) [Xsl,). ®

2) Pure Spherical Visual Servoing: As explained in a
previous section, only two coordinates S = (¢ 0)T
are enough to express a point on a sphere. The interaction
matrix associated to feature s = S is then different from the
cartesian representation [14]:

clcop sfce s¢p
oS - - ; s6 cd 0
Ls = ——Lx, =
Xs S0 0 s sbes 4
ps¢ ps¢ s¢ s¢
)

with ¢ = cosf, c¢ = cos¢, s = sinf, s¢ = sing.
This pure spherical formulation of visual servoing (PS-VS)
is minimal but has a singularity when sin ¢ = 0, i.e. when
z = y = 0 in the normalized image plane.

IV. OMNIDIRECTIONAL PHOTOMETRIC
VISUAL SERVOING

Considering visual servoing as an optimization problem,
minimizing the difference between current and desired im-
ages, ||I(r) — I(r*)||, [6] formulates photometric visual
servoing control law using a Levenberg-Marquart technique.
It has been shown that it ensures better convergence than
other kind of laws. So, instead of using a Gauss-Newton
control law (eq. (6)), this control law is also used in the

current work:
v = —A(H+ pdiag(H)) ' LT (1) — 1)) (10)

with H = L}-LI, considering Ly is the interaction matrix
related to luminance of image I. If 1 is very high this control



law behaves like a steepest descent whereas a very low value
for p leads eq. (10) to behave like eq. (6).

A. Image Plane Visual Servoing

From this point, the considered visual feature is the
luminance I of each image point. So the feature vector s(r),
becomes:

S(I‘) = I(I‘) = (:[1.,]:2.7 ..

with I,,, the i-th line of the image.

1) Interaction Matrix: The interaction matrix Lj(x)
formulation is defined under temporal luminance consis-
tancy [6]:

- Ine) Y

I(x +dx,t+dt) = I1(x,t) (12)

assuming dx is small. If it is small enough, the optical flow
constraint equation (OFCE) is valid:

VI'x+1,=0 (13)
. . . _AI(x,t)
with VI the spatial gradient of I(x,t) and [; = 5.

For the omnidirectional image plane visual servoing, the
knowledge of interaction matrix Ly (eq. (7)) leads to:

It - —VITLxV~ (14)

And similarly to [6], we get the interaction matrix Lj(x)
related to I at pixel x:

L;(x) = -VI'L,. (15)

2) Gradient Computation: In a perspective image, the
image gradients VI are computed using the same neigh-
borhood for all image point: a square regularly sampled.
In omnidirectional images, the image geometry is different,
i.e. resolution and orientation are not constant. Hence, the
neighborhood used for the gradient computation has to be
adapted.

Assuming the neighborhood around ug = (uo o l)T
is square and regularly sampled, as the image, the idea, to
find the neighborhood around pixel u = (u v 1)T, is
to backproject this neighborhood on a pole of the sphere.
Then move it so that it is around the spherical point
Xs = prg !(K~1u). Considering X0, the backprojection
of ug, this motion is defined by the rotation around the axis
[Xso x Xs] and of angle arccos(X%,Xs).

Then, the neighborhood is projected in the image plane
and to find pixel values, interpolations can be done. For
computational efficiency, we used the nearest neighbour
interpolation to find intensities. Moreover, using this interpo-
lation type, adapted neighborhoods can be computed offline
so that the gradient computation process is as fast as with
the standard neighborhood.

B. Cartesian Spherical Visual Servoing

Working on the equivalent sphere implies working with a
spherical image Is, which is the inverse projection of the
image I onto the sphere S. The OFCE becomes now:

0ls . Ols dls

—Xs+ —Ys+—=—2s+1,=0.

1
0Xs 0Ys 0Zs (16)

als 1
7 directly com-

puted on sphere

(a) % from elevation of (b)
planar image gradients

Fig. 2. Adapted gradients computation. (a) and (b) compare two ways
of computing gradients and show different results. Spherical gradient
computation bring more information than elevation of image gradients.

And the interaction matrix Ly, (Xs) related to Is at spher-
ical position X is defined by:

L;s(Xs) = —VIiLx,. (17)

Lx, is given by equation (8) but the image gradient on the
sphere have yet to be expressed.

In a first approach, the gradient, using the adapted neigh-
borhood presented in the section IV.A.2, is computed in the
image plane and then is back projected onto the equivalent
sphere deriving equation (4):

0Is _ 91 du 4 9I du

0Xs =~ OudXs ov 0Xs

815 _ ﬂ ou ﬂ v (18)
0Ys ~ Ou dYs ov OYs

Ols

— OI du | OI dv
0Zs ou 0Zs ov 0Zs

One can note that this technique is not actually efficient.
Indeed, to compute the shape of the adapted neighborhood,
there are already two projections between image plane and
equivalent sphere. So computing gradients in image plane
and backprojecting them on the sphere adds one more
projection. Computing gradients directly on the equivalent
sphere is more efficient (Fig. 2(a) and 2(b)).

To compute gradients (2is s 9ls

DXg ! m,m) directly on the
sphere, we propose to define a sampling step:

ug + 1 0
AXS = AYS = AZS = p7‘§_1 Vo —10
1 1
(19)
From a point (Xs Ys ZS)T, three N-neighborhoods
are defined, one for each axis. /N defines the number of
neighbours around a point. The spherical neighborhood for

the first coordinate, Xs s, is defined by:
(Xs+kAx, Ys Zs)

|(Xs+kAxs Vs Zs)'|

T <k<TE#0 ho)

)




The procedure is similar for Y5 and Zs»r. Once spher-
ical neighborhoods are created, they are projected in the
image plane to recover intensities using interpolation for non
integer coordinates. For the same reasons as adapted image
plane gradient computation, nearest neighbour interpolation
is used to precompute neighborhoods offline.

C. Pure Spherical Visual Servoing

Considering the azimuth and elevation parameterization
of a spherical point, Daniilidis et al. introduced the pure
spherical OFCE [10]:

1 0ls.

Ols .
s I —
Sin¢89p9+8¢p¢+t 0

2y

where (pg Pe O)T is the optical flow vector
tangent to the sphere at point (9 ¢)T, with
p = (singcosf singsinf cos d))T. This constraint
equation is used in order to develop the interaction matrix
L;,(S), knowing Lg (eq. 9):

L;.(S) = —VIILs. (22)

A way to compute pure spherical gradients is to compute
image gradients and transfer them onto the sphere using [10]:

0ls _ 9L Ju | 01 Ov
a6 du'dd T 9v 80
. (23)
Ols _ 9L 0u | 01 9v
o ou O¢ ov 0¢
However, Demonceaux er al. [15] show it is possible
to compute pure spherical gradients directly on Is. This
is more efficient than elevating image gradients on the
equivalent sphere, as in the cartesian spherical case. Further-
more, authors mention that omnidirectional image filtering
is only valid on the equivalent sphere where convolution
is commutative with regular sampling. The technique is to
define neighborhoods adapted to spherical geometry in order
to compute gradients similarly than for perspective images.
Demonceaux et al. used a geodesic metric to
formulate their neighborhoods but in the current
case, this is an angular metric which have to be
used in order to satisfy equation (21). So considering
Agg = arccos(|(0 0 1) .prgl([uo +1 v 1}T)|),
the two IN-neighborhoods ¢ and 6, are expressed as:

on ={(0 o+k0y)" —F <k <X k0]

. . . Q4
o ={(0+k00 9) ¥ <k <X kr0f

Finally, neighborhoods are projected on the image plane
to retrieve intensites. Nearest neighbour interpolation is done
to make to process fast and to allow precomputation of
spherical neighbours projected in the image for each pixel.

V. RESULTS

Experiments are done on a Gantry robot (Fig. 5(b)). The
fisheye camera (Fig. 1) is mounted on the robot end-effector.
Programming was done using the ViSP [16] library. In
this section, three kind of experiments are presented. When

converging, positioning error is less than one tenth of a
millimeter in translation and 0.02° in rotation.

The goal of the first experiment is to show the achievement
of omnidirectional photometric visual servoing, using the
representations presented in this paper and to compare them.
The second experiment shows photometric visual servoing
using IP-VS, CS-VS and PS-VS with a unique desired
position and three different initial positions and orientations.
The last experiment is a servoing using CS-VS starting from
an initial position that is far from the desired one.

For all experiments, the interaction matrix is computed
only at desired position. Furthermore, Z is an unknown
parameter and is supposed constant for all pixel all along
the motion of the camera. The achievement of experiments
shows the method is robust to coarse estimation of Z.

A. First Experiment

For this experiment, the camera translation between the
two positions is Ay = 3.53em, Ay = — 7.82cm,
Az = 17.08cm, in the robot frame, with no orientation
variation. This experiment emphasizes, qualitatively as well
as quantitatively speaking, the best approach in term of
camera trajectory distance w.r.t. the straigth line linking the
start and final positions and in term of interaction matrix
conditioning. Figure 3 shows desired and initial images as
well as their difference. Camera trajectories of this figure are
obtained with photometric IP-VS, CS-VS and PS-VS.

For IP-VS, image gradients are computed classically or
using adapted neighborhoods introduced in section IV.A.2.
One can note the camera motion during the servoing process
is only slightly modified. Table I confirms this similarity with
a near equal condition number in both cases.

For CS-VS two trajectories are obtained when elevating
image computed gradients on the equivalent sphere and the
third is obtained when spherical gradients are computed
directly on the spherical image. Results for PS-VS are
obtained in the same way. CS-VS and PS-VS behaviour is
clearly better when gradients are computed directly on the
spherical image, particularly for PS-VS, here. Actually, in
both cases, spherical gradients are different when directly
computed from the spherical image rather than computed in
the planar image and then elevated on the sphere (Fig. 2(a)
and 2(b)). Table I also shows that CS-VS and PS-VS are
better conditioned when gradients are directly computed
from the spherical image.

B. Second Experiment

From this point, IP-VS, CS-VS and PS-VS are compared
using adapted image gradients computation for IP-VS and
cartesian spherical, resp. pure spherical gradients for CS-VS,
resp. PS-VS. These gradients computations are theoretically
and practically more valid than other computations as shown
in the previous subsection.

Omnidirectional photometric visual servoing is done
from three different initial positions to a unique desired
position. The errors {Ax,Ay,Az,Ar,,ARr,,Ar,}
between desired and initial position are
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Impact of gradients computing on visual servoing. On the left side are the desired, intial and intial difference images. The three graphs are,

from left to right, trajectories of IPVS, CSVS, PSVS. Each graph shows trajectories using the same VS method but computing gradients differently. The
trajectory nearest to a straight line is obtained using CSVS with the cartesian spherical gradients computation.

respectively {0cm, 0cm, —8.18¢m, 0°,0°,0°},
{—8.66¢m, —0.13cm, —4.50cm, —2.37°,11.35°,7.96° }

and {—15.89cm, —1.64cm, —1.32¢m, 2.54°,14.56°,7.39°}.
The latter experiment is the usual hardest situation, with
a translation along X axis and a rotation around Y axis,
leading to projective ambiguities. Hence, the shape of the
cost function leads to less straight motions. Figure 4 shows
initial images of differences and the third initial position
produces the most important difference. Indeed, trajectories
of IP-VS, CS-VS and PS-CS are the most different for the
latter experiment. Residuals evolution over time (center part
of fig. 4), always show that CS-VS converges faster, even
though for the third starting point, its advantage is smaller.

C. Third Experiment

This last experiment aims to show this technique can
be used for relatively wide motions. CS-VS is used
because the translation in camera frame is mostly along
optical axis and this representation has a Z component in
equations. The initial camera position is such that the initial
positioning error {Ax,Ay,Az, Agr,,ARr,,Ar,} is
{—41.10¢m, 39.40cm, —40.00cm, 2.44°,—9.31°, —10.05°}.
Despite important position and coupled orientations
differences, which is highlighted by figure 5(c), photometric

[ method [[ condition number ]

IPVS classic gradients 5.46

IPVS adapted gradients 5.53

CSVS elevated classic gradients 6.60
CSVS elevated adapted gradients 6.74
CSVS cartesian spherical gradients 4.79
PSVS elevated classic gradients 10.07
PSVS elevated adapted gradients 10.13
PSVS pure spherical gradients 6.73

TABLE I
CONDITIONING COMPARISON OF CAMERA INTERACTION MATRICES,
FOR VARIOUS METHODS, AT THE DESIRED POSITION.

visual servoing succeeds. Figure 5(e) shows resulting
camera trajectory in robot frame. A video of this
experiment is available in the research section of website
http://mis.u-picardie.fr/~g-caron/en.

VI. CONCLUSION

Visual servoing using an omnidirectional camera and
based on entire image luminance has been developed in this
paper. Different criteria and omnidirectional image gradients
computations were expressed and compared. Results on a
gantry robot embedding a fisheye camera shows achievement
of omnidirectional visual servoing using luminance as a
feature. Formally valid, spherical visual servoing, particularly
the cartesian spherical, has shown better behaviour and con-
ditioning than omnidirectional image plane visual servoing.
The cartesian spherical representation allows the robot to
reach a desired position that is far from the initial one.
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