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A multi-plane approach for ultrasound visual servoing : application to

a registration task

Caroline Nadeau and Alexandre Krupa

Abstract— This paper presents a new image-based approach
to control a robotic system equipped with an ultrasound
imaging device. Moments based image features are extracted
from three orthogonal ultrasound images to servo in-plane
and out-of-plane motions of the system. Experimental results
demonstrate that this approach improves upon techniques
based on a single 2D US image in term of probe positioning.
The second contribution of this paper is to use this method
to perform a multimodal registration task by formulating it
as a virtual visual servoing problem. Multimodal registration
experiments performed with an ultrasound phantom containing
an egg-shaped object provide a first experimental validation of
the proposed method.

Index Terms— Ultrasound, visual servoing, multimodal reg-
istration

I. INTRODUCTION

An increasing number of image-based robotic systems

are developed to assist minimally invasive surgery proce-

dures. Ultrasound (US) imaging devices are particularly well-

adapted to such application insofar as they provide real time

images during the operation. Moreover, in opposition to other

modalities such as MRI or CT, US scanning is non invasive,

low cost and may be repeated as often as necessary.

In this context, visual servoing approaches allow to di-

rectly control either the motion of the imaging device (eye-

in-hand configuration) or the motion of a medical instrument

(eye-to-hand configuration). In [1], the first application of

an US based visual servoing was used to center the cross

section of an artery in the image of the US probe during

the tele-operation of this probe for diagnostic purpose. The

in-plane motions of the probe were controlled by visual

servoing while the other ones were tele-operated by the user.

In [2], two degrees-of-freedom (DOF) of a needle-insertion

robot are controlled by visual servoing to perform a per-

cutaneous cholecystostomy while compensating involuntary

patient motions. The target and the needle are automatically

segmented in intraoperative US images and their respective

poses, deduced from these data, are used to control the

robot. However this control is once again limited to in-plane

motions of the probe.

Some authors have proposed solutions to control out-of-

plane motions of an US probe. In [3], a robotic system

is proposed to track a surgical instrument and move it to

a desired target. 3D US images are processed to localize

respective positions of the target and the instrument tip.

This position error is then used to control 4 DOF of the
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robotized tool in order to reach the target. However 3D US

transducers provide currently volumes at a low acquisition

rate which limits their use in real-time robotic applications.

Another method using a 2D US probe is based on the model

of the interaction between the object and the probe plane.

In [4], two image points corresponding to the intersection of

a surgical forceps with the image plane are used as visual

features to control 4 DOF of the tool inside a beating heart.

In relation with this work, the authors of [5] developed a

predictive control scheme to keep the forceps visible in the

US image.

More recently, a generalized US based servoing method

was proposed to automatically reach a desired cross section

of an organ of interest by servoing the 6 DOF of a medical

robot holding a 2D US probe [7]. This method is based

on the use of visual features built from image moments

directly extracted from the US organ cross section. However,

this method is a local approach since the convergence of

the system is not guaranteed whatever the initial position.

Moreover, symmetries on the organ geometry may lead to

different probe positions that give a same cross section image

of the organ.

In this paper, we present a new US image-based visual

servoing approach used to control the 6 DOF of a robotic

system equipped with a multi-plane US probe. The con-

sidered probe provides three 2D US images according to

three orthogonal planes rigidly linked together (see Fig. 1).

Therefore, we define in this paper a set of 2D features that

can be extracted from these three planes and we model the

corresponding interaction matrix. The second contribution

of this paper is the application of the proposed control

scheme to achieve a multimodal registration task, that we

formulate as a virtual visual servoing approach. Image-

to-image registration consists in finding the transformation

between two image coordinates systems. These applications

are particularly useful in medical field (a survey is presented

in [6]) to superimpose the information provided by two

different imaging modalities or to transfer a preoperative

planning of a surgical gesture into the intraoperative field.

The structure of our paper is as follows. We initially

describe the US image based control scheme and detail the

benefits of the new features for a global convergence of the

algorithm. We then present the considered application by

expressing the registration task as a visual servoing problem.

To validate our approach, servoing and registration results

are presented and discussed in Section III and IV. Finally,

concluding remarks and planned future works are given in

Section V.



II. ULTRASOUND VISUAL SERVOING

An image-based visual servoing control scheme consists

in minimizing the error e(t) = s(t)− s∗ between a current

set of visual features s and a desired one s∗. Considering

an exponential decrease of this error, the classical control

law [10] is given by:

vc = −λ L̂s

+
(s(t)− s∗) , (1)

where λ is the proportional gain involved in the exponential

convergence of the error (ė = −λ e). In an eye-in-hand

configuration, vc is the instantaneous velocity applied to the

visual sensor and L̂s

+
is the pseudo-inverse of an estimation

of the interaction matrix Ls that relates the variation of the

visual features to the velocity vc .

Traditional visual servoing control schemes refer to vision

data acquired from a camera mounted on a robotic system.

In this case, the vision sensor provides a projection of the

3D world to a 2D image and the coordinates of a set of 2D

geometric primitives can be used to control the 6 DOF of

the system. However, a 2D US transducer provides complete

information in its image plane but not any outside of this

plane. Therefore, US image based control laws can not rely

only on features extracted from the 2D US scan to control

the out-of-plane motions of the probe.

Only few previous works deal with the control of out-of-

plane motions of a 2D US probe. Without a priori knowledge

of the geometry of the object that interacts with the probe

plane image, an US image based control scheme is proposed

in [8] to servo the 6 DOF of an US probe in order to reach a

desired image. Six geometric features are proposed to define

the features vector s. They represent the section of the object

in the US plane by its mass center coordinates (xg,yg) and

its main orientation α which are representative of the in-

plane motions of the probe and present good decoupling

properties. The area a of the object section, invariant to in-

plane motions, and φ1 and φ2, moments invariant to the image

scale, translation, and rotation are chosen to control out-of-

plane motions. These features are computed from the image

moments as follows:




xg = m10/m00

yg = m01/m00

α = 1
2

arctan( 2 µ11
µ20 −µ02

)

a = m00

φ1 = µ11
2−µ20µ02

(µ20−µ02)2+4µ11
2

φ2 = (µ30−3µ12)2+(3µ21−µ03)2

(µ30+µ12)2+(µ21+µ03)2

(2)

Where mi j and µi j are respectively the moments and

central moments of order i + j that can be computed from

the object contour C previously segmented in the image :

mi j = −1
j+1

∮
C xi y j+1 dx (3)

The computation of the interaction matrix used to control

in-plane and out-of-plane motions of the US probe is detailed

in [8]. The time variation of moments of order i + j is

expressed in function of the probe velocity:

ṁi j = Lmij
vc

with:

Lmij
= [mvx mvy mvz mωx mωy mωz ]

The components (mvx ,mvy ,mωz) related to the in-plane

probe velocity are directly expressed from image moments.

However the remaining components (mvz ,mωx ,mωy) also

depend on the normal vector to the object surface which

has to be estimated in each contour point. The final form of

the resulting interaction matrix, given in [8] is:

Ls =




−1 0 xgvz
xgωx

xgωy
yg

0 −1 ygvz
ygωx

ygωy
−xg

0 0 αvz αωx αωy −1

0 0
avz

2
√

a

aωx

2
√

a

aωy

2
√

a
0

0 0 φ1vz
φ1ωx

φ1ωy
0

0 0 φ2vz
φ2ωx

φ2ωy
0




(4)

The efficiency of this control law highly depends on the

object geometry and the pose of the initial image relative to

the desired one. Indeed, in the case of symmetric objects,

a given cross section of the object can be observed from

multiple poses of the US probe. In this case, the information

provided by one single US image is not sufficient to char-

acterize the pose of the US probe relatively to the object.

Therefore, the minimization of the image features error does

not guarantee the global convergence of the algorithm in term

of pose.

III. MULTI-PLANE ULTRASOUND VISUAL

SERVOING APPROACH

Fig. 1. The visual features are computed from three orthogonal planes.
The probe frame coincides with the frame of US0. On the right, this frame
is reprojected in the various image plane frames

To overcome the local convergence limitation of the pre-

vious control scheme, we propose to consider a multi-plane

probe p made up of 3 orthogonal planes (see Fig. 1). US0

is aligned with the plane of the probe p and the plane US1

(resp. US2) corresponds to a rotation of 90◦ of this plane

around the y0-axis (resp. the x0-axis). In such a configuration,

we can note that each motion of the probe p corresponds

to an in-plane motion in one of the three image planes.

The in-plane velocities components (vx,vy,ωz) of the probe



correspond to the in-plane motions (vx0
,vy0

,ωz0
) of the plane

US0, its out-of-plane components (vz,ωx) correspond to the

in-plane velocities (vx1
,−ωz1

) of the plane US1 and finally

its out-of-plane rotation velocity ωy corresponds to the in-

plane rotation velocity −ωz2
of the plane US2 (see Fig. 1).

Therefore, we propose to control the probe with six image

features coupled to in-plane motions of the image plane

where they are defined. More particularly, we will use the

coordinates of the mass center of the object section, which

are highly coupled to the in-plane translational motions and

the orientation of the object section, which is representative

of the in-plane rotation. The chosen image features vector is

then:

s = (xg0
, yg0

, xg1
, α1, α2, α0). (5)

A. Computation of the full interaction matrix

In each image plane USi, the time variation of the

moments-based image features (2) ṡi is related to the cor-

responding instantaneous velocity vci
through the interaction

matrix (4):

ṡi = Lsi
vci

∀i ∈ {0,1,2} ,

where the interaction matrix (4) can be written as:

Lsi
= [Lxgi

Lygi
Lαi

LAi
Ll1i

]T

In particular, each component of the features vector s

detailed in (5) is related to the velocity of its corresponding

image plane as follows:





ẋg0
= Lxg0

vc0

ẏg0
= Lyg0

vc0

ẋg1
= Lxg1

vc1

α̇1 = Lα1
vc1

α̇2 = Lα2
vc2

α̇0 = Lα0
vc0

(6)

With the chosen configuration, the three planes frames

are rigidly attached to the probe frame. We can therefore

express the velocity vci
of each image plane in function of

the instantaneous velocity of the probe vc :

∀i ∈ {0,1,2} , vci
= USiMp vc (7)

with:

USiMp =

(
iRp

[
itp

]
×

iRp

03
iRp

)
(8)

Where itp and iRp are the translation vector and the

rotation matrix of the probe frame Fp expressed in the

coordinate system of the image plane FUSi
.

Therefore, we can express the interaction matrix that

relates the variation of the features vector (5) to the motion

of the probe frame by:

Ls=




−1 0 xg0vz
xg0ωx

xg0ωy
yg0

0 −1 yg0vz
yg0ωx

yg0ωy
−xg0

xg1vz
0 −1 yg1

xg1ωy
xg1ωx

α1vz
0 0 1 α1ωy

α1ωx

0 α2vz
0 α2ωx

1 α2ωy

0 0 α0vz
α0ωx

α0ωy
−1




(9)

B. The interaction matrix implemented in the control law

As stated previously, the six features chosen are coupled

with one particular in-plane motion of their associated image

plane. We propose then to relate their time variation only

to the in-plane velocity components of their image frame.

This means that we disregard the low variation of the image

features due to the out-of-plane motions compared to the

high variation due to in-plane motions.

The interaction matrix finally involved in the visual ser-

voing control law (1) is then:

L̂s =




−1 0 0 0 0 yg0

0 −1 0 0 0 −xg0

0 0 −1 yg1
0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1




(10)

Compared to the complete matrix given in (9), this one has

great decoupling properties and is only dependent of the

image features. In particular, the components of the estimated

normal vector to the object surface are no longer involved.

According to [10], the control scheme (1) is known to be

locally asymptotically stable when a correct estimation L̂s

of Ls is used (i.e., as soon as LsL̂s

−1
> 0).

C. Simulation validation

We compare the behavior of the control law based on

features extracted from one cross section of the object or

extracted from the three orthogonal images. We consider a

mathematical object which is a compounding of four spheres

of different radii. Considering this geometry of the object, the

normal vector to its surface is perfectly known. Moreover,

given a pose of the virtual probe the contour points of the

object section are directly computed in the corresponding

image.

Fig. 2. (a), (b) Initial and final images of the probe. (c) Exponential
decrease of the visual features errors. (d) Probe pose error in mm and deg,
(the θu representation is used to describe the orientation).

By avoiding errors induced by the estimation of the

normal vector or the detection of the object contour, we can

efficiently compare both image-based algorithms. In Fig. 2,



a single image is considered to control the probe. During

the convergence, the current section of the object (in white)

and its desired contour (in red) are displayed. The expected

exponential decrease of the error of the visual features is

observed but the target pose is never reached because of

the ambiguity of the object shape. On the other hand, by

considering three orthogonal images the former ambiguity is

resolved (see Fig. 3). In this case, the minimization of the

visual features error leads to the desired pose. In both control

laws a unitary gain λ is chosen and the computation time of

one iteration of the algorithm is around 20ms. The desired

pose is then reached in 2s with the multi-plane control law.

Fig. 3. (a), (b), (c) Images of the virtual probe at its initial pose. (d), (e),
(f) Final images of the probe after the multi-plane algorithm convergence.
Results obtained with the simplified interaction matrix (g) and the complete
one (h) in term of image (left) and pose (right) error show a similar behavior
of the control law and validate the simplification proposed.

The multi-plane approach overcomes the limitations of

local convergence of the previous method. For servoing

applications where a desired image has to be reached, its

major limitation remains in the requirement of a specific

imaging sensor to obtain the three orthogonal images of the

object. However, this control law is well-adapted for other

applications. We propose in the next section to apply this

US image based control to perform a registration task with

a classical 2D US probe.

IV. PRACTICAL APPLICATION TO A

REGISTRATION TASK

Image-to-image registration methods are useful in medical

field to transfer information from preoperative data to an

intraoperative image. The aim is to compute the homoge-

neous transformation Treg which transforms the coordinates

of a pixel in the intraoperative image frame into voxel posi-

tion expressed in the preoperative frame. Usual registration

algorithms use an initialization of the parameters of this

transformation based on artificial or anatomical landmarks

identified in the preoperative 3D image and in a set of

intraoperative US images. These parameters are then itera-

tively altered to optimize a similarity measure between both

data sets according to a Powell-Brent search method. In our

approach we propose to solve the registration task thanks to

the previous image-based control scheme applied to a virtual

multi-plane probe interacting with the preoperative volume.

A. Visual servoing formulation of the registration task

Fig. 4. On the left, a simulator is used to display the preoperative CT
volume as well as a CT cross section corresponding to the current pose of
the virtual probe. In parallel, the intraoperative image is acquired with an
US probe mounted on a robotic arm.

The proposed system is detailed in Fig.4. An US probe, de-

fined with the frame Fpr , is hold by a medical robot similar

to the Hippocrate robot [9] and provides intraoperative im-

ages. In the robot base frame Frobot , the probe pose robotPpr

is measured from the direct kinematic of the robotic arm. A

3D image of an organ is acquired preoperatively thanks to a

medical imaging system.This preoperative volume expressed

in frame FPO is loaded in a software simulator that we

have developed to reconstruct and display a dense volume

with interpolation process from a set of parallel images. In

addition to this display functionality, the simulator allows to

model and control a virtual multi-plane probe, defined with

the frame Fpv , interacting with the preoperative volume. For

a given pose, this virtual probe generates three cross sections

of the organ in the same imaging modality than the loaded

volume. Image features extracted from this preoperative

image are the current features of the control law while those

extracted from the intraoperative US image are the desired

ones. We then apply the multi-plane visual servoing control

scheme to minimize the error between these current and

desired features. After convergence of the algorithm, the pose

of the virtual probe relative to the preoperative volume frame
POPpv corresponds to the pose of the intraoperative image

respectively to the preoperative one which characterizes the

homogeneous transformation Treg.



B. Practical setup

In practice, after the intraoperative US scan acquisition, a

set of parallel images of the object is automatically acquired

on both sides of this scan. A small intraoperative volume

is then reconstructed and the two additional orthogonal

images required for the multi-plane approach are created by

a cubic interpolation process. In parallel, the virtual probe is

arbitrarily positioned on the preoperative volume. The object

contour is segmented with an active contour (snake) in the

images provided by the virtual probe and the real one to

compute the moments-based image features.

C. Registration results

Registration experiments are performed with an egg-

shaped phantom (CIRS model 055) of size 3.9 × 1.8 ×
1.8cm3. In the first application the preoperative volume is a

3D US volume, then a multimodal registration is performed

with a 3D CT volume of the phantom. In both cases, the US

intraoperative images are acquired using a Sonosite 180 2D

US machine connected to a convex 2-5MHz US transducer

with a depth of 12cm. The US images resolution is 768×576

with a pixel size of 0.3 × 0.3mm2, while the CT images

resolution is 512×512 with a pixel size of 0.45×0.45mm2.

1) US-US registration: The preoperative volume loaded

in the simulator is created from a set of 250 parallel images

acquired every 0.25mm during a translational motion of the

probe. For validation purpose, the first image of this sequence

is used to compute the transformation POTrobot . Indeed its

pose is known in the preoperative frame POPi such as in

the robotic frame robotPi thanks to the direct kinematics of

the robotic arm. Then, without moving the phantom, we

position the probe on a new location which is considered as

the intraoperative one. The corresponding image of the 2D

probe is considered as the first intraoperative scan. Then a

small translational motion is applied to this probe to acquire

a set of parallel images from which the additional orthogonal

images can be extracted by interpolation process.

In the preoperative US volume a virtual multi-plane probe

is arbitrarily initially positioned then controlled as described

in Section II to automatically perform the registration. The

results are presented in Fig. 5. In this experiment we main-

tain unchanged the position of the physical object between

preoperative and intraoperative images acquisitions to obtain

a ground truth of the registration transformation Treg thanks

to the robot odometry:

Treg = POTrobot
robotTpr

To validate our approach in term of probe positioning, the

desired pose of the virtual probe in the preoperative frame
POP∗

pv
is computed in the following way:

POP∗
pv

= POTrobot
robotPpr

where robotPpr is the pose of the real probe in the intraopera-

tive frame, given by the robot odometry. The convergence of

the algorithm in term of pose is then assessed by computing

the error between the current and the desired pose of the

virtual probe both expressed in the preoperative frame.

Fig. 5. (a) Intraoperative scan (on left) and interpolated additional orthog-
onal images (on right). (b), (c) Initial and final images of the virtual probe
in the preoperative volume frame. (d), (e) Convergence of the algorithm in
term of visual features and pose. A gain λ = 0.8 is used in the control law.
With an iteration time of 40ms, the registration task is performed in 12s.

Five additional tests are run from different initial poses.

The results are presented in the table I. The global conver-

gence of the method is assessed by choosing large initial

errors on the registration parameters. For each initial pose

(1 to 5 in the table), the error of the virtual probe pose

expressed in the preoperative frame is given in translation

and rotation before and after the image features convergence.

Initial translation errors up to 2.2cm, which is more than the

half-size of the object, and rotation errors up to 90◦ have been

used in these tests. The mean error on the registration trans-

formation is 1.92mm with a standard deviation of 0.83mm

in translation and 2.90◦ with a standard deviation of 1.36◦

in rotation. Despite the symmetry of the object along its

main axis, the pose convergence of the algorithm is therefore

efficiently obtained with the multi-plane approach.

TABLE I

INITIAL AND FINAL POSE ERRORS OF THE VIRTUAL PROBE

Pose Error
1 2 3 4 5

init final init final init final init final init final

T
tx -13.25 1.13 -20.50.006-13.47-1.20 4.7 -0.3 -6.5 -0.4

(mm)
ty -1.5 -0.02 22.6 -0.4 12.6 0.3 13.2 0.2 20.8 0.1
tz 14.2 -0.4 20.5 -1.3 13.5 0.8 -2.5 -2.4 -14.5 -3.1

R(◦)
Rx -11.5 0.5 8.0 0.3 -11.5 1.0 89.4 4.0 75.6 4.0
Ry -6.3 0.26 12.0 0.17 -12.0 -1.8 1.4 1.0 -1.0 -0.6
Rz 9.7 2.9 10.3 0.86 9.7 -1.0 1.2 -0.8 38.4 -0.8



2) US-CT multimodal registration: Intraoperative images

are acquired as described previously and in the preoperative

CT volume, the initial pose of the virtual probe is arbitrarily

chosen. The only requirement is to visualize the entire cross

section of the object in the three images of the multi-

plane probe. The desired features are computed from the US

intraoperative images scaled to fit the CT pixel resolution

(see Fig. 6). The corresponding desired contours (in red) are

extracted and reprojected in the CT images with the current

contours (in green).

Fig. 6. (a) Intraoperative scan (on left) and interpolated additional
orthogonal images (on right). (b), (c) Initial and final preoperative CT
images. (d) Evolution of the features error. A gain λ = 0.8 is used in the
control law and the features convergence is performed in 8 s. (e) Position
error of the object section mass center during the visual servoing algorithm
(part (1)) and an open loop motion (part (2)).

The exponential decrease of the features error is observed,

however there is this time no ground truth to estimate the

positioning error of the virtual probe. Therefore, to assess

the precision of the registration, we apply after the algorithm

convergence, an open-loop translational motion of 2cm along

the z-axis to the real and virtual probes. During this motion,

two corresponding sequences of intraoperative and preoper-

ative images are acquired in which the coordinates of the

object section mass center are extracted. We then quantify

the misalignment between the preoperative and intraoperative

images by using the following distance error:

d =
√

(USxg0
−CT xg0

)2 +(USyg0
−CT yg0

)2

During the servoing process, the distance error is minimized

from 39.3 to 0.27mm. Then during the open-loop motion,

the distance error ranges from 0.3 to 0.7mm (see Fig. 6(e)),

which demonstrates the accuracy of the registration task.

V. CONCLUSIONS

This paper presented a new method of US visual ser-

voing based on image moments to control an US device

mounted on a robotic arm in an eye-in-hand configuration.

We designed six features extracted from three orthogonal

image planes to efficiently control in-plane and out-of-plane

motions of the system. In particular, we applied our visual

servoing control law to deal with the image registration

problem which consists in computing the transformation

between two image frames. In medical field, the purpose

is to match an intraoperative US image with a preoperative

volume of an organ in order to transfer preoperative informa-

tion into the intraoperative field. The problem is here solved

by considering a virtual probe attached to the preoperative

volume. The multi-plane control scheme is then applied to

this probe which is moved until that its intersection with the

volume corresponds to the intraoperative image.

Further work will be undertaken to address the issue

of physiological motions and non rigid registration. The

challenge remains also in the US images processing to deal

with cases where the organ can not be segmented with a

closed contour.
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