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On the Exponential Convergence of Matching Pursuits in
Quasi-Incoherent Dictionaries

Rémi Gribonval, Member, IEEE, and
Pierre Vandergheynst, Member, IEEE

Abstract—The purpose of this correspondence is to extend results by
Villemoes and Temlyakov about exponential convergence of Matching Pur-
suit (MP) with some structured dictionaries for “simple” functions in finite
or infinite dimension. The results are based on an extension of Tropp’s re-
sults about Orthogonal Matching Pursuit (OMP) in finite dimension, with
the observation that it does not only work for OMP but also for MP. The
main contribution is a detailed analysis of the approximation and stability
properties of MP with quasi-incoherent dictionaries, and a bound on the
number of steps sufficient to reach an error no larger than a penalization
factor times the best -term approximation error.

Index Terms—Dictionary, greedy algorithm, matching pursuit (MP),
nonlinear approximation, sparse representation.

I. INTRODUCTION

In a Hilbert spaceH of finite or infinite dimension, we consider the
problem of getting m-term approximants of a function f from a pos-
sibly redundant dictionary D = fgk; k 2 g of unit norm basis func-
tions also called atoms. It will often be convenient to see a dictionary
as a synthesis operator (or, in finite dimension, as a matrix)

D : ccc = (ck) 7! Dccc =
k

ckgk

that maps sequences to vectors inH. A special class of dictionaries that
is widely used in signal and image processing is the family of frames:
a dictionary D is a frame for H if, and only if, D is a bounded oper-
ator from `2 ontoH [2]. However, in this correspondence, we consider
dictionaries that may not be frames, hence D shall be defined essen-
tially on sequences ccc with a finite number of nonzero entries. For any
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index set I (not necessarily finite) we will also consider the restricted
synthesis operator

DI : ccc 7! DIccc =
k2I

ckgk

that corresponds to the subsetDI = fgk; k 2 Ig of the full dictionary.
When D is an orthonormal basis forH, it is well known how to get

the best m-term approximant to any f : the solution is to keep the m
atoms of the basis which have the largest inner products jhf; gkij with
f . However, for arbitrary redundant dictionaries, the problem becomes
NP-hard [3]. In the recent years, much effort has been made to under-
stand what structure should be imposed on f (for a given dictionary)
or on the dictionary itself so that good approximants can be obtained
with computationally feasible algorithms.

One of the first algorithms that appeared in the signal processing
community for approximating signals from a redundant dictionary was
the Matching Pursuit (MP) algorithm of Mallat and Zhang [25], which
iteratively decomposes the analyzed function f into anm-term approx-
imant fm = m

n=1 �ngk and a residual rm = f � fm. MP is also
known as Projection Pursuit in the statistics community [10], [22] and
as a Pure Greedy Algorithm [27] in the approximation community. In
finite dimension, MP is known to converge exponentially, i.e., for some
0 < � < 1

krmk
2 = kfm � fk2 � �m � kfk2; m � 1:

In infinite-dimensional Hilbert spaces, Jones [24] proved that MP is
still convergent, i.e., kfm � fk ! 0, but gave no estimate of the
speed of convergence. DeVore and Temlyakov [4] exhibited a “bad”
dictionaryD where there exists a “simple” function (sum of two dictio-
nary elements) for which MP gives “bad” approximations (i.e., with a
slow convergence kfm � fk � Cm�1=2). On the positive side, Ville-
moes [30] showed that for Walsh wavelet packets, MP on “simple”
functions (f = cigi + cjgj any sum of any two wavelet packets)
was exponentially convergent (just as MP in finite dimension) with
kfm � fk2 � (3=4)mkfk2. Temlyakov obtained similar results [26]:
in particular, for f a function on the erval [0; 1) taking constant values
on a partition of [0; 1) into n disjoint intervals, and D a highly redun-
dant dictionary containing all (normalized) characteristic functions of
intervals I � [0; 1)

kfm � fk2 � (1� 1=n)m=2kfk2:

In this correspondence, we extend Villemoes and Temlyakov results
aboutMP tomore general dictionaries and “simple functions,” as stated
in the following featured theorem.

Featured Theorem 1: Let D be a dictionary in a finite- or infinite-
dimensional Hilbert space and I an index set such that the stability
condition (SC)

�(I) := sup
k=2I

k(DI)
ygkk1 < 1 (1)

is met, where ( � )y denotes pseudoinversion.1 Then, for any
f = k2I ckgk 2 span (gk; k 2 I), MP

1) picks up only correct atoms at each step: (8n; kn 2 I);
2) if I is a finite set, then the residual rm converges exponentially

to zero.

The stability condition (1) may look fairly abstract, but for so-called
quasi-incoherent dictionaries, one can obtain more explicit sufficient
conditions [28]. For such dictionaries, we derive estimates of the rate of

1Basic reminders on pseudoinversion are given in Section II-E
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exponential convergence of MP, and we obtain the following featured
theorem.

Featured Theorem 2: LetD be a dictionary in a finite- or infinite-di-
mensional Hilbert space and let � : maxk 6=l jhgk; glij be its coherence.
For any finite index set I of size card (I) = m < (1 + 1=�)=2 and
any f =

k2I
ckgk 2 span (gk; k 2 I), MP

1) picks up only correct atoms at each step: (8n; kn 2 I);
2) converges exponentially

kfn � fk2 � ((1� 1=m)(1+ �))nkfk2:

The proof of this theorem is based on an argument given by Tropp
[28] where the condition (1) is called “Exact Recovery Condition”
(ERC) because it ensures that Orthonormal Matching Pursuit (OMP)
and Basis Pursuit (BP) exactly recover any

f =
k2I

ckgk 2 span (gk; k 2 I):

We have chosen to rename the ERC a “stability condition.” Indeed, for
MP one cannot strictly speak about recovery, however, the theorem is
definitely a stability result since all residuals remain in the subspace
span (gk; k 2 I) � H. Tropp’s result was the last of a series of
“recovery” results: first with the BP “algorithm”—which was intro-
duced [1] as an alternative to MP since the latter cannot resolve close
atoms—under some assumptions on both the analyzed function and the
dictionary [6]–[9], [20], [19]; then with variants of the MP [12], [13].
After the first draft of this manuscript was submitted for publication, it
came to our attention that Donoho, Elad, and Temlyakov also consider
stability and recovery properties of MP in incoherent dictionaries [5].
We discuss in more details in Section V how our results are connected
to other approaches.

The previous theorems only explain the behavior of MP on exact ex-
pansions, i.e., they require that the approximated function f be exactly
expressed as an expansion from a “good” set of atoms. However, real
signals or images almost never have such a simple expansion in prac-
tical dictionaries. Fortunately, just as for OMP [28], the analysis of MP
as an approximation algorithm can be carried out by taking into account
how well a function is approximated by an expansion from a good set
of atoms. In particular, our results lead to the following theorem (with
the notations of Featured Theorem 2)

Featured Theorem 3: Let ffng be a sequence of approximants to
f 2 H produced with MP with gk the corresponding atoms. Letm <
(1+1=�)=4 and let f?m =

k2I
ckgk be a bestm-term approximant

to f from D, i.e.,

kf?m � fk = �m(f) := inffkf �DIccck; card(I) � m;ccc 2 Ig:
Then, there is a number Nm such that

1) the error after Nm steps of MP satisfies

kfN � fk � p
1 + 4m �m;

2) during the first Nm steps, MP picks up atoms from the best
m-term approximant: kn 2 I?m;

3) if �2m < 3�21=m then Nm is no larger than

Nm � 2 +m � 4
3
� ln 3�21

m�2m
:

In the course of this correspondence, we actually prove slightly more
general results (Theorems 1–4) and particularize them to get our fea-
tured results (Featured Theorems 1 and 3). The structure of this corre-
spondence is as follows. In Section II, we recall the definition of MP
and several variants thereof, and prove the stability result (Featured
Theorem 1). In Section III, we particularize this result to a special class

of dictionaries, quasi-incoherent dictionaries. This allows us to obtain
constraints on the dictionary so that the stability condition is met and
we also give estimates on the rate of convergence of MP in these cases
(Featured Theorem 2). Finally, in Section IV, we explore the approxi-
mation properties of various flavors of MP. In particular, we show that
greedy algorithmsmay robustly select atoms participating in a near best
m-term approximation and give the resulting approximation bounds
(Featured Theorem 3).

The proof of Featured Theorem 1 is merely a rewriting of Tropp’s
proof with the observation that it does not only work for OMP but
also for MP. Thus, the main contribution of this correspondence is in
the study of the approximation and stability properties of greedy algo-
rithms with quasi-incoherent dictionaries.

II. MATCHING PURSUIT(S) ON “SIMPLE” EXPANSIONS

In this section, we first recall the definition of MP and several vari-
ants thereof, thenwe prove the stability of all these variants, in the sense
of Featured Theorem 1.

A. Matching Pursuit (MP)

MP is an iterative algorithm that builds n-term approximants fm and
residuals rn = f�fn by adding one term at a time in the approximant.
It works as follows. At the beginning, we set f0 = 0 and r0 = f ;
assuming fn and rn are defined, we set

jhrn; gk ij = sup
k

jhrn; gkij (2)

fn+1 = fn + hrn; gk igk (3)

and compute a new residual as rn+1 = f � fn+1.

B. Weak MPs

When the dictionary is infinite, the supremum in (2) may not be at-
tained, so one may have to consider the so-called weak selection rule

jhrn; gk ij � � sup
k

jhrngkij (4)

with some fixed 0 < � � 1 independent of n. Corresponding variants
of MP will be called Weak MP with weakness parameter �, or in short
Weak (�) MP or even Weak MP when the value of � does not need to
be specified.

C. Orthonormal MP

Moreover, once m atoms have been selected, the approximant

fm =

m�1

n=0

hrn; gk igk

is generally not the best approximant to f from the finite-dimensional
subspace Vm := span(gk ; . . . ; gk ). OMP, respectively, Weak (�)
OMP, replaces the update rule (3) with

fn+1 = PV f (5)

where PV is the orthonormal projector onto the finite dimensional sub-
space V .

D. General MPs

More generally, one can consider the family of approximation algo-
rithms based on the repeated application of two steps:

1) a (weak) selection step according to (4);
2) an update step where a new approximant fn+1 2 Vn+1 is

chosen.
Algorithms from this larger family will be called General MP, Weak
(�)General MP, or Weak General MP. Examples of Weak (�)General
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MP algorithms include the High Resolution Pursuits [23], [16], which
were introduced to attenuate the lack of resolution of plain MP with
time–frequency dictionaries in the time domain.

E. Stability of Weak (�) General MP

The major result of Tropp [28] is what he calls the “Exact Recovery
Condition”

�(I) := sup
k=2I

k(DI)
ygkk1 < � (6)

(where ( � )y denotes pseudoinversion, see below): when the Exact Re-
covery Condition is met, Weak (�) OMP “exactly recovers” any linear
combinations of atoms from the subdictionary DI , which means that
Weak (�) OMP can only pick up correct atoms at each step. Tropp’s
proof indeed works for Weak (�)General MP, with the only difference
that we no longer get exact recovery but only stability of the Pursuit,
as stated in the following theorem.

Theorem 1: Let I be an index set (finite or infinite) with �(I) < 1.
For any f = k2I ckgk and � > �(I), Weak (�) General MP picks
up a correct atom at each step, i.e., for all n � 1; kn 2 I .

Note that we do not assume that the elements fgkgk2I are linearly
independent for the result to hold true. Before giving the proof of the
theorem, let us give a quick reminder on the notion of pseudoinverse.
Most of this material can be found in the usual suspects [14], [21].

LetA be a linear operator and let Range A be its range. The pseu-
doinverseAy is the left inverse that is zero on fRangeAg?. It is also
the left inverse of minimal sup norm. In the case of general p by q ma-
trices, we will make use of the Moore–Penrose pseudoinverse. It is the
unique q by p matrix that satisfies the following properties:

AA
y
A = A

A
y
AA

y = Ay

(AAy)� = AAy and

(AyA)� = AyA

where ( � )� denotes the adjoint. In particular,AAy is an orthonormal
projection onto RangeA. If the inverse ofA�A exists, theMoore–Pen-
rose pseudoinverse can simply be written

A
y = (A�A)�1A�:

Proof of Theorem 1: Just as the proof of exactness of OMP by
Tropp (which is a special case), we can show by induction that at each
step MP picks up an atom kn 2 I , so the residual rn remains in the
finite-dimensional space VI = span(gk; k 2 I). Initially, we have by
assumption r0 = f 2 VI . Assuming that rn 2 VI , we notice that the
inner products fhrn; gkgk2Ii between rn and fgk; k 2 Ig are listed
in the vector D?

Irn while those with fgk; k =2 Ig are listed in D?
�Irn

where I = fk; k 62 Ig. Thus, the atom gk is a correct one (i.e.,
kn+1 2 I) if and only if

�(I; rn) :=
kD?

I
rnk1

kD?
Irnk1

< �:

The core of of the proof of [28, Theorem 3.1] yields �(I; rn) � �(I).
From the assumption �(I) < �, we can infer that kn+1 2 I and
rn+1 2 VI , and we get the theorem.

F. Recovery and Convergence

Suppose that the analyzed function f belongs to span (gk; k 2 I)
where I satisfies �(I) < 1, and that we perform some Weak (�) Gen-
eral MP with � > �(I): Theorem 1 states that the Pursuit will only
pick up correct atoms.

In the particular case of an Orthogonal Pursuit, since each residual
rn is orthogonal to previously selected atoms gk ; . . . gk , any atom
can only be picked up once by the Pursuit. As a result, if in addition I
is a finite set of cardinalitym, the Orthogonal Pursuit exactly recovers
f in m iterations: this is the main result formalized by Tropp and al-
ready present—though not with such a clear statement—in the results
of Gilbert et al. [12], [13].

If the Pursuit we are performing on f is not orthogonal, it is known
that convergence does not generally occur in a finite number of steps.
However, if I is a finite set, the stability condition implies that the Pur-
suit is actually performed in the finite-dimensional space VI . In the
case ofWeakMP, it follows [25] that we have exponential convergence,
just as stated in Featured Theorem 1. In the next section, we provide
some tools to estimate the rate of this convergence, and it will turn out
that they also make it possible to estimate the speed of convergence of
(Weak) OMP.

III. MP IN QUASI-INCOHERENT DICTIONARIES

In the previous section, we have given fairly abstract conditions to
ensure stability of Weak General MP, exact recovery with Weak OMP,
and exponential convergence of Weak MP toward the approximated
function. However, the quantity �(I) that appears in the stability con-
dition (6) is not very explicit, and we did not yet provide estimates for
the rate of exponential convergence.

In this section, wewill show that we can use the so-called cumulative
coherence function2 of the dictionary to estimate �(I)—and check the
Stability Condition—as well as the rate of exponential convergence of
Plain MP.

A. Cumulative Coherence Function and Coherence

Definition 1: LetD be a dictionary. Its cumulative coherence func-
tion is defined for each integer m � 1 as

�1(m) := max
Ijcard(I)�m

max
k=2I

l2I

jhgl; gkij: (7)

As a special case, for m = 1, the value of the cumulative coherence
function is the so-called coherence of the dictionary

� = �1(1) = max
k 6=l

jhgl; gkij: (8)

One easily observes that the cumulative coherence function is subad-
ditive

�1(k + l) � �1(k) + �1(l); 8k; l

hence, we have �1(m) � � � m;m � 1. A dictionary is called in-
coherent if � is small: typically, in finite dimension N , any dictionary
that strictly contains an orthonormal basis has coherence � � 1=

p
N .

The union of the Dirac and the Fourier bases is an incoherent dictionary
where indeed � = 1=

p
N and �1(m) = � �m. When the cumulative

coherence function grows no faster than � �m, we say that the dictio-
nary is quasi-incoherent.

B. Explicit Stability Condition and Rate of Convergence

Using Neumann series, Tropp proved that whenever I is of size m
such that �1(m� 1) < 1, we have the upper bound

�(I) � �1(m)

1� �1(m� 1)
: (9)

From this estimate, we can derive the following theorem which shows
that the cumulative coherence function �1 can provide both a practical
Stability Condition for Weak General MP and an estimate of the rate
of exponential convergence for Weak MP.

2Formerly known as the Babel function.
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Theorem 2: Let m be an integer such that

�1(m) + �1(m� 1) < 1: (10)

Then for any index set I of size at mostm, any f 2 span (gk; k 2 I),
and � > �1(m)=(1� �1(m � 1)).

1) Weak (�) General MP picks up a correct atom at each step, i.e.,
for all n � 1; kn 2 I .

2) Weak (�) MP/OMP converge exponentially to f : more pre-
cisely, we have kf � fnk

2 � (�m(�))n � kfk2 with

�m(�) := 1� �2(1� �1(m� 1))=m: (11)

Before we prove the theorem, we need a few lemmas.

Lemma 1: For any index set I with card (I) = m, the squared
singular values ofDI exceed 1 � �1(m � 1).

The proof relies on Gershgorin Disc Theorem and can be found in
[12], [6], [15], [28], see for example [28, Lemma 2.3]. The second im-
portant lemma is due to DeVore and Temlyakov [4]; it gives a lower
estimate on the amount of energy of a signal that can be removed in
one step of MP.

Lemma 2 (DeVore,Temlyakov): For any I and ccc

sup
k2I

jhDIccc; gkij �
kDIccck

2

kccck1
:

We can now prove Theorem 2.

Proof of Theorem 2: The stability result is trivial using the esti-
mate (9) together with Theorem 1. Let us proceed with the exponential
convergence of Weak (�) MP/OMP. From the stability part we know
that at each step the residual rn = f � fn of Weak (�)MP/OMP is in
VI . Thus, rn = DIcccn for some sequence cccn with at most m nonzero
elements. Denoting �, the smallest nonzero singular value of DI , it
follows using Lemma 1 that

kcccnk
2
1 � mkcccnk

2
2 �

m

�2
kDIcccnk

2
2

�
m

1� �1(m� 1)
krnk

2:

Then, by Lemma 2, we obtain

sup
k2I

jhrn; gkij �
krnk

2

kcccnk1
� krnk

1� �1(m� 1)

m
:

We conclude by noticing that

krn+1k
2
(a)

�krnk
2 � jhrn; gk ij2

� krnk
2 � �2 sup

k

jhrn; gkij
2

� 1� �2(1� �1(m� 1))=m � krnk
2

� �m(�) � krnk
2 � � � � � (�m(�))

n+1 kr0k
2

= (�m(�))
n+1 kfk2:

Notice that (a) is an equality for MP and an inequality for OMP.

The above estimate is valid for the whole range of admissible weak-
ness parameter �: � = 1 corresponds to the standard “full search” Pur-
suit while � = �1(m)=(1��1(m� 1)) gives the worst case estimate
corresponding to the limiting case of the weakest allowable Pursuit. To
avoid carrying unnecessary heavy notations throughout the rest of the

correspondence, from now on we will only consider the case of a full
search Pursuit.

C. Estimates Based on the Coherence

For any dictionary, we have seen that the cumulative coherence func-
tion can be bounded using the coherence as �1(m) � � �m; m � 1.
Thus, a sufficient condition to get the stability condition (10) with the
cumulative coherence function becomes a condition based on the co-
herence:

m <
1

2
1 +

1

�
: (12)

If the dictionary is a union of incoherent orthonormal bases in finite
dimension N [20], then indeed �1(m) = � � m for 1 � m � N
and (12) is equivalent to (10). In any case, the rate �m = �m(1) of
exponential convergence of a (full search) MP is estimated from above
by

�m := �m(1) = 1�(1��1(m�1))=m � (1�1=m)(1+�): (13)

The combination of (3) with Theorem 2 yields our Featured Theorem 2.

IV. MP AS AN APPROXIMATION ALGORITHM

So farwe have considered the behavior of (Weak)MP on exact sparse
expansions in the dictionary. However, the set of functions with an
exact sparse expansion f 2 Range DI ; card (I) < dimH is negli-
gible, hence, it is more interesting to know what is the behavior of Pur-
suits on more general vectors, typically on f “close enough” to some
f? with an exact sparse expansion.

A. Best M -Term Approximation

For any f 2 H andm, the error of bestm-term approximation to f
from the dictionary is

�m(f) := inffkf �DIccck; card(I) � m; ck 2 g: (14)

When there is no ambiguity about which f is considered, we will
simply write �m. For f 2 H, let f?m =

k2I
ckgk be a bestm-term

approximation to f , i.e., with card (Im) � m and kf � f?mk = �m.
If a best m-term approximant does not exist (because the infimum
in the definition of �m is not reached), one can consider a near
best m-term approximant by letting � > 0 and only requiring
kf � f?mk = (1 + �)�m. In any case, without loss of generality, we
can assume that

1) the atoms fgk; k 2 Img are linearly independent;
2) f?m is the orthogonal projection of f onto span (gk; k 2 Im);

else, we could easily replace f?m with a better m-term approximant to
f by either changing the coefficients ck or selecting a subset I � Im
corresponding to linearly independent atoms with

span (gk; k 2 I) = span(gk; k 2 Im):

B. Robustness Theorem

From Theorem 1, we know that if Im satisfies the stability condition,
then General MP performed on f?m is stable. The following theorem is
a robustness result which shows that if f is “close enough” to f?m, the
atoms selected during “the first iterations” of a Pursuit will coincide
with those which would be selected by a Pursuit on f?m, which can be
considered as the correct ones.
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Theorem 3: Let frngn�0 be a sequence of residuals computed by
General MP to approximate some f 2 H. For any integerm such that
�1(m � 1) + �1(m) < 1; let f?m =

k2I ckgk be a best m-term
approximation to f , and letNm = Nm(f) be the smallest integer such
that

krN k2 � �2m � 1 +
m � (1� �1(m� 1))

[1� �1(m� 1)� �1(m)]2
: (15)

Then, for 1 � n � Nm, General MP picks up a correct atom, i.e.,
kn 2 Im. If no best m-term approximant exists, the same results are
valid provided that �m are replaced with kf � f?mk = (1 + �)�m in
(15).

An analogue to this theorem was originally proved by Tropp [28] in
the case of OMP, and the reader can easily prove it by following step
by step Tropp’s proof.

C. Comments on the Robustness Theorem

As already said, Theorem 3 was proved for OMP by Tropp [28],
and we merely had to notice that it also works for MP. Our main con-
tribution comes next with the detailed analysis of the approximation
properties of MP through the consequences of the theorem. The state-
ment of the robustness theorem relates several sequences of approxi-
mation errors. For a given f , both the sequence fkrnk2gn�1 of approx-
imation errors with MP and that of best m-term approximation errors
f�2mgm�1 are decreasing, and the statement of the theorem shows that
we should also consider a “penalized” version �2m := �2m � (1 + �m)
of the best m-term approximation error, using the penalty factor

�m :=
m � (1� �1(m� 1))

[1� �1(m� 1)� �1(m)]2
: (16)

The penalized error sequence is defined for any m � 1 such that
�1(m�1)+�1(m) < 1, but it is no longer decreasing, since it blows
up when �1(m� 1) + �1(m) approaches the value 1.

The theorem tells us that correct atoms (i.e., atoms that belong to the
bestm-term approximant) are picked up byMP until a good enough ap-
proximation error krnk2 is achieved (compared to the penalized error
�2m). The number of provably correct steps is at least

Nm = min n j krnk
2 � �2m : (17)

For OMP, since each atom can be picked up at most once, wemust have
Nm � m and the theorem thus guarantees that krmk2 � �2m, i.e., in
(at most)m steps an error no worse than �2m is reached (this is the result
of Tropp). Next we want to extend this result to MP by estimating how
many steps of MP are sufficient to reach an error no worse than �2m:
our goal is thus to obtain upper bounds on Nm.

D. Rate of Convergence

Let us start with some obvious remarks. Form = 1, it is not difficult
to check that�1 = 1=(1��)2 > 1 and kr1k2 = �21 � �21 hence,N1 �
1. For m � 2 such that �1(m� 1) + �1(m) < 1, the expresssion of
an upper bound onNm must depend on the value of �m. Indeed, when
�m = 0; f = f?m has an exact m-term expansion and the analysis of
the previous section shows that MP can loop forever within the set of
correct atoms: the error krnk decreases exponentially but never reaches
zero, hence,Nm = 1. On the contrary, as soon as �m is nonzero, the
decrease to zero of the residual guarantees thatNm <1. Given these
observations, it seems only natural that (for a givenm) the smaller �m,
the larger the bound on Nm. The bound expressed in the following
theorem displays this behavior.

Theorem 4: Let frngn�0 be a sequence of residuals computed by
MP to approximate some f 2 H. For any integerm such that �1(m�
1)+�1(m) < 1;, let f?m andNm = Nm(f) be defined as in Theorem
3. We have N1 � 1, and for m � 2:

• if �2m � 3�21=m then

2 � Nm � 2 +
m

1� �1(m� 1)
� ln

3�21
m�2m

; (18)

• else, Nm � 1.

We need some technical results before we proceed to the proof of
the theorem. The first results concern the rate of decrease of the error
fkrnkg for 1 � n � Nm: the faster the decrease, the smaller the
number of steps needed to reach the condition krnk � �m.

Lemma 3: With the notations of Theorem 3, if frng is a sequence
of residuals produced by MP, we have for 1 � n � Nm

krnk
2 � �2m � min

0�l�n
(�m)n�l krlk

2 � �2m (19)

with �m as defined in (13).
Proof: We know from Theorem 3 that kn+1 2 Im for 0 � n <

Nm; hence we have

krnk
2 � krn+1k

2 = jhrn; gk ij2 = sup
k2I

jhrn; gkij
2

= sup
k2I

jhf?m � fn; gkij
2

� (1� �m) � kf?m � fnk
2

where the second line follows from the fact that f � f?m is orthogonal
to VI and the last inequality is, again, a consequence of Lemmas 1
and 2. Observing that krnk2 = �2m + kf?m � fnk

2, we have

krnk
2 � krn+1k

2 = kf?m � fnk
2 � kf?m � fn+1k

2

and we obtain

kf?m � fn+1k
2 � �m � kf?m � fnk

2:

It follows that for 0 � l � n + 1

kf?m � fn+1k
2 � (�m)n+1�l � kf?m � flk

2:

We can now conclude that

krn+1k
2 � �2m + (�m)n+1�l � krlk

2 � �2m

which gives for 1 � n + 1 � Nm and 0 � l � n + 1

krn+1k
2 � �2m � (�m)n+1�l � krlk

2 � �2m :

As a consequence of Lemma 3, we have the following relation be-
tween the numbers Nl.

Lemma 4: With the assumptions and notations of Theorem 3, for
any 1 � k < m such that Nk < Nm we have

Nm �Nk � 1 +
m

1� �1(m� 1)
� ln

�2k
�2m

+ ln
1 + �k
�m

: (20)

Proof: We let l = Nk and n = Nm � 1 in (19) and use the very
definition of Nm and Nk (cf. (17)) to obtain

�m � �2m < krN �1k
2 � �2m

� (�m)N �1�N � krN k2 � �2m

� (�m)N �1�N � (1 + �k) � �
2

k:
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It follows that

(1=�m)N �1�N � (�2k=�
2

m) � (1 + �k)=�m

hence, we have Nm � Nk � 1 + � with

� :=
1

ln 1

�

ln
�2k
�2m

+ ln
1 + �k
�m

:

For t � 0, we have ln(1� t) � �t, hence, 1= ln(1=(1� t)) � 1=t.
Since �m = 1� (1� �1(m� 1))=m, it follows that

1

ln 1

�

� m

1� �1(m� 1)

and we obtain (20) by combining the previous estimates.

Theorem 4 will follow from Lemma 4 using the estimate of
(1 + �k)=�m provided by the following lemma.

Lemma 5: For all m such that �1(m � 1) + �1(m) < 1 and 1 �
k < m, we have

�m � m (21)
�k
�m

� k

m
� 1� �1(k � 1)

1� �1(m� 1)
: (22)

Proof: For the first inequality, we write

�m = m � 1

1� �1(m� 1)� �1(m)
� 1� �1(m� 1)

1� �1(m� 1)� �1(m)

and observe that the two rightmost factors are no less than 1. For the
second inequality, consider 2 � l � m: since �1(l�2)+�1(l�1) �
�1(l � 1) + �1(l), it is not difficult to check that

�l�1
�l

� l� 1

l
� 1� �1(l � 2)

1� �1(l � 1)
:

Taking the product for k + 1 � l � m we obtain the result.

Proof of Theorem 4: From Lemma 5, we have (1 + �k)=�m =
1=�m + �k=�m � (1 + k=(1 � �1(m � 1)))=m. Moreover, since
2�1(m�1) � �1(m�1)+�1(m) < 1, we have 1��1(m�1) > 1=2,
hence,

ln
1 + �k
�m

� ln 1 +
k

1� �1(m� 1)
� lnm

� ln(2k + 1)� lnm:

For 1 � k < m, either Nm � Nk or we can apply Lemma 4 and
obtain

Nm � Nk + 1 +
m

1� �1(m� 1)
ln
�2k
�2m

+ ln
2k + 1

m
:

Taking k = 1 yields either Nm � N1 = 1 (which is the second case
of the theorem) or Nm � N1 + 1 = 2 and

Nm � 2 +
m

1� �1(m� 1)
� ln 3 �21

m �2m

which is only possible if 3�21 > m�2m.

Let us conclude by showing how Theorem 4 can be used to ob-
tain Featured Theorem 3. If m < (1 + 1=�)=4, it is easy to check

that the condition �1(m � 1) + �1(m) < 1 is satisfied and that
m � �m � 4m. As a result, �2m � (1 + 4m)�2m and Nm defined
in Theorem 3 satisfies the first and second statements of Featured The-
orem 3. The third statement is checked using Theorem 4 and the easy
fact that 1=(1� �1(m � 1)) < 4=3.

V. DISCUSSION AND CONNECTIONS WITH OTHER RESULTS

Before concluding this correspondence, we would like to make it
explicit how the work presented here extends the results of Villemoes
and Temlyakov about MP in special dictionaries, as well as some other
recent parallel work in incoherent dictionaries.

A. Connection With Villemoes’ Result With Walsh Wavelet Packets

Without going into too much details, let us recall the definition of
the Walsh wavelet packet dictionary (the material below is essentially
taken from [30]). The dictionary, which is the collection of atoms

gp(x) = gj;k;n(x) := 2j=2Wn(2
jx� k)

in H = L2( ) obtained by dilations and translations of the Walsh
system fWngn�0 on L2[0; 1], has coherence � = �1(1) = 1=

p
2.

In this dictionary, one can find four atoms gp ; gp ; gp ; gp with gp
orthogonal to gp which satisfy

gp
gp

=
1p
2

1 1

1 �1

gp
gp

: (23)

As a result, we have

�1(2) � jhgp ; gp ij+ hjgp ; gp ij =
p
2 > 1:

Hence, the hypothesis ((10)) of Theorem 2 is only valid for m = 1,
i.e., only 1-term expansions from the Walsh wavelet packet dictionary
can be stably recovered through MP! One should not be mislead by the
meaning of such a “poor” result: it essentially means that one should be
very careful about the relevance of the notion of a correct atom when
such a notion is ambiguously defined. Let us consider a simple ex-
ample. Assume we want to recover expansions from span (gk; k 2 I)
with I = fpl; prg. Since gp 2 span (gp ; gp ), if MP is performed
on f := gp it will pick up gp as its first atom, and this is a “wrong”
choice since only a choice gk; k 2 I is considered a “good” one ac-
cording to the terminology used in this correspondence. The fact that
MP on a 2-term expansion can pick up a “wrong” atom is thus cor-
rectly predicted by the analysis, but the question is rather the relevance
of the notion of “correct” versus “wrong” atom which is intrinsically
ambiguous in this example.

In Villemoes’ result, there is no statement about recovery of “good”
versus “wrong” atoms, instead, the main point is the exponential con-
vergence which comes from the stability of the pursuit in some sub-
space of dimension at most four: for every I of size two, there exists
a reasonably small set J � I which satisfies the stability condition
�(J) < 1, hence, all the residuals remain in the finite-dimensional
subspace span (gp; p 2 J). The latter is of finite dimension at most
four hence the convergence is exponential. The rate of convergence is
computed on a case by case basis.

B. Connection With Temlyakov’s Result for Characteristic Functions

Temlyakov has long been studying the behavior of MP (which he
calls Pure Greedy Algorithm) and its variants in several settings. In
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particular, in the paper [26]—which was kindly pointed out to us by an
anonymous referee—Temlyakov introduces several classes of “struc-
tured” dictionaries (�-quasi-orthogonal, (�; 
)-semistable) for which
he is able to compare the rate of convergence of MP with that of the
ideal but NP-hard best m-term approximation. The nature of the main
results in [26] are far beyond the more restricted scope of the present
work, but Temlyakov also considers some illustrative examples that
have closer connections to the present analysis.

As already mentioned in the Introduction, if D is the collection of
all (normalized) characteristic functions of intervals I � [0; 1), and f
is a function on the interval [0; 1) taking constant values on a partition
of [0; 1) into n disjoint intervals, Temlyakov proved that

kfm � fk2 � (1� 1=n)m=2kfk2

without any claim about MP recovering “good” pieces (the intervals
on which f is constant), just about a rate of convergence. Temlyakov’s
example is just another example of the possible limitations of an anal-
ysis purely based on the (cumulative) coherence of the dictionary: in
this case, it is not difficult to check that � = �1(1) = 1 by consid-
ering two intervals arbitrarily close one to another, and �1(m) � m1=2

for m � 2 by letting gl = m1=2 � �[l=m;(l+1)=m); 0 � l < m and
gk = �[0;1) in (7).

C. Some Other Related Results

After this work was submitted for publication, it came to our at-
tention that Donoho, Elad, and Temlyakov had also been pursuing a
parallel track studying the recovery of approximate sparse expansions
with MP [5] and Basis Pursuit (other tracks being parallely followed
by Tropp [29], Fuchs [11], and the authors of the present contribution
[17], [18]). Altough of a broader nature than our results by the variety
of algorithms considered, the contribution of [5] is performed in quite
a more restricted setting since the structure of the dictionary is merely
summarized in its coherence �. By comparison, we have expressed all
our results in terms of cumulative coherence, which can make a sub-
stantial difference [28].

VI. CONCLUSION

Nonlinear sparse approximations in redundant dictionaries opened
brand new perspectives in data processing, mostly thanks to the
freedom in designing atoms that match particular structures. Neverthe-
less, until recently, these methods suffered from a lack of constructive
results regarding the approximation properties and stability of the
associated decomposition algorithms. This correspondence provides
insights that one of the most widely used heuristics, the Matching
Pursuit algorithm, is stable, and offers good approximation properties
when the dictionary is sufficiently incoherent. Extending these results
to wider (and more useful) classes of dictionaries is a fundamental
problem that we hope to address in forthcoming papers.
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