]. D. Reynolds, T. Quatieri, and R. Dunn, Speaker Verification Using Adapted Gaussian Mixture Models, Digital Signal Processing, vol.10, issue.1-3, pp.1-3
DOI : 10.1006/dspr.1999.0361

W. Campbell, Generalized linear discriminant sequence kernels for speaker recognition, IEEE ICASSP'02, pp.161-164, 2002.
DOI : 10.1109/icassp.2002.5743679

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.23.9785

V. Wan and S. Renals, SVMSVM: support vector machine speaker verification methodology, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)., pp.221-224, 2003.
DOI : 10.1109/ICASSP.2003.1202334

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.5012

S. Bengio and J. Mariethoz, Learning the decision function for speaker verification, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), pp.425-428, 2001.
DOI : 10.1109/ICASSP.2001.940858

W. M. Campbell, D. A. Reynolds, and J. P. Campbell, Fusing discriminative and generative methods for speaker recognition: Experiments on switch- c This is the author version of an article published in an Elsevier journal. The original publication is available at www, Odyssey: The Speaker and Language Recognition Workshop, ISCA, pp.41-44, 2004.

E. Bocchieri, Vector quantization for the efficient computation of continuous density likelihoods, IEEE International Conference on Acoustics Speech and Signal Processing, pp.692-695, 1993.
DOI : 10.1109/ICASSP.1993.319405

H. Murveit, P. Monaco, V. Digalakis, and J. Butzberger, Techniques to achieve an accurate real-time large-vocabulary speech recognition system, Proceedings of the workshop on Human Language Technology , HLT '94, pp.393-398, 1994.
DOI : 10.3115/1075812.1075903

J. Fritsch and I. Rogina, The bucket box intersection (BBI) algorithm for fast approximative evaluation of diagonal mixture Gaussians, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, pp.837-840, 1996.
DOI : 10.1109/ICASSP.1996.543251

B. Xiang and T. Berger, Efficient text-independent speaker verification with structural gaussian mixture models and neural network, IEEE Transactions on Speech and Audio Processing, vol.11, issue.5, pp.447-456, 2003.
DOI : 10.1109/TSA.2003.815822

M. Gales, K. Knill, and S. Young, State-based gaussian selection in large vocabulary continuous speech recognition using hmms, Speech and Audio Processing, IEEE Transactions on, vol.7, issue.2, pp.152-161, 1999.

J. Mclaughlin, D. A. Reynolds, and T. Gleason, A study of computation speed-ups of the gmm-ubm speaker recognition system, EU- ROSPEECH '99, pp.1215-1218, 1999.

R. Auckenthaler and J. S. Mason, Gaussian selection applied to textindependent speaker verification, in: Odyssey: The Speaker and Language Recognition Workshop, pp.83-88, 2001.

B. L. Pellom and H. L. Hansen, An efficient scoring algorithm for Gaussian mixture model based speaker identification, IEEE Signal Processing Letters, vol.5, issue.11, pp.281-285, 1998.
DOI : 10.1109/97.728467

Z. Xiong, F. T. Zheng, Z. Song, and W. Wu, Combining selection tree with observation reordering pruning for efficient speaker identification using gmm-ubm, IEEE ICASSP '05, pp.625-628, 2005.

Y. S. Moon, C. C. Leung, and K. H. Pun, Fixed-point GMM-based speaker verification over mobile embedded system, Proceedings of the 2003 ACM SIGMM workshop on Biometrics methods and applications , WBMA '03, pp.53-57, 2003.
DOI : 10.1145/982507.982517

K. R. Farrell, R. J. Mammone, and K. T. Assaleh, Speaker recognition using neural networks and conventional classifiers, Speech and Audio Processing, IEEE Transactions on, vol.2, issue.11, pp.194-205, 1994.

R. Blouet and F. Bimbot, A tree-based approach for score computation in speaker verification, pp.223-227, 2001.

L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression Trees, 1984.

T. Lim, W. Loh, and Y. Shih, A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms, Machine Learning, vol.40, issue.3, pp.203-228, 2000.
DOI : 10.1023/A:1007608224229

R. Blouet, Approche probabiliste par arbres de décisions pour la vérification du locuteur sur architectures embarquées This is the author version of an article published in an Elsevier journal. The original publication is available at www, 2002.

G. Gonon, R. Gribonval, and F. Bimbot, Decision trees with improved efficiency for fast speaker verification, th European conference on speech communication and technology, EUROSPEECH 05, pp.2661-2664, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00564509

A. Dempster, N. Laird, and D. Rubin, Maximum-likelihood from incomplete data via em algorithm, Journal of Statistical Society of America, vol.39, pp.1-38, 1977.

J. Gauvain and C. Lee, Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains, IEEE Transactions on Speech and Audio Processing, vol.2, issue.2
DOI : 10.1109/89.279278

B. Xiang, U. V. Chaudhari, J. Navratil, G. N. Ramaswamy, and A. R. Gopinath, Short-time Gaussianization for robust speaker verification, IEEE International Conference on Acoustics Speech and Signal Processing, pp.681-684, 2002.
DOI : 10.1109/ICASSP.2002.5743809

Y. Xie, B. Dai, and J. Sun, Kurtosis normalization after short-time gaussianization for robust speaker verification, World Congress on Intelligent Control and Automation, pp.9463-9467, 2006.

C. Barras and J. Gauvain, Feature and score normalization for speaker verification of cellular data, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)., pp.49-52, 2003.
DOI : 10.1109/ICASSP.2003.1202291

S. Furui, Cepstral analysis technique for automatic speaker verification, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.29, issue.2, pp.254-272, 1981.
DOI : 10.1109/TASSP.1981.1163530

S. K. Murthy, S. Kasif, and S. Salzberg, A system for induction of oblique decision trees, Journal of Artificial Intelligence Research, vol.2, pp.1-32, 1994.

R. E. Schapire, The Boosting Approach to Machine Learning: An Overview, Nonlinear Estimation and Classification Lecture Notes in Statistics, vol.171, issue.8, pp.149-172, 2003.
DOI : 10.1007/978-0-387-21579-2_9