Skip to Main content Skip to Navigation
New interface
Conference papers

From Video Shot Clustering to Sequence Segmentation

Emmanuel Veneau 1 Rémi Ronfard 2, * Patrick Bouthemy 1 
* Corresponding author
1 VISTA - Vision spatio-temporelle et active
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
2 MOVI - Modeling, localization, recognition and interpretation in computer vision
GRAVIR - IMAG - Laboratoire d'informatique GRAphique, VIsion et Robotique de Grenoble, Inria Grenoble - Rhône-Alpes, CNRS - Centre National de la Recherche Scientifique : FR71
Abstract : Segmenting video documents into sequences from elementary shots to supply an appropriate higher level description of the video is a challenging task. This paper presents a two-stage method. First, we build a binary agglomerative hierarchical time-constrained shot clustering. Second, based on the cophenetic criterion, a breaking distance between shots is computed to detect sequence changes. Various options are implemented and compared. Real experiments have proved that the proposed criterion can be efficiently used to achieve appropriate segmentation into sequences.
Document type :
Conference papers
Complete list of metadata

Cited literature [10 references]  Display  Hide  Download
Contributor : Rémi Ronfard Connect in order to contact the contributor
Submitted on : Monday, September 1, 2014 - 3:53:10 PM
Last modification on : Friday, February 4, 2022 - 3:25:07 AM
Long-term archiving on: : Thursday, December 4, 2014 - 2:50:13 PM


Files produced by the author(s)



Emmanuel Veneau, Rémi Ronfard, Patrick Bouthemy. From Video Shot Clustering to Sequence Segmentation. International Conference on Pattern Recognition, IEEE, 2000, Barcelone, Spain. pp.254-257, ⟨10.1109/ICPR.2000.902907⟩. ⟨inria-00545119⟩



Record views


Files downloads