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Abstract

In this paper we address the problem of recovering structure

and motion from a large number of intrinsically calibrated

perspective cameras. We describe a method that combines

(1) weak-perspective reconstruction in the presence of noisy

and missing data and (2) an algorithm that updates weak-

perspective reconstruction to perspective reconstruction by

incrementally estimating the projective depths. The method

also solves for the reversal ambiguity associated with affine

factorization techniques. The method has been successfully

applied to the problem of calibrating the external param-

eters (position and orientation) of several multiple-camera

setups. Results obtained with synthetic and experimental

data compare favourably with results obtained with non-

linear minimization such as bundle adjustment.

1. Introduction

The problem of 3-D reconstruction using affine factoriza-

tion has received a lot of attention. The method initially

introduced by Tomasi & Kanade [1] and subsequently elab-

orated by many others – see section 1.2 – is attractive for

a number of reasons: (i) it provides a closed-form solution,

(ii) it can deal with noisy, uncertain, erroneous, and missing

data, (iii) and it is upgradable to Euclidean reconstruction.

Although initially designed to solve for rigid shape, it has

been succesfully extended to deformable shape as well as

to multiple rigid shapes (motion segmentation). Neverthe-

less, affine factorization has a number of limitations as well.

First, it uses weak-perspective or paraperspective camera

models which are approximations of the perspective model.

Second, it recovers orientation and shape up to a reversal

ambiguity. Third, it recovers translation and shape up to a

scale ambiguity.

The problem of multiple-camera calibration has received

a lot of attention in the past. This problem is two-fold: esti-

mate both the intrinsic (internal camera parameters) and the

external parameters (rotation and translation) with respect

to a global reference frame. Intrinsic parameters can be es-

timated independently for each camera and several software

packages are available today. However, it is more com-

plex and more tedious to estimate the extrinsic parameters,

especially when a very large number of cameras must be

calibrated – thirty or more cameras. In practice, the cam-

eras must simulteneously observe a large number of points.

Point correspondences must be established accross the im-

ages under a multiple wide-baseline setup. Based on these

point matches, both the rotation/translation parameters and

the 3-D point coordinates must be recovered. The method

of choice for multiple-camera calibration is bundle adjust-

ment [2], [3]. It is a non linear minimization technique that

requires proper initialization.

In this paper we propose a robust incremental perspec-

tive factorization method that features the following prop-

erties:

• It can deal with noisy and missing 2-D data;

• It provides accurate Euclidean reconstruction by using

a perspective camera model;

• It solves for the orientation/shape reversal ambiguity;

• It exploits the motion parameters – recovered in

closed form through the factorization process – to pro-

vide a solution for the multiple-camera external cali-

bration problem, and

• It compares favourably with the results obtained with

ground-truth methods such as bundle adjustment.

Paper organization. The remaining of this paper is orga-

nized as follows. In section 1.1 we recall the shape-and-

motion recovery problem using a factorization formulation

and, in particular, we establish the link between full per-

spective and weak-perspective. Section 1.2 briefly describes

previous work with emphasis on robust affine factorization

and on several attempts to deal with the projective case.

Section 2 describes the robust method that we propose for

incrementally solving for perspective factorization. Section

3 describes a practical method for estimating the external

parameters of a multiple-camera setup. We show results
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(a) Partial view of a 30-camera setup (b) Calibration data gathered by moving a

stick

(c) External multi-camera calibration

Figure 1: Outline of the multiple-camera calibration method described in this paper.

obtained with 30 cameras in two different layouts. We anal-

yse the performance of our method in the presence of noise

and of missing data.

1.1. Problem formulation

We consider a calibrated perspective camera model in

which case the relationship between 3-D points and image

points expressed in camera coordinates can be written as:

xij =
rx

i · Pj + txi
rz

i · Pj + tzi
=

Rx
i · Pj + x0

i

1 + εij

(1)

yij =
r

y
i · Pj + tyi

rz
i · Pj + tzi

=
R

y
i · Pj + y0

i

1 + εij

(2)

where a 3-D point Pj is projected onto the i-th camera at

location sij . The rotation matrix r⊤i = [rx
i r

y
i rz

i ] and the

translation vector t⊤i = (txi tyi tzi ) correspond to the external

camera parameters. Dividing the above equations with the

depth tzi we obtain a similar set of scaled equations. The

following notations have been introduced: Rx
i = rx

i /tzi ,

R
y
i = r

y
i /tzi . Moreover, x0

i = txi /tzi and y0

i = tyi /tzi are

the camera coordinates of a point s0i which is the projection

of P0 (the origin of the 3-D frame). Also, εij denotes the

following ratio:

εij =
rz

i · Pj

tzi
(3)

We also introduce the perspective depth λ:

λij = 1 + εij (4)

The perspective projection equations (1) and (2) can now be

rewritten as:

λijsij − s0i =

[

Rx
i
⊤

Rx
i
⊤

]

Pj (5)

For k cameras and n points, i ∈ {1 . . . k}, j ∈ {1 . . . n} one

can write:

Sλ = MP (6)

So far we considered a perspective camera model. If an

affine camera model is used instead, the model above be-

comes simpler. In particular, under weak perspective λij =
1,∀(i, j) and we have:

S = MP (7)

1.2. Previous work

There are several ways for solving the affine factorization

problem, i.e., eq. (7). Initially it was proposed to minimize

the Frobenius norm by Tomasi & Kanade [1]:

min
M,P

‖S − MP‖2

F (8)

In the absence of noise, the singular value decomposi-

tion of the measurement matrix provides an optimal solu-

tion. The latter is defined up to an affine transformation T,

MP = MTT−1P, that can be determined using Euclidean

constraints. It is worthwhile to notice that both T and −T

can be used. This sign ambiguity corresponds to the well

known reversal ambiguity when the 3-D world is observed

with affine cameras.

Anandan & Irani [4] extended the classical SVD ap-

proach to deal with the case of directional uncertainty. They

use the Mahalanobis norm instead of the Frobenius norm.

They reformulate the factorization problem such that the

Mahalanobis norm can be transformed into a Frobenius

norm. Finally they develop a modified factorization tech-

nique. More generally, a central idea is to introduce a

weight matrix W of the same size as the measurement ma-

trix S. The Frobenius norm becomes in this case:

min
M,P

‖W ⊗ (S − MP)‖2

F (9)

where ⊗ is the Hadamard product: A = B ⊗ C ⇐⇒
aij = bijcij . The weights wij describe the confidence that
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we have in an image datum and the values of these weights

vary from 1 (highly confident data) to 0 (missing data). The

most common way of minimizing eq. (9) is to use alterna-

tion methods: these methods are based on the observation

that if either M or P is known, there is a closed-form solu-

tion for the other that minimizes eq. (9). The PowerFactor-

ization method [5], [6], [7] as well as many other methods

[8], [9], [10] fall into this category. PowerFactorization [5]

presents a number of attractive features: It converges by

starting with any random input, it requires a lot less com-

putation than SVD (5% of the time for a 500 × 500 matrix)

and it deals well with missing data (60-90%). Another way

to alternate between motion and shape estimation is to use

the EM algorithm and a nice formulation that uses factor

analysis is provided by Gruber and Weiss et al. [11], [12].

Alternatively, robustness both to noisy data and to out-

liers can be achieved through adaptive weighting by itera-

tively re-estimating the weight matrix W which amounts to

iteratively modify the data S, [13]. The method proposed

in [13] uses eq. (8) in conjunction with a robust weighting

matrix (truncated quadratic or Huber’s M-estimator) to iter-

atively approximate eq. (9), getting a temporary optimum.

The approximation is performed by modifying the original

data S such that the solution to eq. (8) with modified data S̃

is the same as eq. (9) with the original data:

min
M,P

‖W ⊗ (S − MP)‖2

F = min
M,P

‖S̃ − MP‖2

F (10)

The weights are updated at each iteration, using an M-

estimator. This method may well be viewed as both an

iterative and an alternation method because the matrix M

is estimated using SVD, than the P is estimated knowing

M, and finally the image residuals are calculated and the

data (the weights) are modified. Buchanan & Fitzgibbon

[14] propose to solve eq. (9) through non-linear minimiza-

tion over the motion and shape parameters. They review

the alternation methods and they compare their speed of

convergence with a damped Newton method (a variation of

the Levenberg-Marquardt method). They propose a hybrid

method that switches from alternation to damped Newton.

The factorization methods mentioned so far can only

deal with affine camera models. The latters are not well

suited for accurate estimation of motion and shape parame-

ters. It is more difficult to solve for the projective multiple-

camera calibration and/or reconstruction problem. The

most accurate results are obtained through bundle adjust-

ment methods [2], [3] which require proper initialization.

Sturm and Triggs [15] introduced the use of factorization in

multiple image projective structure from motion. Their for-

mulation is similar in spirit to eq. (6) and their method relies

on fundamental matrices to solve for the projective depths.

Subsequently, Heyden et al. [16], Ueshiba & Tomita [17],

and Mahamud & Hebert [18] proposed iterative methods to

solve the Sturm/Triggs projective factorization problem.

A final class of methods uses the perspective camera

model, i.e., the intrinsic parameters are known: this model

is described by eqs. (1) and (2) or, equivalently by eq. (6). If

the perspective depths λij are known, the perspective factor-

ization problem is identical to the affine factorization prob-

lem. Christy & Horaud [19] and Fujiki & Kurata [20] sug-

gested a method that consists in incrementally estimating

the depth parameters starting with a weak-perspective (or a

paraperspective) approximation (λij = 1). Each iteration

updates the perspective depths and allows to solve for the

reversal ambiguity. At the limit, these algorithms converge

to an accurate perspective solution. There has been no at-

tempt to incorporate robustness in such iterative perspective

factorization procedures.

2. Robust perspective factorization

The perspective factorization method that we propose builds

on the work of [5], [19], and [13] briefly described above.

Our algorithm estimates values for the perspective depth it-

eratively in a robust fashion starting from a weak perspec-

tive camera model. The robustness is defined two-fold: with

respect to the a-priori knowledge of both noise covariance

and missing data, and with respect to the adaptive knowl-

edge of the residual between weak-perspective and perspec-

tive image measurements of each of the points. The algo-

rithm requires S, W and the intrinsic camera parameters as

input and provides the extrinsic camera parameters and the

3-D coordinates of the points as output. Since the proposed

algorithm puts emphasis on the camera calibration (thus the

M), it can dispense of the 2-D points that are far from the

center of projection and thus provide a bad initial estimate

for weak perspective approximation.

An outline of the algorithm is provided below:

1. ∀i, i ∈ {1...k} and ∀j, j ∈ {1...n} set: εij = 0;

2. Update the values of sij using εij as shown in (5);

3. Perform an Euclidean reconstruction with a weak per-

spective camera:

a) Perform a robust affine reconstruction up to a

affine transformation using PowerFactorization

(given S and W).

b) Perform an Euclidean reconstruction by impos-

ing orthonormality constraints on the 3×3 matrix

T.

4. ∀i, i ∈ {1...k} and ∀j, j ∈ {1...n} estimate new

values for εij using(3);
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5. Re-weight the values of wij corresponding to non-

missing data using a robust error function and the esti-

mate εijsij .

6. Check the values of εij :

if ∀(i, j) the values of εij just estimated at this it-

eration are identical with the values estimated at

the previous iteration,

then stop;

else go to step 2.

Po

P
i

optical axis

image plane

first iteration
second iteration
...
last iteration

center of
projection

not modified

weak perspective
projection

perspective
projection

Figure 2: The iterative algorithm modifies the projection

of a 3-D point from true perspective to weak perspective.

Taken from [19]

A visual representation of the iterations of the algo-

rithm can be observed in figure 2. Step 1 initializes εij =
0,∀(i, j), which is the same as approximating the camera

with the weak perspective model. Step 3 adapts the weights

wij based on the 2-D reprojection error eij obtained be-

tween the perspective model and the weak-perspective cam-

era model.

eij = ||((1+εij)sij−s
0

i )−(sij−s
0

i )||2 = ||εijsij ||2 (11)

The entries wij are reweighted using the truncated quadratic

as the robust error function1:

wij(eij) =

{

1 eij < h
√

h2

e2

ij

eij > h
(12)

At initialization, there is no knowledge about the per-

spective depths, therefore eij = 0 for all the points and

all the cameras. Once an affine reconstruction is estimated,

one can measure the quality of the weak-perspective model

through eq. (11) and incrementally reweight the measure-

ments in order to favour points that best satisfy the weak-

perspective model.

1In all our experiments we set h = 0.02.

Step 4 is broken into two stages. The affine reconstruc-

tion is recovered using PowerFactorization as the robust

affine factorization method of choice (other methods have

also been considered - see section 3.1) As detailed earlier,

such a reconstruction is obtained only up to an affine trans-

formation (T). The Euclidean reconstruction is obtained by

imposing orthonormality constraints on the 3× 3 matrix T.

We have adopted the elegant solution proposed by [13] to

recover the T matrix.

A reversal ambiguity is inherent to any factorization

based technique, since (7) can be written as S = MP =
(−M)(−P). In other words,

εij = ±
rz

i · Pj

tzi
(13)

Therefore, two values for εij are estimated at each iteration

of the algorithm. After N iterations however, there will be

2N possible solutions. Fortunately, not all the solutions are

consistent with the image data and a verification technique

(the smallest cumulative 2-D reprojection error) allows to

check this consistency and to avoid the combinatorial ex-

plosion of the number of solutions.

3. Multiple-camera calibration

In this section we describe how the solution obtained in

the previous section is used within the context of multiple-

camera calibration. As already described above, we are

interested in the estimation of the external camera param-

eters, i.e., the alignment between a global reference frame

(or the calibration frame) and the reference frame associated

with each one of the cameras. We assume that the internal

camera parameters were accurately estimated using avail-

able software. There may be many cameras. In practice we

tested our algorithm with two setups, each composed of 30

cameras. Finding point correspondences accross the images

provided by such a setup is an issue in its own right because

one has to solve for a multiple wide-baseline point corre-

spondence problem. We will briefly describe the practical

solution that we retained and which avoids badly matched

points. The Euclidean shape and motion solution found in

section 2 must be aligned with the global reference frame

associated with the multiple-camera setup, i.e., the calibra-

tion frame: rotation, translation and scale. We will explain

how this alignment can be robustly estimated.

Multiple-camera data acquisition. In order to perform

multiple-camera acquisition and multiple-image matching,

we use a simple linear object composed of four identical

markers with known one-dimensional coordinates. Using

the one-dimensional coordinates of the markers and their
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cross-ratio (a projective invariant) we obtain 3-D to 2-D as-

signments between the markers and their observed image

locations. From these assignments one can easily obtain

2-D to 2-D matches over the camera frames, at some time

t. The cameras are finely synchronized, therefore the lin-

ear object can be freely moved through the 3-D space and

cover the common field of view of the cameras. In prac-

tice we accumulate data over several frames. In the two

examples below we used 58 frames and 74 frames, i.e., 232
points and 296 points, respectively. Figure 3 depicts several

situations. The top row shows the ideal case where the four

markers can be easily identified in the images. The middle

row shows degenerate views due to perspective foreshort-

ening. The bottom row shows a situation where markers are

missing. Uncertain 2-D locations as well as missing data

are described by an a priori weight matrix W.

Figure 3: Examples of calibration input data: (a) typical

frames; (b) frames where due to the perspective distortion

the view is degenerate; (c) frames where some of the control

points are missing due to the limited field of view of the

camera

Alignment. We denote by ri and ti (the rotation matrix

and translation vector) the parameters of camera i found by

factorization. The 3×4 projection matrix associated with

camera i writes:
[

ri ti
]

(14)

We also denote by r, t, and s the alignment parameters – ro-

tation, translation, and scale – allowing to map the calibra-

tion frame onto the factorization frame. We also consider

m control points, m << n, i.e., the total number of points.

Let Pj be the coordinates of the control points in the factor-

ization frame and Qj be their coordinates in the calibration

frame. The optimal alignment parameters may be found by

minimizing:

min
s,r,t

m
∑

j=1

‖srQj + t − Pj‖
2 (15)

The minimizer of this error function can be found in closed

form using unit quaternions [21] to represent the rotation r

or with dual-number quaternions [22] to represent the rigid

displacement. Therefore, the new projection matrix asso-

ciated with camera i, that aligns the calibration frame with

the image-plane coordinates, writes as:

[

ri ti
]

[

sr t

0⊤ 1

]

≃
[

ri
ti

s

]

[

r t
s

0⊤ 1

]

(16)

3.1. Simulated data

In all our experiments we used two camera setups. Both

setups use 30 identical cameras whose intrinsic parameters

were estimated in advance. We also estimated their exter-

nal parameters using a non-linear method based on bundle

adjustment. The external parameters obtained by bundle

adjustment are the ground truth. The first setup is shown

in figure 8 and is referred to as the line case. The second

setup is illustrated in figure 1 and is referred to as the cor-

ner case). We simulated various configurations of 200 3-D

data points which are projected onto the 30 images, using

the camera parameters provided by bundle adjustment (the

ground truth).

The simulated experiments compare the results of our

method (robust perspective factorization) with the weak-

perspective factorization methods propsed by Tomasi &

Kanade [1] – the SVD method, Hartley & Schaffalitzky [5]

– PowerFactorization, Aanaes et al. [13] – adaptive weight-

ing, and Buchanan & Fitzgibbon [14] – damped Newton.

Through these experiments we measured the RMS of the 2-

D reprojection errors when increasing noise is added to the

data and when the number of missing entries in the mea-

surement matrix increases as well.

Figures 4 and 5 summarize the results of these simula-

tions with the first camera setup (the line case) and figures 6

and 7 summarize the results obtained with the second cam-

era setup (the corner case).

The best and most consistent results are obtained with

affine PowerFactorization and with our method (perspective

factorization that uses PowerFactorization in its inner loop).

It is interesting to notice that with increasing noise, the per-

formance of these two methods are comparable. This is due

to the fact that when high-amplitude noise is present in the

data, the incremental perspective algorithm cannot currently
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Figure 4: Line Case - The algorithm described in section 2

is compared with different affine factorization techniques:

robustness towards missing features. The 2-D reprojection

error is measured in in pixels.
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Figure 5: Line Case - The algorithm described in section 2

is compared with different affine factorization techniques:

robustness towards noise in measurements.

distinguish between projection errors and errors to to noisy

measurements.

eq

3.2. Experimental data

In this subsection we present some of the calibration results

obtained with the two camera setups and using the exper-
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Figure 6: Corner Case - The algorithm described in section

2 is compared with different affine factorization techniques:

robustness towards missing features.
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Figure 7: Corner Case - The algorithm described in section

2 is compared with different affine factorization techniques:

robustness towards noise in measurements. The 2-D repro-

jection error is measured in in pixels.

imental data. The performance obtained with the method

described in section 2 is compared to both weak-perspective

algorithms and to the ground-truth.

The corner case uses 296 points accumulated over

74 frames. Therefore the measurement matrix has

2×30×296 = 17760 entries, out of which 37% are miss-

ing. The recovered camera layout is shown in figure 1 and
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a comparison with the ground-truth is detailed in table 1.

The translation error is represented as percentage error with

respect to the groundtruth estimate, whereas the rotation

error is represented in degrees. For completeness, table 2

shows the mean errors when applying the iterative perspec-

tive algorithm in conjunction with various affine factoriza-

tion methods. This table also compares the results with the

results obtained through purely weak-perspective methods.

The 3-D point error is measured in milimeters, whereas the

2-D error is measured in pixels.

Camera Rot. Tr. Camera Rot. Tr.

1 3.31 19.47 16 3.82 18.61

2 4.11 16.89 17 2.44 18.44

3 5.31 16.39 18 0.78 19.23

4 4.31 16.58 19 2.41 22.63

5 4.24 17.52 20 4.27 28.35

6 5.04 16.44 21 2.54 22.44

7 4.75 17.90 22 3.76 21.50

8 4.15 18.13 23 2.88 19.91

9 4.25 17.72 24 1.72 23.07

10 5.19 16.85 25 0.65 22.81

11 3.82 17.84 26 4.07 21.12

12 4.07 18.03 27 5.23 27.09

13 4.53 18.32 28 4.66 22.83

14 2.23 19.84 29 2.06 24.10

15 2.92 18.71 30 5.22 26.64

Table 1: Corner Case - Rotation and translation errors ob-

tained for each individual camera. Rotation is measured in

degrees, and the translation is measured in percentage error

with respect to the original groundtruth

Method 2-D 3-D Cal.Rot Cal.Tr

A
ffi

n
e

SVD 156 1405 11 48

PowerFact 16 174 4 14

Aanaes - - - -

Damped Newton 892 325 77 119

P
er

sp
. SVD 82 1558 56 41

PowerFact 13 285 4 20

Aanaes - - - -

Damped Newton 480 793 10 90

Table 2: Comparison between affine and perspective for

corner case

The line case uses 232 points accumulated over 58

frames and there is no missing data in this case. The re-

sulting camera layout is shown in figure 9. This result may

be compared with the ground-truth shown in figure 8. Table

3 summarizes the comparison of our method with various

weak-perspective methods. Again, the figures indicated the

discrepencies with respect to the ground-truth. As it can be

observed in table 3, the perspective reconstruction provides

clear benefits over the weak perspective model. The effect

is diminished when the weak perspective approximations is

close to the perspective camera model, as shown in table 2.

Method 2-D 3-D Cal.Rot Cal.Tr

A
ffi

n
e

SVD 191 1058 80 58

PowerFact 37 307 9 42

Aanaes 191 1058 80 58

Damped Newton 892 325 77 119

P
er

sp
. SVD 125 1025 70 76

PowerFact 3 164 3 5

Aanaes 124 1031 77 75

Damped Newton 255 357 50 127

Table 3: Comparison between affine and perspective for line

case

Figure 8: Line Case - Groundtruth Camera Layout (232 fea-

tures - no missing data)

Figure 9: Line Case - Reconstructed Camera Layout (232

features - no missing data)

4. Discussion

In order to interpret these results, it is worth mentioning

the experimental conditions. In the line case 3-D points

are situated at approximatively 1.8 meters away from the

cameras. In the corner case the 3-D points are at 5.1 me-
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ters away from the cameras. Therefore the second camera

setup is consistent with both the weak-perspective and the

perspective models. The advantage of perspective factor-

ization is clearly shown with the first example. It is worth-

while to mention that in the line case the cameras’ optical

axes roughly lie in the same plane and they have a common

rotation axis, and therefore the motion matrices associated

with the extrinsic camera parameters are linearly dependent,

which makes the M matrix a rank-2 matrix. Factorization

methods assume the M matrix to be a rank-3 matrix.

We plan to statistically characterize the perspective error

and to include such prior knowledge in the iterative perspec-

tive factorization algorithm.
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