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Abstract. In this paper, we propose a human detection process us-
ing Far-Infrared (FIR) and daylight cameras mounted on a stereovision
setup. Although daylight or FIR cameras have long been used to de-
tect pedestrians, they nonetheless suffer from known limitations. In this
paper, we present how both can collaborate inside a stereovision setup
to reduce the false positive rate inherent to their individual use. Our
detection method is based on two distinctive steps. First, human posi-
tions are detected in both FIR and daylight images using a cascade of
boosted classifiers. Then, both results are fused based on the geomet-
ric information of the sterovision system. In this paper, we present how
human positions are localized in images, and how the decisions taken
by each camera are fused together. In order to gauge performances, a
quantitative evaluation based on an annotated dataset is presented.

1 Introduction

Techniques for locating humans in still images and videos have long been studied.
It is now used in all kinds of military and civilian applications such as surveil-
lance and security applications, energy-saving control on air-conditioning and
lighting in offices, or simply counting people entering and leaving a building, to
name of few [1]. But detecting humans in real-life scenarios is a fundamentally
hard problem to solve, mainly because of the wide variability of human postures.
Furthermore, small object size, occlusion, bad weather conditions, sudden illu-
mination changes, camouflage problems, and the need for real-time applications,
are common challenges one has to deal with.

As mentioned by Gavrila in its review paper [1], human detection methods
can be divided in three categories namely (1) the 3D approaches, (2) the 2D ap-
proaches with explicit shape model, and (3) the 2D approaches without explicit
shape model. Methods in (1) and (2) look forward at recovering 3D/2D body
parts and posture on pre-localized blobs [2] often resulting in a stick-figure repre-
sentation. While these methods do not require a training phase, they have strong
assumptions on the content of the scene and often require the use of non-trivial
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mathematical models. On the other hand, methods in (3) detect people without
explicitly locating their body parts. In fact, based on a training database, these
methods extract features (e.g. edges, gradients, shape, wavelet coefficients, etc.)
and, following a clustering step (e.g. SVM, Adaboost, etc.) separate human from
non-human shapes [3], [4].

Most of the methods presented above were meant to work on daylight cameras
(or visible). However, as their cost keep decreasing, far-infrared (FIR) cameras
(often called IR or thermic cameras) gain more interest for human detection [5],
[6], [7] as they provide numerous advantages (night vision, relatively uniform
backgrounds, etc.). However, as opposed to daylight cameras, FIR cameras fail
at detecting humans in hot summer days and often suffer from floor reflection.
Note that a study on human detection in FIR and daylight images can be found
in [8].

As false detections in FIR and daylight images are due to different causes,
it can be interesting to make them collaborate in a stereovision framework so
that the number of false detections inherent to their individual use is reduced.
To our knowledge, very few papers have addressed that issue before, the closest
one being by Bertozzi et al. [9]. However, their method uses two pairs of stereo-
vision systems from which they match disparity maps. In our method, only two
cameras are required and the detection is based on a machine learning method
and a fusion step. Each video stream of the stereovision system is independently
processed based on Viola et al.’s method [4] before their results are merged
together. The paper is organized as follows: we first present the used stereovi-
sion system and the implemented human detection system. Performances and
possible applications of the system are finally presented.

2 THE STEREOVISION SYSTEM

The objective of our method is to combine information from a FIR and a daylight
camera mounted side by side. But prior to do so, lets first review some basic
stereovision notions. It is well known that, given the epipolar geometry of a
stereovision system, each point observed in one image corresponds to an epipolar
line in the other image. Such correspondance is typically determined via the so-
called fundamental matrix [15]. The fundamental matrix F is a 3 × 3 matrix
satisfying the relation x′T

A FxA = 0 in which A is a point in the world reference
frame imaged as xA in the first view and x′

A in the second. A simple projection
lA = FxA permits to determine the corresponding epipolar line lA of xA in
the second image. This point-to-line relation stipulates that points lying on the
epipolar line lA in camera 2 are the only ones that can match xA in camera 1.

Many methods have been proposed to estimate the fundamental matrix be-
tween two cameras, the most commonly implemented being the 8-points algo-
rithm [15]. This being said, the fundamental matrix can also be obtained by
combining the extrinsic and calibration matrices of each camera:

F = [P ′C]xP
′P+ (1)
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Fig. 1. Camera calibration setup: images acquired by the daylight and FIR cameras.

where P and P’ are the projection matrices of the first and second camera, P+ is
the pseudo-inverse of P and C is the camera center. By their very nature, P and
P ′ are obtained by multiplying together the calibration and extrinsic matrices
(see chap 9 of [15] for more details). The reason for using the calibration and
extrinsic matrices in our setup is two fold: estimate F following Eq. 1 to enforce
the human detection procedure and 2) estimate the 3D position of each detected
person (localization examples will be presented in section 4).

The intrinsic and extrinsic parameters are always estimated following a cali-
bration procedure involving a pattern with known dimensions [11]. In our method,
the picture of a calibration pattern is taken simultaneously by both cameras.
Note that by its very nature, the FIR camera needs an atypical pattern with
“warm” and “cold” areas (see Fig.1). This is achieved with a heat lamp mounted
atop the calibration pattern so its dark squares are heated up.

3 HUMAN DETECTION METHODS

As mentioned previously, images from the FIR and daylight cameras are first
independently processed. Then, each detection (bounding box) in one camera is
matched (or confirmed) with the detections in the other camera. In this section,
we describe how the human detection method works on still images and how
results from both cameras are fused together.

3.1 Detection on FIR and Daylight images

In order to detect humans in FIR and daylight images, we use Viola et al.’s
method [4]. Here, 14 Haar-like filters are used and, as shown in Fig 2, those
filters are made of two or three black and white rectangles. The feature values
xi are computed with a weighted sum of pixels of each component.

Each feature xi is then fed to a simple one-threshold weak classifier fi :

fi =

{

+1 if xi ≥ τi
−1 if xi < τi

(2)

where +1 corresponds to a human shape and −1 to a non-human shape. The
threshold τi corresponds to the optimal threshold that minimizes the misclassifi-
cation error of the weak classifier fi estimated during the training stage. Then, a
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Fig. 2. Haar-like filters used by our human detection method.

more robust classifier is built with several weak classifiers trained with a boosting
method [12]:

Fj = sign(c1f1 + c2f2 + . . .+ cnfn). (3)

Then, a cascade of boosted classifiers is built. Fj correspond to the boosted
classifier of the jth stage of the cascade. Each stage can reject or accept the input
window. Whenever an input window passes through every stages, the algorithm
labels it as a human shape. Note that humans are detected in a sliding window
framework [4].

3.2 Detection with the stereovision system

As mentioned in section 2, knowing the epipolar geometry of the sterovision
system, one can link a point in one image to its corresponding epipolar line in
the second image. In our method, this correspondence is used to confirm every
human shape detected in one camera with those detected in the other camera.

Lets consider that M human shapes have been detected in the daylight im-
age and N have been detected in the FIR image. As shown in Fig.3, lets also
consider that Avis

i and Bvis
i are the top-left and bottom-right points of the ith

human shape in the daylight image (represented by a bounding box) and dAvis
i

and dBvis
i , their respective epipolar lines in the FIR image obtained with the

fundamental matrix. In our method, a detected shape i ∈ [1,M ] in the daylight
image is kept if and only if there is a shape j ∈ [1, N ] such that the distance
between AFIR

j and dAvis
i and between BFIR

j and dBvis
i is smaller than a pre-

defined threshold (obtained empirically). Whenever that test fails, the detected
shape is deleted. In Fig. 3, two human shapes have been detected in the daylight
image and only one in the FIR image. In this example, only shape 1 has been
kept.

Of course, this algorithm is used both ways such that the shapes in the
daylight image are confirmed with those in the FIR image and vice versa.
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Fig. 3. Example of decision fusion based on epipolar geometry.

4 EXPERIMENTAL RESULTS

4.1 Datasets

Since a classifier is used in each spectrum, two learning datasets are required
(cf. examples in Fig.4). The positive datasets are made of 1208 daylight images
(from [3]) and 1175 FIR images (from the OTCBVS dataset [13, 14] and our
manually annotated images). Both negative learning datasets are made of 3415
gray-level images (FIR and Daylight).

Fig. 4. Example of FIR and daylight images from the learning dataset.

The human detection rate with FIR and daylight cameras have been evalu-
ated with several real-life videos taken in three different areas. That test dataset
is made of 640 daylight and FIR images randomly extracted from videos and
manually annotated.

4.2 Results

In order to gauge performance, Precision/Recall curves are used :

Precision =
#TP

#TP +#FP
, Recall =

#TP

#TP +#FN
, (4)

where #TP , #FP and #FN stands for the number of true positives, false
positives and false negatives respectively. We present in Fig. 5 results obtained
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using the fundamental matrix to perform the point-to-line correspondance. The
FIR and Daylight curves show results obtained after processing the daylight and
FIR images outside our stereovision setup. As one might expect, results are far
more precise with the FIR images. This is because FIR images have more uniform
backgrounds and their human shape vs. background contrast is much stronger
than in daylight images. The Improved daylight and Improved FIR curves show
results obtained with the fusion process described in 3.2. As can be seen, our
method clearly improves human detection performances in both spectrums.

Fig. 5. Precision/Recall curves for Daylight and FIR images processed with and with-
out our stereovision setup.

Detection examples are presented in Fig. 6. On the first row, one can see
detections in a FIR image and a daylight image with false positives. On the
second row, detections have been fused with our method and false positives (the
reflection on the floor on the left and the chair on the right) have been deleted.
Note that our fusion procedure is very fast since it only requires two projections
per detection.

As explained in section 2, by using the extrinsec and intrinsec parameters of
the calibrated scameras, it is possible to locate humans in 3D and so to verify
their activities. We present in Fig. 7 two localization results. In the first example,
the rectangle represents the ground truth location and the crosses correspond
to the estimated location. The person coordinates are obtained retrieving the
coordinates of the detection centroid in both spectrum and then calculating
its 3D coordinates using stereo-triangulation. In the second example, we show
the estimated path of a person drawn into the floor map. In this figure, the
individual enters from the right door, stays for a while near the shelf, and then
leaves through the same door. We can note that this information is sufficient for
home care applications where a more precise location would not be useful.
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Fig. 6. First row: detection examples. Second row: detection examples with the stere-
ovision system.

Fig. 7. Localisation results (the X and Z axis are in meters).

5 CONCLUSION

In this paper, we present a stereovision-based human detection system which
uses a far-infrared and daylight camera. Since the FIR and a daylight cameras
suffer from different limitations, our method combines both cameras in order
to reduce the number of false positives inherent to their individual use. In our
method, human positions are first detected in each camera independently with
a cascade of boosted classifiers. Then, the detected shapes of each spectrum are
fused in order to remove false positives. Results have been quantitatively shown
with an evaluation study based on various manually annotated real-life videos.
We have shown that our system distinctively outperforms the classic human
detection.

The aim of this work is to decrease the number of false detections taking into
account information given by our stereovision system. In the future, we plan to
study benefits of decreasing the number of missed detections taking into account
temporal information, for example integrating this human detection stereovision
system in a simple tracking framework. Then, we will consider a fusion scheme



8

combining detection results of both cameras in the world reference frame instead
of doing fusion in the images reference frames. So we will obtain one single
detection result at each time for the whole system.
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