SpikeAnts, a spiking neuron network modelling the emergence of organization in a complex system

Sylvain Chevallier 1, * Hélène Paugam-Moisy 2 Michèle Sebag 1, 3
* Auteur correspondant
1 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
2 DM2L - Data Mining and Machine Learning
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Abstract : Many complex systems, ranging from neural cell assemblies to insect societies, involve and rely on some division of labor. How to enforce such a division in a decentralized and distributed way, is tackled in this paper, using a spiking neuron network architecture. Specifically, a spatio-temporal model called SpikeAnts is shown to enforce the emergence of synchronized activities in an ant colony. Each ant is modelled from two spiking neurons; the ant colony is a sparsely connected spiking neuron network. Each ant makes its decision (among foraging, sleeping and self-grooming) from the competition between its two neurons, after the signals received from its neighbor ants. Interestingly, three types of temporal patterns emerge in the ant colony: asynchronous, synchronous, and synchronous periodic foraging activities − similar to the actual behavior of some living ant colonies. A phase diagram of the emergent activity patterns with respect to two control parameters, respectively accounting for ant sociability and receptivity, is presented and discussed.
Type de document :
Communication dans un congrès
J. Lafferty and C. K. I. Williams and J. Shawe-Taylor and R.S. Zemel and A. Culott. NIPS'2010, Dec 2010, Vancouver, Canada. pp.379--387, 2010, Advances in Neural Information Processing Systems 23
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00545669
Contributeur : Hélène Paugam-Moisy <>
Soumis le : samedi 11 décembre 2010 - 04:05:46
Dernière modification le : mercredi 31 octobre 2018 - 12:24:25
Document(s) archivé(s) le : lundi 5 novembre 2012 - 13:16:31

Fichier

NIPS2010_1134.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : inria-00545669, version 1

Citation

Sylvain Chevallier, Hélène Paugam-Moisy, Michèle Sebag. SpikeAnts, a spiking neuron network modelling the emergence of organization in a complex system. J. Lafferty and C. K. I. Williams and J. Shawe-Taylor and R.S. Zemel and A. Culott. NIPS'2010, Dec 2010, Vancouver, Canada. pp.379--387, 2010, Advances in Neural Information Processing Systems 23. 〈inria-00545669〉

Partager

Métriques

Consultations de la notice

731

Téléchargements de fichiers

552