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Abstract—We propose a game theoretical model for fuzz
testing, consisting in generating unexpected input to search
for software vulnerabilities. As of today, no performance
guarantees or assessment frameworks for fuzzing exist.
Our paper addresses these issues and describes a simple
model that can be used to assess and identify optimal
fuzzing strategies, by leveraging game theory. In this
context, payoff functions are obtained using a tainted data
analysis and instrumentation of a target application to
assess the impact of different fuzzing strategies.

I. INTRODUCTION

Fuzz testing has emerged as one major approach to
rapidly identify vulnerabilities in applications and em-
bedded devices. The idea behind fuzz testing is to inject
unexpected input into an application with the objective
to find particular input that triggers a vulnerability. The
potential input space can be huge, assuming one appli-
cation that accepts one single input represented by one
byte, we should fuzz test all the 256 possible different
values. Testing has to be done and can become much
more complicated if we consider additional constraints -
like signed/unsigned integers and potential conversions.
When the input space gets larger, the curse of dimension-
ality becomes even worse. One major research challenge
for fuzz testing is to chose efficient search strategies
including the development of metrics to quantify the
efficiency of a fuzz test.

In this paper, we address a game theoretical model to
determine the best strategy to be used, by investigating
on the efficiency of several search strategies. This is done
with respect to metrics that take into account the impact
of a fuzz test on a target application. We measure this
impact using a system level instrumentation that lever-
ages tainted data analysis and information theoretical
concepts. The paper is structured as follows: Section II
gives an overview on our instrumentation framework.
Section III describes the game models used to represent

a fuzz test and shows the concrete instantiation of these
models within a fuzzing framework. Experimental results
are shown in Section IV and relevant related work given
in Section V. We conclude the paper and future works
are discussed in Section VI.

II. INSTRUMENTATION

We have implemented two tracing environments. The
first one is specific to Linux implementations, while
the second is targeted to MS-Windows architectures. In
both cases, we were interested in obtaining the memory
operations involved with fuzz-test generated data. We
relied on tracking tainted data [5], where one considers
all data coming from the network as tainted and then
sees how the “taintedness” spreads as that data is pro-
cessed. Approaches based on dynamic instrumentation
techniques generate a considerable overhead [11], so
we have developed a library-call tracing mechanism and
concentrate on memory copy functions like strcpy or
memcpy . The major issue we had on both architectures
relates to the tracing of multi threaded applications.
When tracing and debugging an application, breakpoints
are set to control the flow. Once hit, breakpoints have to
be disabled so that the program can complete execution.
One option is to replace the breakpoint with the original
instruction. This is tricky, because the breakpoints have
to be reset so that the next call to the library function
is detected as well. In a multi-threaded program, where
several threads might be executing the same code, it’s
difficult to keep them from colliding with each other, and
making them hit the breakpoints in the correct order.

The previous method is not thread-safe, so we defined
and used another option, which is to emulate the call

instruction. Two breakpoints remain enabled all the time.
The first breakpoint is set before the call, while the
second is set just on the return. When a thread first
hits the entry breakpoint, it is stopped. The tracer then
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calculates the offset of the call instruction and proceeds
to modify the thread’s registers and stack appropriately.
The thread is then allowed to continue, until it hits the
exit breakpoint, and the result of the call is recorded. This
way, we don’t have to unset any breakpoints, and thus
more than one thread can safely run the breakpointed
code. To find the starting point of each function, we
make use of backtraces, as well as the usage of tainted
data.

A. Linux Instrumentation

We implemented a ptrace -based tracing mechanism.
For each system call, the memory area used as source,
and the memory area used as destination was recorded.
Tainted data gets propagated to destinations, if a memory
copy/transfer function is applied. We are able to trace
programs that the regular GNU/Linux tracers (strace
, ltrace ) could not deal with because of the multi-
threading problem. The interaction between thread cre-
ation and ptrace is not simple, and there are several
corner cases in which the behavior of a newly created
thread does not follow the ptrace specification.

We set two breakpoints in each call, one entry break-
point and one exit breakpoint. This allows to read the
arguments before the call, and get the return value
after the call (as done with system calls). A software
breakpoint is set by replacing the bytes at the break
address with an int 3 assembler instruction, which has
opcode 0xcc . Generating a software interrupt, which the
OS converts to a trap signal to be delivered to the traced
program. This signals get rerouted to the tracer, which
interprets it as a breakpoint without reinjecting it to the
traced program.

B. Windows tracing

For our Windows tracing, we planned to use PyDBG
[13] which is a Python Windows debugger, a core com-
ponent in the PaiMei reverse engineering framework[12].
It allows us to create our own callback functions, to
define what should be executed when a debugging event
occurs. This is done by setting software breakpoints
where the first byte of the operation code of the normal
instruction is replaced by the interruption instruction CC.
When the CPU hits this interruption code it halts and the
debugger catches the interruption. The original opcode
is stored in a breakpoint list. During an interruption the
address of the instruction is looked up in this breakpoint
list and the original code is written back to the address.
The instruction gets executed and after the execution,
while using persistent breakpoints, the breakpoint gets

restored. In [13] a Python script for locating and track-
ing predefined ”dangerous” function calls is presented.
While executing this script, we encountered from time
to time a multi-thread error. From our understanding,
the problem lies in the software breakpoints as already
mentioned in beginning of this section. Therefore, we
could not rely on PyDBG as it is not thread-safe and
we have directly used the Windows Debugging API.
To deal with the multithreading issue, we do not write
back the original operation code to the address of the
instruction. Instead, we leave the interruption code CC all
the time and simulate the registry execution. Similarly to
the Linux implementation, we had to parse the binary file
format (Petal file format used by the linker and loaders
on Windows architectures), we had to detect the imported
dynamic loaded libraries (DLL) and exported functions.
One of the main issues that we had to solve consisted in
learning which library is loaded in the case of multiple
same named files on the system.

III. GAME THEORY

Game Theory provides us with the necessary math-
ematical techniques for analyzing strategic situations.
Such a situation is composed of two or more players, all
of them have their own strategies and motivations. By
playing a specified strategy a player receives a reward,
depending on the strategy chosen by other players.

A. Fuzzing Game Models

The Nash Equilibrium [9] is a solution concept of
Game Theory, specifying optimal strategic choices for
all players by reason that none of the players has any
motivation to diverge from the Nash equilibrium because
one player can not gain greater payoffs by choosing
another strategy when all the other players choose the
strategies given by the profile. To calculate the Nash
equilibrium we need N as a set of players, Ai as a finite
strategy set, and Ri as a payoff function.

• N → set of n players
• Ai → finite strategy set (aiεAi)
• Ri : A → R is a payoff function, where A = A1x...xAn

For our fuzzing model we have two different concepts
as payoff function. We want to see how heterogenous our
fuzzing framework is. Heterogeneity can be expressed by
the entropy as it represents the distribution of the func-
tions over all available functions called by injecting one
message. If we assume to have a total of m backtraces,
then each message can be represented as a vector where
qi is the number of different values that were exercised
on the backtrace i.
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We define the entropy of a message qt to be: H(qt) =
−
∑m

i=1 rt,ilog(rt,i) where: rt,i =
qt,i∑m
i=1 qt,i

In this case
the index t counts the inputs, and the subscript i stands
for the backtrace i.

In order to have an overview of how well a fuzzer
works, we take the best performance of the entropy
max(H(qt)) and we make this value dependent on
the number of messages n sent. We do this temporal
normalization to account for the generated number of
fuzz tests. Good fuzz strategies that perform well over
time will have high performance values. However, a
fuzzing strategy that generates some high values in the
early phases, but fail to sustain the performance will be
penalized. max(H(qt))

log t , 2 ≤ t ≤ n
We can use power as payoff function. The power

defines the amount of functions called by one message,
without considering if it is x-time the same function or
1-time x different functions. The instantaneous power of
an input q is defined as: Power(qt) =

√∑m
i=1 q

2
t,i Again

we maximize the power and make it dependent on the
number of messages sent. max(Power(qt))

log t , 2 ≤ t ≤ n
After having defined the payoff functions, we can use

the Nash equilibrium to calculate the optimal strategy. A
Nash equilibrium can either have a pure strategy, which
provides a complete definition of how a player will play
a game, or a mixed strategy, that is a randomization over
a set of pure strategies. A mixed strategy set for player i
is the set of probability distributions over the action set
Ai described by the simplex operator 4.

4(Ai) = {qi : Ai → [0, 1] |
∑
i=0

qi(ai) = 1} ≡ Qi

for mixed strategies: Q =
∏
iQi and q =

(qi, q−i)εQ Expected payoffs to player i from strat-
egy profile q in mixed strategies are: Ea∼q[Ri(a)] =∑

aεA q(a)Ri(a) where q(a) =
∏N
j=1 qj(aj)

The essential meaning of a mixed strategy is that
randomized actions can achieve a better average payoff,
and the equilibrium in mixed strategies is associated
with the probability distribution over the set of actions,
where this equilibrium can be achieved. In a mixed
strategy, actions are performed randomly according to
the probability distribution function.

In our model, there are two players: the first player is
the fuzzing tool, the second player is Nature. We will de-
scribe several fuzzing strategies. Nature’s action consists
in selecting a given implementation. The strategy model
is natural for the fuzzing tool, but a thorough discussion
for Nature’s choices is needed. In our work, we focus
more on driving a fuzzing process. We assume that in

most cases, we will not know the origin of the tested
implementation, but that either this one has been built
on top of existing ones (and thus share some common
features) or that developers will reuse existing code for
the device under test. On a more general level, this takes
also into account that software writers will follow a
similar programming paradigm (and make similar errors)
when having to implement a given functionality. Our
model is justified if we assume that developers will either
perform fuzz testing on their software, or try to follow
security guidelines and safe coding approaches. In most
game theoretical models, the analysis is interested in
capturing and assessing the equilibrium points and thus
identify for each player, the best strategy to follow. We
aim more at identifying the best strategy for the fuzzing
tool and are mildly interested in assessing the game from
a device perspective. The payoff is defined in terms of
fuzzing entropy and respectively fuzzing power. That
means, that we have two different zero sum games. In the
first game, the fuzzing tool tries to maximize the average
power, while in the second game, the objective consists
in maximizing the entropy. We aim here at capturing
both the fact that high entropies correspond to a large
number of functions that are called as well as the fact
that high power values reflect many test values used over
the backtraces. We have identified several strategies that
leverage the existing link between the tainted data graph
and the parse tree of the input data. These strategies are
based on applying mutations at individual subtrees of an
initial parse tree. We have identified a set of different
mutation actions, some are context dependent - they can
be applied to specific node types. Some mutations are:

• Replacing a subtree for typical invalid bytes (e.g. %x00,
%x07,%x1F, %xFF )

• Replacing a subtree for anomalous lengthly strings (e.g.
%s hundreds of times)

• Regenerate the subtree using its syntax grammar but
choosing random reduction at each time.

• Regenerate the subtree using a random rule chosen from
the syntax grammar.

The strategies that can be applied by KiF are related to
the selection of the node (in the parse tree) on which
mutation is performed. Each node in the parse tree can
be associated with a rank. This rank is simply the number
of functions that are called having an argument tainted
by this node. Fuzzing is done as follows:
∗ Step 1: An initial input data INPUT is generated.
∗ Step 2: A list of nodes NODELIST is constructed, with all
nodes from the parse tree corresponding to input data INPUT.
∗ Step3: One node is selected from the list NODELIST. A
mutation is applied to the message that contains this node. A
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new input data NEWINPUT is obtained.
∗ Step4: The new input NEWINPUT is run against the
application.
∗ Step5: This new input is parsed. The nodes from its corre-
sponding parse tree are added to the list NODELIST.
∗ Step6: The list NODELIST is updated and the selected node
is removed.
∗ Step7: GoTo Step3.
This generic fuzzing algorithm is highly dependent on
the selection process done in STEP 3. We have extracted
the following selection strategies.
∗ Strategy I.a Greedy: At each step, we select the node having
the highest rank. A mutation is applied to that node.
∗ Strategy I.b Greedy with memory: At each time step, a
mutation is applied to the node having the highest rank. This
node is afterwards removed from the list NODELIST in order
to avoid the pitfalls of a local maxima.
∗ Strategy II.a Probabilistic: A mutation is applied to a node
that is selected probabilistically. The selection probability is
proportional to the ranks.
∗ Strategy II.b Probabilistic with memory: A mutation is
applied to a node that is selected probabilistically like in the
previous case. The node is afterwards removed from the list
NODELIST.
∗ Strategy III Expert user the second technique bases mu-
tations on templates written by an expert user in which the
fields to be modified are defined.
∗ Strategy IV Exploiting function calls : the last technique
identifies all the function calls used for each of the fields of the
message and generates different type of mutation depending
on the nature of the function call.

IV. EXPERIMENTAL RESULTS

For this work, we considered two different SIP-phone
applications, Linphone and SJphone. All the tests were
done under Ubuntu 9.04. Our fuzzing framework KiF1

is open source and publicly available. KiF is a mutation
based fuzzer implemented in Python. It is capable of
automatically building a protocol fuzzer using the un-
derlying ABNF grammar specifications and considering
fuzzing operations to be defined on associated subtrees.

As already mentioned in Section III we have different
strategies, and we consider to have two different players,
on one side the fuzzing framework and on the other side
the system. For every player and for every strategy we
consider two different payoff concepts, the entropy and
the power. In this section, we will show the experimental
values and the results for calculating the Nash equilib-
rium. We calculate the Nash equilibrium for two different
game models - having the entropy as payoff function,

1http://kif.gforge.inria.fr/

having the power as payoff function. In both cases have
a zero-sum game. The Nash equilibrium is calculated
with the help of the software Gambit [7]. The payoff for
a strategy and a set of messages is computed by using the
payoff for the last message. According to the definition
of the payoff, this latter takes into account the maximum
value discounted over the number of messages.

A. Entropy

In Figure 1(a) the behavior of two different payoff
functions is presented, it shows that strategy II.b is under-
performing over the first 22 input items, but manages to
trigger an input item that significantly drives the payoff
in higher value ranges. In Table I (a) lists the payoffs for
the different strategies. Figure 2(a) shows the probability
distribution for the entropy for the strategy I.b and
respectively II.b. Strategy II.b is generating more input
items having larger entropy values. The resulting Nash
equilibrium consists of a pure strategy, where the optimal
strategy II.b should be used for the fuzzing framework.
In terms of implementation, SJphone performs best.

B. Power

Figure 1(b) shows a payoff function behavior, where
one strategy uniformly outperforms the other one. When
considering the power as a payoff function, the results
are summarized in Table I (b). The resulting Nash equi-
librium consists of a mixed strategy, where the strategy
II.b should be chosen with a probability of 0.1 and
the strategy IV should be selected with a probability
of 0.9. Figure 2(b) shows the probability distribution
for the power for the strategy IV and the distribution
for a combined strategy following the resulting mixed
Nash equilibrium. The combined strategy uses the strat-
egy IV with a probability of 0.9 and the strategy II.b
with a probability 0.1. We have shown in that graph
both distributions in order to highlight the advantage
brought by combining both strategies. For instance, large
power values are obtained by the mixed strategy. In
tab:payoff(c) the resulting payoff functions are shown.

A natural question is related to the interest of having
two different game models. While considering a payoff
function that leverages the entropy, we look for strategies
that explore different backtraces, it misses to capture the
different values that are tested on each backtrace. Using a
payoff that is based on the power, will allow to capture
the different values that a backtrace is tested for. We
have considered a global payoff function computed by
the addition of the two normalized power and entropy
payoffs, but we think that having two different game
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(a) maximized Entropy over log n (b) maximized Power over log n
Fig. 1. Payoff functions

(a) Entropy distribution (b) Power distribution
Fig. 2. Probability distribution

models allows a finer grained control over the fuzz
testing. From a practical perspective, a fuzz test should
be performed in two major phase. In the first phase, the
fuzz tool should aim at achieving a higher entropy and
thus play the entropy game. At the end of this phase,
a comprehensive set of backtraces should be obtained.
In a follow-up phase, the power game should be played.
In this game, the fuzz test will aim at maximizing the
number of tests performed for each backtrace.

V. RELATED WORK

A lot of work has already been done in the field of
fuzzing. Hence, it is clear that many different approaches
for this topic exist. One branch of work for fuzzing
consists of using symbolic execution [4], [8], where input
variables are made symbolic, and a set of constraints
on these variables are assembled along an execution
path. After that, a constraint solver generates test in-

puts satisfying the symbolic constraints. Even though,
symbolic execution seems to be very effective, it also
provides some drawbacks. The main drawback is that
the source code has to be known. Another inconvenience
is the execution duration. For source code of restricted
size execution time is suitable, but for large embedded
systems symbolic execution would consume to much
time or even never finish. Another approach for fuzzing
is tracing tainted data [14], [10], to follow the behavior
of an application. A big advantage of taint tracing in
comparison to symbolic execution is that we do not need
to have knowledge of the source code, only the binaries
are needed.

In this work, we use game theory to get the optimal
fuzzing strategies. Previous work for applying game the-
ory to a testing framework is described in [6] and in [3],
where testing is considered as a game, in which the tester
plays against the implementation under test. Two states,
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TABLE I
PAYOFF FUNCTIONS

(a) Entropy
Linphone SJphone

Strategy I.a 1,23 0,76
Strategy I.b 0,98 0,82
Strategy II.a 1,33 0,74
Strategy II.b 1,07 0,84
Strategy III 0,94 0,72
Strategy IV 0,82 0,69

(b) Power
Linphone SJphone

Strategy I.a 1,85 1,10
Strategy I.b 2,25 0,69
Strategy II.a 2,03 0,86
Strategy II.b 2,56 0,72
Strategy III 1,26 1,47
Strategy IV 1,41 1,01

(c) Combined
Linphone SJphone

Strategy Ia 1,55 0,79
Strategy Ib 1,57 0,61
Strategy IIa 1,72 0,65
Strategy IIb 1,81 0,65
Strategy III 1,02 0,97
Strategy IV 1,00 0,69

active and passive, as well as two methods, controllable
and observable actions, are assessed. The tester has a
model for the behavior of the implementation under test.
Reachability games are defined, where optimal strategies
minimize the cost, knowing that every action is associ-
ated to a cost. Our previous work consisting fuzzing is
presented in [1]. The first work where we approached a
problem using a game-theoretical framework is described
in [2].

VI. CONCLUSION & FUTURE WORK

In this paper, we presented a game theoretical model
for analyzing different fuzzing mechanisms. Therefore,
we assessed the efficiency of different fuzzing strategies
with respect to the impact, based on the own-build
instrumentation framework for tracing tainted data on
a target application. The tracing is done using a tree-
based representation of the parsing of tainted data, as
well as the relevant code flow graph. For quantifying
the impact we utilize the entropy metric, indicating how
many different backtraces are tested, and the power
metric, reflecting the different tested values for one or
several input data items. These metrics are used for
computing the payoff functions in our game theoretical
model for the computation of the best fuzzing strategies.
We deployed different fuzzing strategies against target
applications. Following our experimental results, we de-
duce that the best strategies for fuzzing are a probabilistic
mutation with memory and exploiting function calls.

In future work we will extend the current game to
several other strategies and implementations. We plan
to define payoff functions that take into account the
underlying probabilistic distribution of vulnerabilities.
For this purpose, we will need to make the link between
the exploration of backtraces and the probability to
discover a new vulnerability. Related to this work, we
also plan to take into consideration the case of repeated
games.
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