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Abstract

Software systems, containing security vulnerabilities, continue to be created and released to consumers. We need to

adopt improved software engineering practices to reduce the security vulnerabilities in modern systems. These practices

should begin with stated security policies and end with systems which are quantitatively, not just qualitatively, more secure.

Currently, contracts have been proposed for reliability and formal verification; yet, their use in security is limited. In this

work, we propose a contract-based security assertion monitoring framework (CB SAMF) that is intended to reduce the

number of security vulnerabilities that are exploitable, spanning multiple software layers, to be used in an enhanced systems

development life cycle (SDLC).

1. Introduction

Security has always been a hybrid of art and science as throughout history humans have attempted to protect valuable

assets. Our modern information driven society has placed an increased value on data and the transfer and storage of infor-

mation. More recently, in the last decade, industry and academia have pushed for more secure solutions for information

technology assets and facilities as we have equally seen a rise in malicious hacking and security threats.

Many different approaches have been presented recently toward solving the problem of weak security; however, we

obviously have not yet found a solution since security related attacks continue to persist.

Gary McGraw identifies three trends that have a large influence on the growth and evolution of the software security

problem [13]. First, connectivity to the Internet has increased the number of attack vectors and the ease of which an attack

can be made. Second, extensibility of software is allowing systems to grow in an incremental fashion which potentially adds

new security vulnerabilities to existing systems. Lastly, the extensive increase of software complexity in modern information

systems leads us to a greater number of vulnerabilities. These three trends will continue and lead us to one, hopefully obvious,

conclusion. Security and dependability vulnerabilities must be resolved during design and testing before being released to

the general public.

Recently, we have observed a promising shift in industry and academia to reduce security vulnerabilities during the

software development life cycle (SDLC), rather than attempt to patch the problem after software is shipped [4, 8, 9, 13]. If

we can reduce security defects early in the SDLC we reduce not only the number of vulnerabilities but also the risk of attack.

While there are areas being researched which target specific areas of security during the systems development life cycle

(SDLC), a methodology for testing security across multiple software layers is still lacking. We propose a contract-based

security assertion monitoring framework (CB SAMF) that is intended to reduce the number of security vulnerabilities that

are exploitable, spanning multiple software layers, to be used in an enhanced SDLC.
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The following section will review SDLC and how it relates to security, Section 3 discusses modeling techniques related

to security, Section 4 introduces our proposed approach, Section 5 discusses our contract model, Section 6 expands on the

benefits of contracts for security, and Section 7 provides our concluding remarks.

2 SDLC and Security

Security policy documents are often used by organizations to specify the laws, rules, practices, and principles that govern

how to manage, protect, and transfer sensitive information. These policy documents represent a corner stone from which

software requirements can be built. Requirements in turn drive most modern software/system development life cycles. During

the SDLC there are many opportunities to reduce security vulnerabilities.

A SDLC is typically an iterative and recursive process which clearly identifies the stages that should lead a successful

software project through its entire development life cycle. We are interested with integrating security into every phase of

the SDLC. In fact, several tools and methodologies have already begun to integrate themselves accordingly. We believe,

however, that there is a great deal of work remaining in this area.

The SDLC is still lacking models, methods, and tools that assist in creating more secure and reliable software products.

The audience for this work includes individuals and teams fulfilling the following roles during a SDLC: analyst, architect,

developer, tester, maintainer, user, and support. Essentially, all of the development-related stake holders in the SDLC.

Recently Serpanos and Henkel asserted that a unified approach to dependability and security assessment will let architects

and designers deal with issues in embedded computing platforms [18]. The observation that security and dependability are

interrelated is an important one. Serpanos and Henkel differentiate the two based on security flaws being problems that are

exploited on purpose, while flaws which are exploited by accident would be qualified as dependability problems. It would be

interesting to have a framework that can support both dependability and security. Thus, we have kept dependability in mind

while designing our framework; however, we focus on security vulnerability monitoring since it is our primary concern.

The goal of our research is to create new methods, models, and tools that integrate into the phases of the SDLC to create

more secure software. We cannot always depend on the consumer to have sufficient protection mechanisms in place on their

systems.1 We need to take a more active role during development to ensure software ships fewer security vulnerabilities.

A modified form of the SDLC is depicted in Figure 1 showing how various security activities can be integrated into the

iterative and recursive SDLC. Existing SDLC hybrids integrate some of the steps identified in Figure 1 such as those put

forward by CERT, Microsoft’s Michael Howard and Steve Lipner [9], and others. Nothing has been identified to date that

guarantees security in software systems; however, our aim is to help reduce the risk associated with security vulnerabilities.

3 Modeling

For many years software developers have been using methodologies meant to simplify and standardize the SDLC. One

notation that has met with a great deal of success, in several methodologies, is the Unified Modeling Language(UML). UML

does not handle all analysis, design, and implementation requirements for all projects. For example, UML is a natural fit

for most object oriented languages; however, not all projects demand an object oriented approach. Projects that require high

performance, and a low memory footprint, are typically implemented in non-object oriented languages such as C.

Several diagrams that are used in UML are useful in the broader spectrum of all software design projects. For instance, use

case diagrams are very useful in identifying the main functions of a software artifact. In fact, use cases provide the earliest

opportunity to identify security risk in a new SDLC for a given application (other than general risk analysis).

Recently, a more modern addition to use cases, called misuse cases, has been created. Misuse cases, also known as abuse

cases, can be used during requirements analysis [1, 7, 17] leading to a more complete understanding of potential security

risks that need to be mitigated. Hope, McGraw, and Antón also mention that misuse cases can be over-used and can lead to

identification of a fairly large set of misuse cases that may have little impact on security [7]. With the knowledge of subject

matter experts and security analysts these misuse cases need to be prioritized to balance risk and cost. During development

many risks can be completely mitigated based on the early warnings of the misuse cases. We must recognize, however, that

the probability of a particular misuse may not be completely understood and that some risks may not be identified until later

in the SDLC. It would be useful to have a mechanism that can identify these security threats in the code and allow for a

monitoring system to be implemented to capture and trace any possible misuse.2

1Consumers often employ intrusion detection systems, firewalls, and other products to help reduce security risks.
2An example of such an approach would be to use the output of static analysis security tools as the basis of misuse case creation.
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Figure 1. Security activities integrated into the typical waterfall SDLC. Regular SDLC steps are
numbered and linked in diagonal. Security activities are shown horizontally.

Misuse case diagrams can be used to expose a wide variety of threats including privacy violation, denial of service,

privilege escalation, identity or information theft, and network based attacks. As with use case diagrams, misuse case

diagrams are continually reviewed and revised throughout the SDLC. The components that make up a misuse case are

documented already in [1, 7, 17].

Once misuse cases have been identified we can then proceed with the identification of security violation scenarios. One

technique for identification of these violation scenarios is the use of an attack tree. Each depth first traversal of an attack tree

will identify possible violation scenarios [15].

4 Proposed Approach

Now that we have discussed some of the methods for identifying potential vulnerabilities, we propose a model for mon-

itoring applications for security violations during the middle phases of the SDLC which also allows for the collection of

forensic data based on the prioritized security risks identified earlier in the SDLC.

This monitoring framework can be integrated early during SDLC. In Figure 2, we depict how the security policy docu-

ment is used as part of the processes identifying the security requirements. Security requirements are then used during the

identification of misuse cases (along with normal use cases) that are intended to identify potential vulnerabilities. Once prior-

itized, these misuse cases can then drive the creation of attack trees which further identify intrusion scenarios. The intrusion

scenarios can then be used during design and testing to create sequence diagrams and associated test cases. Finally, during

implementation, sequence diagrams can be generated which identify security vulnerabilities (for example, system/function

calls that have known vulnerabilities). Once a vulnerability has been identified, a ”contract” can be created using assertions

and additional rules to guard against, or verify, a given vulnerability. These contracts can then in turn be used to generate

security probes that are used during execution to track forensic data in our monitoring framework (CB SAMF).

Consideration should be given as to whether or not output formats from existing tools, such as static analysis tools, may

be translated into a format that may be used by the assertion monitoring framework.
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Figure 2. System flow diagram leading to the use of contracts and monitoring probes.

Ultimately the focus of the initial work will be on the last three nodes of Figure 2 by creating and consuming a contract,

generating the assertion probes, monitoring assertions, and reacting appropriately using the monitoring framework.

5 Contract Model

The notion of a contract used in software engineering is not a new idea [6, 10, 11, 14]. When used for security, however,

we must look outside of the basic preconditions and postconditions that are often used when implementing systems using

contracts and look carefully at what properties need to be specified in a contract to improve security. Historically, the

precondition specifies when it is appropriate to call a particular feature (function/method), while a postcondition specifies

what is true after a particular feature is called (what has been accomplished by the function/method). 3

Our definition of contract needs to bind the caller and callee to deal with additional properties involving timing, property

values, and other events.4 For example, a contract that is specified for a supplier X is consumed by a consumer Y guarantees

that X has fulfilled the postcondition(s), provided that Y has satisfied the precondition(s). Thus, the contract provides pro-

tection for both parties. The consumer is protected from the supplier since the postconditions have been guaranteed by the

supplier. The supplier is protected from the consumer since the preconditions have been guaranteed by the consumer.

Contracts, as proposed by Meyer, are not suitable for security monitoring.5 The require, guarantee, and references fields of

the contract, that correspond to the pre, post, and invariants, do not handle all of the necessary attributes of security defects. In

particular, we would propose the addition of several new contractual fields including context, history, and response. Context

is required since the basic reliability contract above does not factor environmental influence. History is required since security

vulnerabilities are often complex and are sometimes the result of a series of actions which may occur in parallel. Both context

and history can be useful when dealing with DoS and race-condition vulnerabilities. Finally, response is required so that we

can choose how a particular assertion is handled when an exploitation is detected. We desire the ability to deal with security

assertion failures, not just detect them as would be the case if we used the form of contract proposed by Meyer.6

Our form of contract includes the following fields:

• Requirements - in the form of preconditions (PRE)

• Guarantees - in the form of postconditions (POST)

• References - in the form of invariants (INV)

• Context - in the form of relevant environmental information (CONT)

• History - in the form of some knowledge keeping construct (HIST)

3Many pre and postconditions are more to do with robustness than security.
4The definition of binding contract: The legal agreement between two or more entities to perform and/or not perform a set of actions.
5For example,under normal contracts, a false precondition does not guarantee that the system will not process the input. It may still allow certain types

of attacks such as buffer overflows to continue.
6The concept of resumption and organized panic for exception handling, used by Meyer, could also fall under our broader response category [14].
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• Response - in the form of a reactive measure (RESP)

Work done by Barringer et al on program monitoring and rule-based runtime verification has exposed interesting results

[2, 3]. Specifically, the work on linear temporal logic (LTL) and program states has been core to several attempts towards

runtime verification and is a promising candidate for the notation of our contracts.

Each contract (C) will contain a breakpoint (B) and one or more assertions (A). A breakpoint identifies a monitoring lo-

cation or symbol in the target application. For example, a contract should be able to specify a target function in a program

which affects the state of an assertion. The assertion is a rule which must remain true at the breakpoint. Each assertion has

associated with it zero or more of the security contract extensions (E) mentioned above (context, history, and response). An

assertion can take on one of the following three forms: precondition (PRE), postcondition (POST), or invariant (INV). We

do not represent the assertions types separately since they all take the same form. Each assertion is composed of zero or

more rules (R), relating to the target (remember the breakpoint B), and zero or more monitors (M). The rules, monitors, and

extensions are individually named (N). A rule specifies a property of the state of the program which needs to remain true,

while a monitor enforces one or more rules. The quantifiers min and max represent liveness and safety properties respectively

and are important for the boundary cases of a monitor trace. The body of every rule and monitor is specified as a boolean

valued formula of the syntactic category Form.7 Therefore, each contract may be instantiated using the following grammar8:

C := B (A{E}) {A{E}};

E := {CONT} | {HIST} | {RESP};

A := {R}{M};

R := {max|min} N(T1x1, ..., Tnxn) = F ;

M := mon N = F ;

T := Form | primitive type;

B := symbol | HEX address;

F := exp|true|false|¬F |F1 ∧ F2|F1 ∨ F2|F1 → F2| � F | � F |

F1 · F2|N(F1, . . . , Fn)|xi;

CONT := env N | res N;

HIST := trace N | runningsum N | runningavg N;

RESP := core N | term N | kill N | log N;

When defining rules, the max prefix indicates that a given rule defines a safety property and min indicates that a rule is

a liveness property [3, 16].9 We have also tentatively defined possible extended behaviors for context, history and response

elements and may extend these in the future. Context may specify environmental or resource information (external to the

program) which is needed by the contract. History may contain trace data or statistically relevant information for the contract.

Finally, response may specify an action to perform an assertion is violated.10

From this definition it is possible to use multiple separate monitors or redirect multiple rules to the same monitor.

6 Benefits of Contract for Security Monitoring

Targeting the identification, verification and removal of security vulnerabilities from systems is not a trivial task. We chose
the notion of contracts for an assertion framework so that we can state precise properties about a system without having to

7This notation is derived from linear temporal logic (LTL) and is inspired by the EAGLE framework that was proposed by Barringer et al [2, 3].
8Each line is a Extended Backus-Naur Form (EBNF) production. Following is a simplified description of EBNF notation that we have used:

:= meaning ”is defined as”

| meaning ”or”

, meaning concatenation (used to separate items in a sequence)

{ } meaning zero or more times

{ }- meaning one or more times

[ ] meaning optional item

( ) meaning grouping

; marks the end of a rule
9Safety properties state that if a behavior is unacceptable any extension of that behavior is also unacceptable. Liveness properties state that for a given

requirement, and any finite duration, the behavior can always be extended such that it satisfies the requirement[16, 12].
10Possible responses include the following: core=produce a core dump, term=terminate the task, kill=kill the task, log=produce an audit report for the

event.
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modify the code directly. In order to understand the benefits of these contracts for security monitoring we will briefly discuss
a variety of common security vulnerabilities. An example set of common security problems found in systems is as follows:

• Exploitable Logic Error • Inadequate Parameter Validation Incomplete/Inconsistent

• Inadequate Concurrency Control • Inadequate Authentication/Authorization/Identification

• Weak Dependencies/Altered Files • Implicit Sharing of Data and Data Leakage

As we progress with this work we expect that a wide variety of vulnerabilities should be covered by contracts. Exploitable
logic errors are difficult to track down; however, if we can identify environmental, historical, or timing information related to
the expected behavior, contracts can be written to detect misuse. Parameter validation issues can be handled by our pre and
post conditions. Concurrency, accountability, and protocol issues can be tracked through the use of historical, environmental,
pre and post conditions. Finally, the addition of historical and environmental assertions should allow us to track vulnerabilities
related to weak dependencies and data leakage. Furthermore, to give an idea of the types of attacks we should attempt to
counter, a listing of network related attack classes is as follows (derived from [5]):

• Password Stealing • Social Engineering

• Bugs and Back Doors • Authentication Failures

• Protocol Failures • Information Leakage

• Exponential Attacks Viruses and Worms • Denial-of-Service Attacks

• Botnets • Active Attacks

Contracts are not suitable for dealing with all types of attacks. For example, password stealing can occur through the use of a

network sniffer or through the use of social engineering techniques. The ability of an attacker to passively monitory network

traffic will not be prevented through the use of contracts; however, we can use contracts to ensure that security properties of

our systems (derived from our initial security policies) are observed. In the case of password stealing, the password should

never enter a public network in clear text and the protocol used for authentication should not be subject to replay attacks.

These are properties for which we can design contracts.

7 Conclusion

Our enhanced version of contracts provides a novel way to propagate requirements-based security assertions through the

SDLC. Some techniques, such as misuse cases, attack trees, and static analysis, are already providing ways of identifying

potential vulnerabilities during the early phases of the SDLC; however, these approaches can lead to a high rate of false-

positives which consume resources. Our (CB SAMF) is able to help reduce vulnerabilities in multi-layered systems by not

only providing a way to detect if a particular contract is violated, but also provides reactive measures.
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