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Abstract: Simulation is a popular approach to obtain objective performance indicators
platforms that are not at one’s disposal. It may help the dimensioning of compute
clusters in large computing centers. In this work we present a framework for the off-
line simulation of MPI applications. Its main originality with regard to the literature is
to rely on time-independent execution traces. This allows us to completely decouple
the acquisition process from the actual replay of the traces in a simulation context.
Then we are able to acquire traces for large application instances without being limited
to an execution on a single compute cluster. Finally our framework is built on top of a
scalable, fast, and validated simulation kernel.

In this paper, we present the used time-independent trace format, investigate several
acquisition strategies, detail the developed trace replay tool, and assess the quality of
our simulation framework in terms of accuracy, acquisition time, simulation time, and
trace size.

Key-words: Message Passing Interface; Off-line simulation; Performance prediction.



Rejeu de traces indépendantes du temps pour l’étude

des performances d’applications MPI

Résumé : La simulation est une approche très populaire pour obtenir des indica-
teurs de performances objectifs sur des plates-formes qui ne sont pas disponibles.
Cela peut permettre le dimensionnement de grappes de calculs au sein de grands cen-
tres de calcul. Dans cet article nous présentons un outil de simulation post-mortem

d’applications MPI. Sa principale originalité au regard de la littérature est d’utiliser des
traces d’exécution indépendantes du temps. Cela permet de découpler intégralement le
processus d’acquisition des traces de celui de rejeu dans un contexte de simulation. Il
est ainsi possible d’obtenir des traces pour de grandes instances de problèmes sans être
limité à des exécutions au sein d’une unique grappe. Enfin notre outil est développé au
dessus d’un noyau de simulation scalable, rapide et validé.

Cet article présente le format de traces indépendantes du temps utilisé, étudie
plusieurs stratégies d’acquisition, détaille l’outil de rejeu que nous avons dévelopé, et
evalué la qualité de nos simulations en termes de précision, temps d’acuisition, temps
de simulation et tailles de traces.

Mots-clés : MPI, simulation hors ligne, prédiction de performances.
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1 Introduction

Computational Science is the third scientific way to study problems arising in various
domains such as physics, biology, or chemistry. It is complementary to theory and
actual experiments and consists in conducting studies in silico. This approach makes
an heavy use of resources located in computing centers. As the number of scientific
domains producing results from in silico studies increases, the computing centers then
have to upgrade their infrastructures in a continuous way. The resources impacted by
such upgrades are of different kinds, e.g., computing, network and storage. Moreover
each kind of resource grows more complex with each generation. Processors have more
and more cores, low latency and high bandwidth network solutions become mainstream
and some disks now have access time close to that of memory.

The complexity of the decision process leading to the evolution of a computing
center is then increasing. This process often relies on years of experience of system ad-
ministrators and users. The former knows how complex systems work while the latter
have expertise on the behavior of their applications. Nevertheless this process lacks of
objective data about the performance of a given candidate infrastructure. Such infor-
mation can only be obtained once the resources have been bought and the applications
can be tested. Any unforeseen behavior can then lead to tremendous but vain expenses.

Many simulation frameworks have been proposed over the last decade to obtain
objective indicators beforehand. Most of them focus on parallel applications relying
on the Message Passing Interface (MPI) [1]. The simulation approaches used in these
frameworks fall into two categories: off-line simulation, also called trace-based sim-
ulation or post-mortem simulation, and on-line simulation, also called simulation via
direct execution. In off-line simulation a log of a previous execution of the application
is “replayed” on a simulated platform. In on-line simulation the application is executed
but part of the execution takes place within a simulation component.

In this work we present a framework to simulate MPI applications following the off-
line approach. This effort is part of the SIMGrid project [2]. It leverages the simulation
existing techniques and models in SIMGrid. More specifically, this work makes these
main contributions with respect to the MPI simulation literature:

1. Propose a new execution log format that is independent of time; This format
includes volumes of computation and communications for each event instead of
classical time-stamps;

2. An original approach that totally decouples the acquisition of the trace from its
replay; Several scenarios can then be proposed that allow for the acquisition of
large execution traces;

3. A trace replay tool on top of fast, scalable and validated simulation kernel; This
ensures the efficiency and quality of our off-line simulation framework;

4. Experimental results that show the simulation accuracy, the acquisition time, the
simulation time, and the trace size, of our off-line simulation framework.

This paper is organized as follows. Section 2 reviews related work. Section 3
introduces the format of a time-independent trace of an MPI application while Section 4
details the acquisition process of such traces. Section 5 explain how time-independent
traces can be replayed within the SIMGrid simulation framework. Our prototype is
evaluated in Section 6 with regard to different metrics. Section 7 concludes with a
summary of results and perspectives on future research directions.
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2 Related Work

One option for simulating the execution of an MPI application is on-line simulation.
In this approach, the actual code, with no or only marginal modification, is executed
on a host platform that attempts to mimic the behavior of a target platform, i.e., a
platform with hardware characteristics different from those of the platform on which
traces were obtained. Part of the instruction stream is then intercepted and passed to
a simulator. LAPSE is a well-known on-line simulator developed in the early 90’s [3]
(see therein for references to precursor projects). In LAPSE, the parallel application
executes normally but when a communication operation is performed a correspond-
ing communication delay is simulated on the target platform using a simple network
model (affine point-to-point communication delay based on link latency and band-
width). MPI-SIM [4] builds on the same general principles, with the inclusion of I/O
subsystem simulation in addition to network simulation. A difference with LAPSE is
that MPI processes run as threads, a feature which is enabled by a source code pre-
processor. Another project similar in intent and approach is the simulator described
in [5]. The BigSim project [6] also builds on similar ideas. However, unlike MPI-SIM,
BigSim allows the simulation of computational delays on the target platform. This
makes it possible to simulate “what if?” scenarios not only for the network but also for
the compute nodes of the target platform. Simulation of computation delays in BigSim
is done based either on user-supplied projections for the execution time of each block
of code, or on scaling execution times measured on the host platform by a factor that
accounts for the performance differential between the host and the target platform, or
based on sophisticated execution time prediction techniques such as those developed
in [7]. The weakness of this approach is that since the computational application code
is not executed, the computed application data is erroneous. Consequently, application
behavior that is data-dependent is lost. This is acceptable for many regular parallel
applications, but can make the simulation of irregular applications (e.g., branch-and-
bound or sparse matrices computations) questionable at best. Going further, the work
in [8] uses a cycle-accurate hardware simulator of the target platform to simulate com-
putation delays, which leads to a high ratio of simulation time to simulated time.

One difficulty faced by all above MPI-specific on-line simulators is that the simula-
tion, because done through a direct execution of the MPI application, is inherently dis-
tributed. Parallel discrete event simulation raises difficult correctness issues pertaining
to process synchronization. For the simulation of parallel applications, techniques have
been developed to speed up the simulation while preserving correctness (e.g., the asyn-
chronous conservative simulation algorithms in [9], the optimistic simulation protocol
in [6]). A solution could be to run the simulation on a single node but it requires large
amounts of CPU and RAM resources. For most aforementioned on-line approaches,
the resources required to run a simulation of an MPI application are commensurate to
those of that application. In some cases, those needs can even be higher [8, 10]. One
way to reduce the CPU needs of the simulation is to avoid executing computational por-
tions of the application and simulate only expected delays on the target platform [6].
Reducing the need for RAM resources is more difficult and, in general, if the target
platform is a large cluster, then the host platform must also be a large cluster.

One approach that avoids these particular challenges, but that comes with chal-
lenges of its own, is off-line simulation. In this approach, which we use in this work, a
log, or trace, of MPI communication events (time-stamp, source, destination, data size)
is first obtained by running the application on a real-world platform. A simulator then
replays the execution of the application as if it were running on a target platform. This

RR n° 7489



Assessing the Performance of MPI Applications Through Time-Independent Trace Replay5

approach has been used extensively, as shown by the number of trace-based simulators
described in the literature since 2009 [11, 12, 13, 14, 15]. The typical approach is to
compute the durations of the time intervals between MPI communication operations, or
“CPU bursts.” Upon replaying the application, the CPU bursts are modified to account
for the performance differential between the platform used to obtain the trace and the
target platform, either using simple scaling [12, 13, 15] or using a more sophisticated
convolution between the application computational signature and the target platform’s
hardware signature [7]. Network communications are simulated based on the commu-
nication events recorded in the trace and on a simulation model of the network. This
tight link between host and target platforms, caused by the time-stamps in the traces,
is a potential drawback of the off-line approach. Indeed it limits the usage of the traces
to similar platform for which simple scaling is possible.

A challenge for off-line simulation is the large size of the traces, which can prevent
running the simulation on a single node. Mechanisms have been proposed to improve
scalability, including compact trace representations [12] and replay of a judiciously
selected subset of the traces [14]. Another challenge is that the it is typically necessary
to obtain the trace on a platform that has the same scale as the target platform. However,
trace extrapolation to larger numbers of nodes than that of the platform used to obtain
the trace is feasible in some cases [11, 13].

For both approaches, the complexity of the network simulation model has a high
impact on speed and scalability, thus compelling many authors to adopt simplistic net-
work models. One simplification, for instance, is to use monolithic performance mod-
els of collective communications rather than simulating them as sets of point-to-point
communications [12, 16]. Another simplification used in most aforementioned simu-
lators, whether off-line or on-line, is to ignore network contention because it is known
to be costly to simulate [17]. The work in [12] proposes the use of simple analytical
models of network contention for off-line simulation. An exception is the MPI-NetSim
on-line simulator [10], which provides full-fledge contention simulation via a packet-
level discrete even network simulator. As a result, the simulator may run more slowly
than the application.

3 Time-Independent Trace Format

All the off-line MPI simulators reviewed in the previous section relies on timed traces,
i.e., each occuring event is associated to a time-stamp. Consequently a simulator has
to apply a correction factor to these time-stamps when it simulates the execution on the
target platform. This implies to know precisely what are the respective performance of
the host and target platforms. In other words, each execution trace must come with an
accurate description of how it has been acquired. Finally determining the right scaling
factor can be tedious depending on the degree of similarity of both platforms.

To free ourselves of these constraints related to time-stamps, we propose in this
work to produce time-independent traces. For each event occurring during the execu-
tion of the application, e.g., a CPU burst or a communication operation, we log the
volume of the operation (in number of floating operations or bytes) instead of the time
spent to execute it. Indeed this type of information does not vary with the characteris-
tics of the host platform. For instance, the size of the messages sent by an application
is not likely to change according to the specifics of the network interconnect, while the
computation amount performed within a for loop does not increase with the process-
ing speed of a CPU. This claim is not valid for adaptive MPI applications that modify
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their execution path according to the execution platform. This type of applications, that
represents only a small fraction of all MPI applications, is not covered by our work.

A time-independent trace can then been seen as a list actions, e.g., computations
and communications, performed by each process of an MPI application. An action is
described by the id of the process that does this action, a type, e.g., a computation or a
communication operation, a volume, i.e., a number of flops or bytes, and some action
specific parameters, e.g., the id of the receiving process for a one-way communication.

for (i=0; i<4; i++){

if (myId == 0){

/* Compute 1Mflop */

MPI_Send(..., (myId+1));

MPI_Recv(...);

} else {

MPI_Recv(...);

/* Compute 1Mflop */

MPI_Send(..., (myId+1)% nproc);

}

}

p0 compute 1e6

p0 send p1 1e6

p0 recv p3

p1 recv p0

p1 compute 1e6

p1 send p2 1e6

p2 recv p1

p2 compute 1e6

p2 send p3 1e6

p3 recv p2

p3 compute 1e6

p3 send p0 1e6

Figure 1: MPI code sample of some computation on a ring of processes (left) and its
equivalent time-independent trace (right).

The left hand side of Figure 1 shows a simple computation on a ring of four pro-
cesses. Each process computes one million floating points operations and send one
million bytes to its neighbor. The right hand side of this figure displays the corre-
sponding time-independent trace. Note that, depending on the number of processes
and the number of actions, it may be preferable to split the time-independent trace in
several files, e.g., one file per process.

MPI actions Trace entry

CPU burst <id> compute <volume>

MPI_Send <id> send <dst_id> <volume>

MPI_Isend <id> Isend <dst_id> <volume>

MPI_Recv <id> recv <src_id> <volume>

MPI_Irecv <id> Irecv <src_id> <volume>

MPI_Broadcast <id> bcast <volume>

MPI_Reduce <id> reduce <vcomm> <vcomp>

MPI_Allreduce <id> allReduce <vcomm> <vcomp>

MPI_Barrier <id> barrier

MPI_Comm_size <id> comm_size #proc

MPI_Wait <id> wait

Table 1: time-independent counterparts of the actions performed by each process in-
volved in a MPI application.
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Table 1 lists all the MPI functions for which there is a corresponding action im-
plemented in our first prototype. For the collective operations, we consider that all
the processes are involved as the MPI_Comm_split function is not implemented.
Another design choice is to root these collective operations on process 0. Finally the
comm_size action has to appear in the trace file associated to each process prior to
any collective operation.

4 Trace Acquisition Process

In this section we detail the acquisition process of a time-independent execution trace
that can be replayed within a simulation environment. This process, depicted in Fig-
ure 2 comprises four steps: (i) the instrumentation of the application; (ii) the execution
of the instrumented version of the application; (iii) the extraction of the action list for
each process; and (iv) the gathering of the different traces into a single node. In what
follows we give some details on each of these steps.

Time
Independent

Traces

Extraction GatheringExecutionInstrumentation

Execution

Traces

Instrumented

Version
Application

SG_process0.trace

SG_process1.trace

SG_processN.trace

tautrace.0.0.trc

tautrace.1.0.trc

tautrace.N.0.trc

Site 1 Site2

Figure 2: Time-independent traces acquisition process.

4.1 Instrumentation

The first step of the acquisition process is to instrument the application. We base our
prototype on TAU [18] for its non-intrusive instrumentation method. TAU is actually a
profiling tool that offers a tracing features. To enable them the -TRACE flag has to be
used and some environment variables, e.g., TAU_TRACK_MESSAGE to track message
sender and receiver ids, have to be set. The semi-automatic instrumentation described
in what follows is activated by the -pdt flag, while the access to hardware counters
through the PAPI [19] interface is allowed by adding the -papi flag to the command
line.

An interesting feature of TAU is selective instrumentation. It can be done in dif-
ferent ways. One consists in listing in a separate file which functions have (or have
not) to be traced. All the functions in the call path of the listed functions will also be
traced. However, this technique may not be enough to isolate a given call, e.g., if a
function is called twice but only one call has to be traced. A solution is then to insert
two macros provided by the tau API, namely TAU_ENABLE_INSTRUMENTATION

and TAU_ENABLE_INSTRUMENTATION in the source code.
The following example illustrates the instrumentation of the SSOR(itmax) func-

tion call in a LU factorization.

1 call TAU_ENABLE_INSTRUMENTATION()

2 call ssor(itmax)

3 call TAU_DISABLE_INSTRUMENTATION()

RR n° 7489
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One additional call to each of these macros is required to define neat disable/en-
able sections. Such slight modifications of the source code can be handled by the
pre-processor. Indeed the initial program has to be compiled using one of the scripts
provided by TAU, i.e., tau_cc.sh and tau_f90.sh for C and Fortran codes re-
spectively.

4.2 Execution

As shown in Figure 2, a time-independent trace can be acquired in many different
ways. The only mandatory parameter is the number of participating processes, as the
trace only comprises information about computation and communication volumes. We
remind that the off-line approach is not suited for irregular and adaptive applications
and that regular applications represent a large part of current MPI codes used in pro-
duction.

Figure 2 shows three possible acquisition methods that consist in running the MPI
application in a:

• Regular mode: with one process per CPU. This is the way the other off-line sim-
ulators obtain execution traces. Indeed, such an acquisition prevents abnormal
timings due to resource access concurrency. The main drawback of this acquisi-
tion mode is to require as many processors as comprised in the target platform to
get a trace. Its scalability is thus limited and the acquisition of traces for larger
is not possible.

• Folding mode: with more than one process per CPU. This allows for the ac-
quisition of traces for larger instances of the application or to use less resources.
The folding factor is obviously limited by the available amount of memory on
the involved computing nodes.

• Scattering mode: where the CPUs do not necessarily belong to the same com-
modity cluster. More nodes than what is available on the target platform can thus
be used to acquire traces of large instance. This mode thus tackles the issues of
the regular mode.

A fourth acquisition can also be envisioned. The Scattering and Folding mode
is, as the name says, the combination of the last two modes. It further increases the
scalability of the acquisition process. Apart from the regular mode, all the proposed
acquisition methods are possible only because the independence to time of the pro-
duced traces. Consequently, other off-line simulators can not take benefits of these
alternate acquisition modes.

4.3 Post-processing of the Execution Traces

When the execution of a program instrumented with TAU completes, many files are
produced. They fall in two categories: trace files and event files. The generated trace
files are named:

tautrace.<node>.<context>.<thread>.trc,
where <node> is the rank of the MPI process whose execution is logged in the file.
The two other fields, i.e., <context> and <thread>, are only used for multi-
threaded applications. In this case, TAU distinguishes each thread and groups the
threads according to the virtual address space they share.

RR n° 7489
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A trace file is a binary file that includes all the events that occur during the execution
of the application for a given process. For each event, this file indicates when this event
(e.g., a function call or an instrumented block) starts and finishes. The time spent and
the number of computed floating point operations between these begin/end tags are also
stored. For MPI events all the parameters of the MPI call, including source, destination,
and message size, are stored.

To reduce the size of the trace files, TAU stores a unique id for each traced event
instead of its complete signature. The matching between the ids and the the functions
descriptions can be found in the event files. These files are named:

events.<node>.edf.
There is only one event file per MPI process. Each event file contains information about
each traced function. For any function, an event file stores its numerical id, the group it
belongs to, e.g., MPI for all MPI functions, a tag to distinguish TAU events from those
defined by the user, and the name type which is the actual name of the traced function.
Some extra parameters required by TAU can also be stored into an event file. For
instance, the keyword EntryExit is used to declare a function that occurs between
two separate events, i.e., entry and exit. Conversely the TriggerValue keyword
typically corresponds to a counter that increases monotonically from the beginning of
the execution. Such a trigger has to be activated twice to determine the evolution of the
counter value during the corresponding period of time.

The following example shows two entries of an event file generated by TAU that
corresponds respectively to the MPI_Send function and to the access to an hardware
counter that measures the number of floating point operations.

49 MPI 0 "MPI_Send() " EntryExit

1 TAUEVENT 1 "PAPI_FP_OPS" TriggerValue

To perform an off-line simulation of a MPI application with SIMGrid, two steps are
mandatory. First we have to extract a time-independent trace from the trace and event
files produced by TAU. Second we have to gather, and sometimes merge, the extracted
traces on a single node where the replay takes place.

As the trace files generated by TAU are binary files, there is a need for an interface
to extract information. Such an API is provided by the TAU Trace Format Reader
library (TFR) [20]. This tool provides the necessary functions to handle a trace file,
including a function to read events. It also defines a set of eleven callback methods,
that correspond to the different kinds of events that appear in a TAU trace file. For
instance there are callbacks for entering or exiting a function and triggering a counter.
The implementation of these callback methods is let to the developer.

We thus developed a C/MPI parallel application, called tau2simgrid, that im-
plements the different callback methods of the TFR library. This program basically
opens, in parallel, all the TAU trace files and read them line by line. For each event, the
corresponding callback function is called. To illustrate how tau2simgrid extracts
the necessary data to produce a time-independent trace, we detail the case of a call to
the MPI_Send function. Figure 3 presents the parameters of the different callbacks
related to this function call on process 1 in a readable format. Each line starts by the
process id, the thread id, the time at which the event occurred and the name of the
event. The remaining fields are event dependent.

As mentioned earlier, the event that corresponds to a MPI_Send is tagged as
EntryExit in the event file with the event id 49. The first occurring callback will then
be on the EnterState function (line 1). The matching LeaveState event (line 6)
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1 1 0 1.42947e+06 EnterState 49

2 1 0 1.42947e+06 EventTrigger 1 164035532

3 1 0 1.4295e+06 EventTrigger 46 163840

4 1 0 1.4295e+06 SendMessage 0 0 163840 1 0

5 1 0 1.4299e+06 EventTrigger 1 164035624

6 1 0 1.4299e+06 LeaveState 49

Figure 3: List of callbacks related to a call to the MPI_Send function.

define the scope of events related to the function call. Four events are enclosed between
these boundaries. Two of them (lines 2 and 5) correspond to the hardware counter mea-
suring the number of flops, as identified in the event file and indicated by the event id 1
in the trace file. These two events are used to respectively ends the CPU burst preceding
the MPI call and starts the next one. The number of flops computed within a MPI call,
mainly due to buffer allocation costs, are ignored as they are accounted for by the net-
work model. The last two events are related to the sent message. The EventTrigger
on line 3 only provides the size of the message (163,840 bytes), which is not enough to
build an entry in the time-independent trace. The SendMessage event (line 4) gives
more information, namely the process and thread ids of the receiver, the size of the
message, and the MPI tag and communicator for this communication.

Thanks to all these information extracted from both TAU trace and event files, our
tau2simgrid application can generate the following entry of a time-independent
trace:

p1 send p0 163840

Note that for asynchronous and collective communications, the extraction process
is more complex. For instance, the mandatory information to write the entry corre-
sponding to a MPI_Irecv, e.g., the receiver id, are given by the RecvMessage

event which generally occurs within the MPI_wait function. This implies to imple-
ment some lookup techniques in tau2simgrid to retrieve all the necessary parame-
ters.

After the execution of tau2simgrid, the produced traces can be injected into
the simulation framework. However, they first have to be gathered on a single node
onto which the simulation will take place. File gathering is a problem that has been
studied for a long time. A common and efficient approach is to rely on a K-nomial tree
reduction allowing for log(K+1) N steps, where N is the total number of files, and K

is the arity of the tree. We developed a simple script to perform such a gathering. This
script can be configured to adapt the arity to the total number of traces and the number
of computed nodes involved in the trace acquisition.

The cost, in terms of execution time, of tau2simgrid and the gathering script
will be assessed in Section 6.

5 Trace Replay with SimGrid

Our framework to simulate MPI applications following the off-line approach is tightly
connected to the SIMGrid project [2]. SIMGrid provides core functionalities for the
simulation of distributed applications in heterogeneous distributed environments. The
main goal of SIMGrid is to facilitate the research in the area of parallel and distributed
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large scale systems such as Grids, P2P systems and clouds. SIMGrid relies on a scal-
able and extensible simulation engine and offers several user APIs.

Since release 3.3.3, SIMGrid allows users to describe an applicative workload as a
time-independent trace such as that described in Section 3. Figure 4 shows the different
components that are needed to replay such traces with SIMGrid. Apart from the time-

independent trace(s), a description of the target platform and the deployment of the
application, i.e., how processes are mapped onto processors, are also passed to the
trace replay tool which, in turn, is built on top of the simulation kernel. Decoupling
the simulation kernel, and then the simulator, from the simulation scenario offers a
greater flexibility. This way a wide range of “what if?” scenarios can be explored
without any modification of the simulator. Changing the input files of the trace replay

tool is enough.

Simulation Kernel

Profile
Timed

Trace

Platform

Topology

Application

Deployment

Simulated Execution Time

Time−Independent Trace(s)

Trace ReplayTool

Figure 4: Inputs and outputs of the SIMGrid trace replay framework.

The simulation kernel of SIMGrid relies on macroscopic models for computation
resources. Tasks costs are expressed in number of floating point operations (flops). The
computing power of a CPU is then in flop/s. For network resources, SIMGrid uses an
analytical network contention model. This model was developed for arbitrary network
topologies with end-points that use standard network protocols, such as TCP/IP, and
are connected via multi-hop paths. Instead of being packet-based, the model is flow-
based, meaning that at each instant the bandwidth allocated to an active flow (i.e., a data
transfer occurring between two end-points) is computed analytically given the topology
of the network and all currently active flows. This model is described and validated via
comparison to the GTNetS packet-level simulator in [21]. While this generic model
is applicable to networks ranging from local-area to wide-area networks, it can be
specialized for cluster interconnects. An original model has been recently added to the
SIMGrid simulation kernel to take the specifics of MPI implementations on compute
cluster interconnects using TCP into account. For instance, a message under 1 KiB
fits within an IP frame, in which case the achieved data transfer rate is higher than for
larger messages. Also, MPI implementations for MPI_Send() typically switch from
buffered to synchronous mode above a certain message size. Consequently, instead of
being an affine function of message size, communication time is piece-wise linear. In
practice, this model is instantiated for 3 segments, leading to 8 parameters defining the
model (2 for defining the boundaries of the 3 segments, and one latency and bandwidth
parameter for each segment).
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Figures 5 and 6 respectively present a platform file and a deployment file that cor-
respond to the scenario of Figure 1. The platform described here is a compute cluster
that comprises four homogeneous machines interconnected through a switched net-
work. The deployment file indicates on which node of the cluster each process will
run. For instance, the MPI process of rank 0 will be executed on the node named
mycluster-0.mysite.fr

<?xml version=’1.0’?>

<!DOCTYPE platform SYSTEM "simgrid.dtd">

<platform version="3">

<AS id="AS_mysite" routing="Full">

<cluster id="AS_mycluster"

prefix="mycluster-" suffix=".mysite.fr"

radical="0-3" power="1.17E9"

bw="1.25E8" lat="16.67E-6"

bb_bw="1.25E9" bb_lat="16.67E-6"/>

</AS>

</platform>

Figure 5: Example of SIMGrid platform file corresponding to the MPI application
described in Figure 1.

<?xml version=’1.0’?>

<!DOCTYPE platform SYSTEM "simgrid.dtd">

<platform version="3">

<process host="mycluster-0.mysite.fr"

function="p0"/>

<process host="mycluster-1.mysite.fr"

function="p1"/>

<process host="mycluster-2.mysite.fr"

function="p2"/>

<process host="mycluster-3.mysite.fr"

function="p3"/>

</platform>

Figure 6: Example of SIMGrid deployment file corresponding to the MPI application
described in Figure 1.

Figure 4 also shows the possible outputs of an off-line simulation. In this work,
we focus on obtaining a simulated execution trace. This kind of output provides an
estimation of the execution time of the target application in the particular experimental
scenario described by the platform and deployment files. It is also possible to generate
a timed trace that corresponds to this particular scenario by adding timers (measuring
simulated time) in the trace replay tool. Finally it would also be interesting to derive
a profile of the application from this timed trace. But this last kind of output requires
complex analysis tools such as those develop in the TAU and Scalasca [22] projects.

To replay a time-independent trace with SIMGrid, a simulator, the trace replay tool

has to be written on top of the simulation kernel using one of the APIs provided by
SIMGrid. Our prototype uses the MSG API. This simulator has to:

1. Include a function that corresponds to the expected behavior of a given action.
This has to be done for each action that occurs in the trace. Generally such

RR n° 7489



Assessing the Performance of MPI Applications Through Time-Independent Trace Replay13

function just calls one or several MSG functions. For instance, the code for the
compute action is

1 static void compute(xbt_dynar_t action){

2 char *amount = xbt_dynar_get_as(action,

3 2, char *);

4 m_task_t task = MSG_task_create(NULL,

5 parse_double(amount),

6 0, NULL);

7 MSG_task_execute(task);

8 MSG_task_destroy(task);

9 }

An entry of the trace file is passed to this function as a dynamic array
(xdt_dynar_t) of strings, one for each field of the entry. Once the amount of
flops to compute has been extracted (lines 2-3), it is possible to create (lines 4-6)
the corresponding SIMGrid task and execute it (line 7). This SIMGrid task is de-
stroyed (line 8) as soon as the computation of amount flops has been simulated.

2. Register this function with MSG_action_register. For instance to link the
compute keyword in the trace to the above function, the main function of the
simulator includes the following call

1 MSG_action_register("compute", compute);

3. Call the function MSG_action_trace_run that takes either a trace file name
or NULL as input. When no file name is given, this mean that there exists one
trace file per process. In this case, the names of these trace files are given in the
platform file, as shown below.

1 <process host="mycluster-1.mysite.fr"

2 function="p1">

3 <argument value="SG_process1.trace"/>

4 </process>

An essential step to make accurate performance predictions through trace replay
is the calibration of the simulation framework. In the case of SIMGrid, it consists
in instantiating the platform file with pertinent values. In other words the number of
floating operations a CPU can compute in one second and the latency and bandwidth
of communication links have to be set. Such a calibration strongly depends on both
application and execution environment. Indeed different types of computation may
lead to different flop rates on a given CPU. This is mainly due to how efficiently the
computation can use the different levels of cache. Moreover the performance of a given
computation may differ with regard to the processor brand.

We instantiate the flop rate of each host in the platforms as follows. A small in-
strumented instance of the target application is run of the platform to describe. This
allows us to determine the number of flops of each event as long as the time spent to
computed them. Then we can determine a flop rate of each single action, compute
a weighted average on each process, and get an average flop rate for all the process
set. Finally we repeat this this procedure five times and compute an average over these
five runs to smoothe the runtime variations. We use this final value to instantiate the
SIMGrid platform file.
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The instantiation of the network parameters of the platform file is done in two
steps. To set the bandwidth, we use the nominal value of the links, e.g., 1 GiB
for GigaEthernet links. For the latency of a communication link, we rely on the
Pingpong_Send_Recv experiment of the SKaMPI [23] benchmark suite. We take
the value obtained for a 1-byte message and divided it by six. This factor of six comes
from two sources. We have to divide the ping-pong time by two to obtain the latency
of a one-way message. Then we divide it by three to take the topology of a cluster into
account. Indeed, two nodes in a compute cluster are generally connected through two
links and one switch. In case of hierarchical network, we account for this hierarchy in
the determination of the latency.

The second step consists in instantiating the piece-wise linear model used by
SIMGrid dedicated to MPI communications on compute clusters. SIMGrid provides
a Python script that takes as input the latency and bandwidth determined as above, the
output of the SKaMPI run, and the number of links connecting the two nodes used for
the ping-pong. Then this script determines the latency and bandwidth correction fac-
tors that lead to a best-fit of the experimental data for each segment of this piece-wise
linear model.

6 Experimental Evaluation

6.1 Experimental Setup

To conduct this evaluation, we use the LU factorization (LU) program, which is part of
the NAS Parallel Benchmarks (NPB) suite. The NPB are a set of programs commonly
used to assess the performance of parallel platforms. Each benchmark can be executed
for 7 different classes, denoting different problem sizes: S (the smallest), W, A, B, C,
D, and E (the largest). For instance, a class D instance corresponds to approximately
20 times as much work and a data set almost 16 as large as a class C problem. We
selected the LU factorization because it mixes computations and communications and
is a building block of many scientific applications.

To acquire trace-independent traces we used two clusters of the Grid’5000 exper-
imental platform: bordereau and gdx. The bordereau cluster comprises 93 2.6GHz
Dual-Proc, Dual-Core AMD Opteron 2218 nodes. All these nodes are connected to
a single 10 Gigabit switch. The gdx cluster comprises 186 2.0 GHz Dual-Proc AMD
Opteron 246 scattered across 18 cabinets. Two cabinets share a common switch and
all these switches are connected to a single second level switch through Ethernet 1 Gi-
gabit links. Consequently a communication between two nodes located in two distant
cabinets goes through three different switches. These two clusters are interconnected
through a dedicated 10 Gigabit network.

Acquisition mode R F-2 F-4 F-8 F-16 F-32 S-2 SF-(2,2) SF-(2,4) SF-(2,8) SF-(2,16)
Number of nodes 64 32 16 8 4 2 (32,32) (16,16) (8,8) (4,4) (2,2)

B

Execution Time (in sec.) 20.73 52.96 88.66 179.07 347.27 689.18 37.54 79.19 134.05 277.25 505.64
Ratio to regular mode 1 2.55 4.28 8.64 16.75 33.25 1.81 3.82 6.47 13.37 24.39

C

Execution Time (in sec.) 57.77 143.45 272.45 511.75 1,011.59 1,970.05 85.71 211.95 421.71 772.56 1,442.79
Ratio to regular mode 1 2.22 4.13 7.79 15.14 31.79 1.48 3.67 7.3 13.37 24.97

Table 2: Evolution of the execution time of an instrumented LU benchmark executed
by 64 processes with regard to the acquisition mode. Results obtained on the bordereau

and gdx clusters using one core per node.
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One of the key concept of the Grid’5000 experimental platform is to offer its users
the capacity to deploy their own system image at will. For our experiments we built
a Debian Lenny image. The kernel (v2.6.25.9) was patched with the perfctr driver
(v2.6.38) to enable hardware counters. We also installed TAU (v2.18.3) and its soft-
ware dependencies on Program Database Toolkit (v3.14.1), which is used for automatic
instrumentation, and PAPI (v3.7.0), that provides access to the hardware counters. We
built the NAS Parallel Benchmarks (v3.3) on top of OpenMPI (v1.3.3). Finally the
traces are replayed in SIMGrid (v3.6-r9069).

6.2 Evaluation of the Acquisition Modes

The main characteristic of the proposed acquisition process is to be totally decoupled
from the target platform. As mentioned in Section 4, several modes can be used to
acquire a time-independent trace. The first experiment of this section investigates the
distribution of the acquisition time among the different steps, i.e., execution, instrumen-
tation, extraction, and gathering. Figure 7 shows such a distribution for the acquisition
of time-independent traces of the LU benchmark for classes B and C and for different
number of processes. These results were obtained on the bordereau cluster following
the Regular acquisition mode and deploying only one process per node. We run the
complete acquisition process ten times and show the average value for each part of it.

Application
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Figure 7: Distribution of the acquisition time for different instances of the LU bench-
mark in the regular acquisition mode.

As more processes are involved in the computation of the LU factorization, the
time needed to run the application, get a TAU trace, and extract the time-independent
information decreases linearly with the number of processes. This direct benefit of par-
allelism exploitation shows its limits when the sequential part of the execution becomes
too small, as for Class B on 64 processes, for instance. Conversely, the time needed to
gather all the generated traces on a single node, with a 4-nomial tree, increases with the
number of processes as the depth of the reduction tree also grows. However this step
remains the least time consuming.
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If we focus on the part of the acquisition time that is strictly related to the produc-
tion of time-independent traces, i.e., the extraction and gathering steps, we see that it
represent at most 34.91% of the total acquisition time. The worst value is obtained
for the Class B with 64 processes instance for which the execution time of the bench-
mark is the smallest. However, large number of processes are generally used to solve
large problem instances. Then we can conclude that the extra overhead required to get
a time-independent trace can be afforded. Moreover such traces need to be acquired
only once and can then be used to explore much more “what if?” scenarios than with
timed traces.

Now we estimate the impact of the Folding (F-x), Scattering (S-y), and Scattering

and Folding (SF-(u, v)) acquisition modes on the execution time of the instrumented
version of the LU benchmark when compared to the Regular mode (R). When pro-
cesses are folded on a smaller number of nodes, x denotes the folding factor. For
instance F-4 means that four processes are executed on a single CPU. In the scattering
mode, y is the number of sites used during the acquisition. Finally when both modes
are combined, SF-(u, v) means that the execution is scattered over u sites and that v
processes run on each node. Table 2 presents the results of this comparison in terms
of execution time and performance degradation. In all these experiments, we use only
one core per node.

We see that the time needed to execute the instrumented application increases
roughly linearly with the folding factor (F-2 to F-32). This was expected as the codes
of several processes have to be executed concurrently on a single CPU. However, there
is no extra overhead induced by this process folding approach. When the execution
is scattered across two different clusters (S-2), the overhead comes from two distinct
factors. First, some communications are now made on a wide area network and then
take more time to complete. Second, the progression of the execution is limited by the
slowest cluster (gdx in this case). While this overhead remains lower than the number
of sites, further experiments showed that it increases with the number of sites and is
also greater for smaller problem classes. Indeed, a lower amount of computations leads
to a greater impact of wide area communications. Finally the combination of process
folding and scattering (SF-(2,2) to SF-(2,16)), the overhead are cumulated. If we di-
vide the ratios to regular mode by the value obtained for S-2, we still observe that the
execution time increases with the folding factor in a roughly linear way.

An interesting property of time-independent traces is examplified by this set of ex-
periments. A classical tracing tool such as TAU will produce traces full of erroneous
timestamps in most of the scenarios. An off-line simulator using such traces will pre-
dict an execution time close to that of the corresponding acquisition scenario instead of
the targeted Regular mode execution time. Preventing such a behavior would require
to provide an accurate description of the acquisition platform along with the trace.
However with time-independent traces, the simulated time is more or less the same
whatever the acquisition scenario is. Slight variations lesser than 1% are observed that
come from hardware counter accuracy issues.

6.3 Analysis of Trace Sizes

As mentioned in Section 2, the main challenge for off-line simulation is the large size
of the traces. Here we propose to measure the size of the generated time-independent
traces and compare it to the corresponding timed produced by TAU. Table 3 presents
the obtained results for different instances of the LU benchmark.

RR n° 7489



Assessing the Performance of MPI Applications Through Time-Independent Trace Replay17

Trace size in MiB

#Processes TAU
Time TAU

SIMGrid

#Actions
Independent (in millions)

C
la

ss
B

8 320.2 29.9 10.71 2.03
16 716.5 72.6 9.87 4.87
32 1,509 161.3 9.36 10.55
64 3,166.1 344.9 9.18 22.73

C
la

ss
C

8 508.2 48.4 10.5 3.23
16 1,136.5 117 9.71 7.75
32 2,393 256.8 9.32 16.79
64 5,026.1 552.5 9.1 36.17

Table 3: Sizes of TAU and time-independent traces and number of actions for different
instances of the LU benchmark.

We see that the time-independent traces are around 10 times smaller than the traces
produced by TAU. The ratio slightly decreases as the number of processes increases.
This shows the benefit of the event file of TAU that allows to factor the declaration
of event names. The size of both types of traces grows linearly with the number of
processes which is explained by the evolution of the number of traced events. We also
see that the size of the time-independent traces grows from a constant factor of 1.6
from class B to class C which is also directly related to the number of actions.

6.4 Accuracy of Time-Independent Trace Replay

Class B - Execution time
Class B - Simulated time
Class C - Execution time
Class C - Simulated time

0

50

100

150

200

250

300

350

400

8 16 32 64

T
im

e
(i

n
se

co
nd

s)

Number of processes

Figure 8: Comparison of simulated and actual execution time for the LU benchmark
on the bordereau cluster.

Figure 8 shows the accuracy of the time-independent trace replay by comparing the
actual execution time of the LU benchmark on the bordereau cluster for classes B and
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C with the simulated time obtained with SIMGrid. We see that the trace replay is able to
predict the correct trend of evolution of the execution time. However, the local relative
error may be quite high (up to 51.5% for Class B on 64 processes) and not constant.
This prevent our tool to provide predictions with a fixed interval of confidence.

These difficulties to match the experimental data are clearly related to the calibra-
tion of the simulator. More precisely it principally comes from the calibration of the
flop rate that is not necessary with other off-line simulators that rely on timed traces.
Indeed, the flop rate is not constant over the computation of a LU benchmark. More-
over, this flop rate does not even depend on the size of the computation. Improving the
accuracy of the trace replay would imply to acquire more information on each compu-
tation during the calibration step to adapt the flop rate accordingly.

6.5 Acquiring a Large Trace

The analysis detailed the previous sections were made on traces corresponding to small
instances of the LU benchmark (up to 64 processes). Moreover this number of pro-
cesses in smaller than the number of nodes in the compute clusters used for these
experiments (respectively 93 and 186 nodes).

In order to demonstrate that the proposed approach can be used to assess the perfor-
mance of MPI applications on clusters that are not available, we study the acquisition
of traces for a large instance of the considered benchmark. We run our acquisition pro-
cess on the bordereau cluster for a Class D instance executed on 1,024 processes. Such
an instance is almost three times bigger than the number of cores (93 × 2 × 2 = 372)
that this cluster comprises. To obtain this trace, we only used 32 nodes, i.e., 128 indi-
vidual cores, and a folding factor of 8. This experiment then requires only about one
third of the total amount of available resources.

It took less than 25 minutes to acquire (including extraction and gathering) the
time-independent trace. Its size is 32.5 GiB, which is 7.8 times smaller than the TAU
trace (252.5 GiB). When compressed with gzip, the time-independent trace takes
1.2 GiB.

6.6 Simulation Time

Figure 9 presents the evolution of the time needed to replay a time-independent trace as
the number of processes increases for classes B and C instances of the LU benchmark.
These timings were obtained on one node of the bordereau cluster.

We see that the replay time is directly related to the number of actions in the traces
that is given in table 3. More precisely executing such large number of actions (up to
36 millions for Class C on 64 processes) implies as much context switches between
SIMGrid processes. Then the biggest part of this simulation time is spent in the sys-
tem. For large traces such as that of the previous, the replay time increases to several
hours. Solutions to reduce the number of context switches can be to write the simulator
directly on top of the simulation, i.e., by bypassing the MSG API, or to distribute the
simulated processes on several machines.

7 Conclusion and Future Work

In this paper, we proposed a new approach for the off-line simulation of MPI applica-
tions. Instead of relying on logs of execution that associate an event to a time-stamp,
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Figure 9: Evolution of the trace replay time with the number of processes executing a
LU benchmark.

we use time-independent traces as an input of our simulator. These traces contain
only information about volumes of computation and communications. This allows for
an acquisition process that is totally decoupled for the subsequent replay of the trace.
Heterogeneous and distributed platforms can then be used to get an execution traces
without impacting the quality of the simulation. Our simulator is built on top of the
simulation kernel of the SIMGrid toolkit and thus benefits of its fast, scalable, and val-
idated simulation kernel. We also rely on a well established tracing tool, TAU, as the
first step of our acquisition process. In our experiments we have estimated the over-
head required to produce a time-independent trace and showed the trace size reduction
traces when compared to TAU. We also discussed the accuracy of the trace replay and
he time needed to perform such simulations. The conclusion is that while some issues
still have to be solved, decoupling acquisition and replay is sound and deserves further
investigation.

As future work, we plan to solve the accuracy and simulation time issues for which
we have hints of solutions. We also aim at exploring techniques to reduce the size of
the traces, e.g., using a binary format. Finally we plan to compare off-line simulations
results with those produced by on-line simulators.
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