Skip to Main content Skip to Navigation
New interface
Journal articles

Ensemble forecast of analyses: Coupling data assimilation and sequential aggregation

Abstract : er based on past observations and past forecasts. This approach has several limitations: the weights are computed only at the locations and for the variables that are observed, and the observational errors are typically not accounted for. This paper introduces a way to address these limitations by coupling sequential aggregation and data assimilation. The leading idea of the proposed approach is to have the aggregation procedure forecast the forthcoming analyses, produced by a data assimilation method, instead of forecasting the observations. The approach is therefore referred to as ensemble forecasting of analyses. The analyses, which are supposed to be the best a posteriori knowledge of the model's state, adequately take into account the observational errors and they are naturally multivariable and distributed in space. The aggregation algorithm theoretically guarantees that, in the long run and for any component of the model's state, the ensemble forecasts approximate the analyses at least as well as the best constant (in time) linear combination of the ensemble members. In this sense, the ensemble forecasts of the analyses optimally exploit the information contained in the ensemble. The method is tested for ground-level ozone forecasting, over Europe during the full year 2001, with a twenty-member ensemble. In this application, the method proves to perform well with 28% reduction in RMSE compared to a reference simulation, to be robust in time and space, and to reproduce many spatial patterns found in the analyses only.
Document type :
Journal articles
Complete list of metadata

Cited literature [27 references]  Display  Hide  Download
Contributor : Karim Drifi Connect in order to contact the contributor
Submitted on : Friday, December 17, 2010 - 4:43:57 PM
Last modification on : Wednesday, April 6, 2022 - 6:34:04 PM
Long-term archiving on: : Monday, November 5, 2012 - 2:35:30 PM


Files produced by the author(s)




Vivien Mallet. Ensemble forecast of analyses: Coupling data assimilation and sequential aggregation. Journal of Geophysical Research, 2010, 115 (D24303), ⟨10.1029/2010JD014259⟩. ⟨inria-00547903⟩



Record views


Files downloads