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Abstract. Sequential aggregation is an ensemble forecasting approach that weights each
ensemble member based on past observations and past forecasts. This approach has sev-
eral limitations: the weights are computed only at the locations and for the variables that
are observed, and the observational errors are typically not accounted for. This paper
introduces a way to address these limitations by coupling sequential aggregation and data
assimilation. The leading idea of the proposed approach is to have the aggregation pro-
cedure forecast the forthcoming analyses, produced by a data assimilation method, in-
stead of forecasting the observations. The approach is therefore referred to as ensemble
forecasting of analyses. The analyses, which are supposed to be the best a posteriori knowl-
edge of the model’s state, adequately take into account the observational errors and they
are naturally multivariable and distributed in space. The aggregation algorithm theo-
retically guarantees that, in the long run and for any component of the model’s state,
the ensemble forecasts approximate the analyses at least as well as the best constant (in
time) linear combination of the ensemble members. In this sense, the ensemble forecasts
of the analyses optimally exploit the information contained in the ensemble. The method
is tested for ground-level ozone forecasting, over Europe during the full year 2001, with
a twenty-member ensemble. In this application, the method proves to perform well with
28% reduction in RMSE compared to a reference simulation, to be robust in time and
space, and to reproduce many spatial patterns found in the analyses only.

1. Introduction

Data assimilation [e.g., Daley , 1993; Bouttier and
Courtier , 1999; Cohn, 1997; Todling , 1999] is a well-known
approach that combines information from different sources
in order to improve an estimate of a system’s state. The
information sources are usually a numerical model, various
observations and error statistics. Under given assumptions,
several widely-used assimilation methods compute the so-
called best linear unbiased estimator, BLUE, which mini-
mizes the total variance of the state. Among the popular
methods, one may cite the Kalman filters [e.g., the ensem-
ble Kalman filter, Evensen, 1994] or the 4D-Var method
[Le Dimet and Talagrand , 1986]. Data assimilation has been
successful in many fields. It is especially successful in numer-
ical weather forecasting where improved initial conditions
can dramatically improve a forecast cycle [e.g., Buehner
et al., 2010].

Another approach for improving forecasts using observa-
tions is called sequential aggregation. It is employed to pro-
duce an improved forecast out of an ensemble of forecasts.
Each forecast of the ensemble is given a weight that depends
on past observations and past forecasts. An aggregated fore-
cast is then formed by the weighted linear combination of
the forecasts of the ensemble. The aggregation is sequential
since it is repeated before each forecast step, with updated
weights. The weights can be computed with machine learn-
ing algorithms so that appealing theoretical results may hold
in practical applications [Mallet et al., 2009]. Other forms of
aggregation have been applied in geophysical forecasts, e.g.,
with the dynamic linear regression in air quality [Pagowski
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et al., 2006] or with least-square methods in climatology
[Krishnamurti et al., 2000] and in air quality [Mallet and
Sportisse, 2006].

In this paper, the focus is on machine learning algorithms
because of their key theoretical properties. If the forecast
performance is measured by a mean quadratic discrepancy
with the observations, the learning algorithms guarantee
that, in the long run, the aggregated forecast performs at
least as well as the best linear combination of models that
is constant in time. In other words, over a long enough
time period, the mean quadratic error of any constant com-
bination (that is, any linear of combination of models with
weights that do not depend on time) tends to be greater
than or equal to the mean quadratic error of the aggregated
forecast. In particular, the aggregated forecast will perform
better than any individual model (whose forecast is the lin-
ear combination with unitary weight on the model and null
weights otherwise) and the ensemble mean (associated with
uniform weights).

Both data assimilation and sequential aggregation have
advantages and drawbacks, in terms of theoretical frame-
work, practical application, performance and computational
efficiency. An introduction to these techniques can be found
in appendix A.

In this paper, a method called “ensemble forecast of anal-
yses”, EFA, is designed to combine both approaches. A key
motivation is to address two important limitations of se-
quential aggregation. The first limitation is that sequential
aggregation may not take into account the observational er-
rors. The linear combination of the ensemble forecasts is
determined so as to minimize its discrepancy with the ob-
servations. Since the observations are not perfect, this ap-
proach is not entirely satisfactory. The second limitation
is that the weights are computed only at the locations and
for the variables that are observed. Computing weights for
other locations and other variables is beyond the scope of the
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methods. It is possible to compute a single set of weights for
all locations. In this case, it can be argued, and sometimes
observed in applications, that the weights are reasonably
spatially robust, but there is no theoretical framework to
support this assumption. Further details on the motivation
for the development of EFA are given in Section 2.1.

In EFA, the leading idea is to carry out sequential aggre-
gation to forecast an analysis, instead of observations. The
analysis is the result of a data assimilation step. In some
sense, it is the best estimate of the true state that can be
produced out of the available information. Analyses can be
produced whenever observations become available. There-
fore the sequence is similar to that of sequential aggregation.
First, EFA produces a forecast of the forthcoming analysis.
Second, when the date of the forecast is reached, the obser-
vations become available and the analysis can be computed.
Third, this analysis is compared with the EFA output. After
that step, the cycle goes on with EFA producing a forecast
for the next analysis. In short, the EFA method tries to
predict, using sequential aggregation, the analysis that will
be computed with future observations.

The observation errors are taken into account in the anal-
ysis, and EFA naturally computes a multivariate and mul-
tidimensional field in the same space as the model state.
The method is described in Section 2. This fairly general
method is illustrated through application to ozone forecast-
ing in Section 3.

2. Ensemble Forecast of Analyses

2.1. Motivation

Sequential aggregation is appealing because it is robust.
The theoretical guarantee—to compete in the long run
against the best constant linear combination—holds in prac-
tical applications because learning algorithms assume essen-
tially nothing about the observations and the ensemble. The
methods are pessimistic enough to perform well (in terms of
minimization of forecast errors) in any situation. This ro-
bustness is an important feature in operational forecasts.

A criticism one usually makes of statistical methods is
that they may perform well on average but they miss the
extreme events. Sequential aggregation relies on physical
models (through a linear combination of them), which cir-
cumvents this limitation to the extent that the models are
able to capture the events. This was shown in a practi-
cal application with ground-level ozone data [Mallet et al.,
2009].

In data assimilation, when only the initial conditions are
constrained, the sensitivity to these initial conditions is a
key parameter. In meteorology, this sensitivity is so high
that there is room for large improvements in the forecasts.
This is not the case in air quality where the benefit of data
assimilation is significant only for about a day after the as-
similation period [e.g., Elbern and Schmidt , 2001]. Indeed a
chemistry-transport model applied to photochemistry is so
stable that changes in its initial concentrations are quickly
dampened. Note that sequential aggregation is not subject
to this limitation as its weights may be used for a long time
period.

One drawback of sequential aggregation is that it does
not take into account observational errors. Its objective is
to minimize the discrepancy between the forecasts and the
observations, while data assimilation aims to estimate the
true state of a system. This can make a clear difference when
significant instrumental errors or representativeness errors
are involved. In this case, the data assimilation approach
makes more sense.

Another drawback of sequential aggregation is that the
weights are computed considering the observation locations
only. It is possible to compute the same weights at all ob-
served locations, and this is even recommended, so that the

weights may reasonably be applied at non-observed loca-
tions. If the weights were computed independently at the
observation locations, it would be unlikely that they would
be relevant elsewhere, even in the vicinity of the observed
locations. In contrast, when the weights are not space-
dependent, they are likely to still perform well in some re-
gion enclosing the observation network. However this region
might not cover entirely the target region—that is, the re-
gion over which forecasts are to be computed. For ground-
level ozone, tests not reported here showed that the weights
can be applied relatively far from the observation stations
(about 1.5 to 2 degrees in latitude/longitude around the
stations, at European scale). Nevertheless, no theoretical
framework supports the weights being applied outside the
observation network.

The same is true for multivariate forecasts (e.g., in air
quality, for ozone and particulate matter at the same time).
The quality of the weights is guaranteed for the variables
that are observed, but the same weights may not perform
well for the non-observed variables. This contrasts with data
assimilation that naturally corrects the state of a system
based on the error covariances between the state compo-
nents, and hence the spatial distribution of a multivariate
field is corrected. However, in applications, this is not al-
ways a straightforward process because the error covariance
matrix (see Section A1) must be properly estimated. It is
often advocated not to include all non-observed variables in
the state vector, or equivalently, to assume no error corre-
lation between observed and some non-observed variables.
Nonetheless, the improvements in the controlled variables
will eventually propagate to the other variables during the
simulation because of the coupling between the variables in
the model.

2.2. Introduction to the Method

The ensemble forecast of the analyses (EFA) is introduced
in order to address the issues discussed in Section 2.1. The
leading idea is to carry out sequential aggregation in order
to forecast an analysis instead of the observations.

The analysis to be forecast will be computed with a back-
ground state, forecast by some model, and the observations
as soon as they become available. This analysis will there-
fore be produced at the same time as the observations,
maybe with a delay due to the computational cost of the
assimilation method.

In EFA, a sequential-aggregation algorithm is applied be-
fore each forecast time step. It computes one weight per
model and per state component (and per forecast step). Un-
like the usual aggregation procedure [Mallet et al., 2009]
(see also Section A2), there is no need to compute a single
weight per model (and per step) for all observed locations,
because all state components have a value in the analysis.
This a clear advantage compared to the sequential aggrega-
tion alone in that the weights are determined for a single
target in the state vector, that is, a single grid cell and a
single variable.

2.3. Notation

Let x̃
f
t be the forecast at time t ∈ {1, . . . , T} of a refer-

ence model M̃t−1. It is also referred to as the state vector
of the model. The analysis state vector is denoted x̃a

t . At
time t, the observation vector is denoted yt. An observa-
tion operator Ht maps from the space of the model state to
the observation space: Htx̃

f
t can be compared to yt. Here-

inafter, it is assumed that the observation operator is linear.
Nevertheless, EFA can be applied with a non-linear obser-
vation operator, provided that a proper data assimilation
method is used.
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An ensemble of forecasts is available at time t with the
sequence (x1

t , . . . ,x
M
t ) where M is the number of models.

The forecast of a single model m is therefore denoted xm
t .

The models are denoted Mm
t at time t: xm

t+1 = Mm
t (xm

t ).
The ith components of the aforementioned vectors are

denoted with an additional subscript: x̃fi,t, yi,t, x
m
i,t.

2.4. Calculations and Algorithm

First, a simulation is carried out with assimilation. It
produces a sequence of forecasts x̃f

t and a sequence of anal-
yses x̃a

t . Henceforth, for the sake of clarity, we assume that
the assimilation method is simply an optimal interpolation,
computing the best linear unbiased estimator (BLUE, see
Section A1 for its formula). Nevertheless, a Kalman filter,
a 4D-Var or any other method can be used.

Furthermore, an ensemble of simulations (x1
t , . . . ,x

M
t ) is

available at any forecast time step t. This ensemble may or
may not be related to the sequence x̃f

t . The only mandatory
relation is that x̃

f
t and all xm

t (m ∈ {1, . . . ,M}) have the
same size and represent the same quantities.

At time t − 1, the observations yt−1 become available
and are then assimilated to provide the analysis. Thus
x̃a
t−1 becomes available. The ensemble of forecasts for t, xm

t

(m ∈ {1, . . . ,M}), is also generated. Based on all previous
analyses x̃a

t′ (t′ < t − 1) and on all ensemble computations
xm
t′ (m ∈ {1, . . . ,M}, t′ ≤ t), an aggregated forecast x̂t

is produced with the weight vectors (wm
t )m. Here, wm

t is
the vector of weights associated with model m and time t;
it contains one weight per component in the model state.
Thus,

x̂i,t =

M
∑

m=1

wm
i,tx

m
i,t . (1)

This aggregated forecast should be as close as possible to
the analysis to be computed at the next time t, thus x̃a

t .
Many methods for sequential aggregation may be used

to compute the weight vectors wm
t . If the discounted ridge

regression is used (see Section A2 for further details), the
weights will satisfy

wi,t = argmin
u∈RM

[

λ‖u‖22

+

t−1
∑

t′=1

(1 + ψt−t′)

(

x̃ai,t′ −
M
∑

m=1

umx
m
i,t′

)2


 , (2)

if wi,t = (w1
i,t, . . . , w

M
i,t)

T is the vector of weights for the i-th
state component, λ > 0 and ψt > 0 is a decreasing sequence.

In the case that the optimal interpolation is the assimila-
tion algorithm used and that the discounted ridge regression
is the aggregation method, the EFA algorithm is performed
using the following steps:

1. Initialization

(i) Initial conditions: x̃a
0 , xm

0 , xm
1 = Mm

0 (xm
0 ), for

m ∈ {1, . . . ,M}
(ii) Assimilation parameters: Bt, Rt

(iii) Aggregation parameters: λ, ψt

2. Time loop; forecasting time t = 2, . . . , T :

(i) Forecast of the reference model:

x̃
f
t−1 = M̃t−2(x̃

a
t−2) . (3)

(ii) Computing the analysis:

x̃
a
t−1 = x̃

f
t−1 +Bt−1H

T
t−1

(

Ht−1Bt−1H
T
t−1 +Rt−1

)−1

(yt−1 −Ht−1x̃
f
t−1) . (4)

(iii) Ensemble of forecasts: for all m ∈ {1, . . . ,M},

x
m
t = Mm

t−1(x
m
t−1) . (5)

(iv) Computing a weight vector for any state compo-
nent i:

wi,t = argmin
u∈RM

[

λ‖u‖22

+

t−1
∑

t′=1

(1 + ψt−t′)

(

x̃ai,t′ −
M
∑

m=1

umx
m
i,t′

)2


 . (6)

(v) Computing the forecast:

x̂i,t =
M
∑

m=1

wm
i,tx

m
i,t . (7)

2.5. Theoretical Background

It can be shown [Cesa-Bianchi and Lugosi , 2006; Mallet
et al., 2007b] that, for every state component and in the long
run, the aggregated forecast will perform as well as the best
constant linear combination of the ensemble’s forecasts1:

T
∑

t=1

1

T

(

x̃ai,t − x̂i,t
)2 − min

u∈RM

T
∑

t=1

1

T

(

x̃ai,t −
M
∑

m=1

umx
m
i,t

)2

> O
(

lnT

T

)

. (8)

In the long run, EFA produces a forecast that is at least
as close to the best a posteriori estimate of the true state
(BLUE) as the best constant (in time) combination is. EFA
therefore achieves the potential of the ensemble in terms of
constant linear combinations. Another formulation is:

T
∑

t=1

1

T
‖x̃a

t − x̂t‖22

− min
u1,...,uN∈RM

T
∑

t=1

1

T

∥

∥

∥
x̃
a
t − C(u1, . . . ,uN ,x

1
t , . . . ,x

M
t )
∥

∥

∥

2

2

> O
(

lnT

T

)

, (9)

where N is the size of a state vector, and zt =
C(u1, . . . ,uN ,x

1
t , . . . ,x

M
t ) is the constant (in time) linear

combination with weights u1, . . . ,uN :

zi,t =

M
∑

m=1

um,ix
m
i,t ,

if um,i is the mth component of ui.

2.6. Comments

Aggregation Methods: Other aggregation algorithms
may be used with the same or similar theoretical results. An
example is provided in appendix B.

The discrepancy between the analysis and the aggregated
forecast is called the loss and it is measured with a quadratic
difference in Eq. 8. Other losses can be considered—many
aggregation methods can be applied to any loss that is con-
vex in the weights. For example, while the loss in Eq. 8 fo-
cuses on a single state component, a more global loss could
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be introduced to take into account spatial structures in the
fields.

Aggregation Target: While the usual aggregation
strategy (see Section A2) forecasts the (erroneous) obser-
vations, the EFA procedure aims to forecast the best esti-
mate of the state that will be available in the near future.
This is more satisfactory because the a posteriori estimate
of the true state takes into account all error sources, it can
be a multivariate spatial field, and it is more complete in-
formation about the observed system. Both strategies can
be employed at the same time. In that case, EFA would
produce the forecast of the complete state, on one the hand,
and an aggregation can be carried out at each observation
location, on the other hand. The latter would produce a
forecast closer to the observation (at each station) than the
aggregation applied to all stations together (Section A2) or
EFA.

Although this is not an objective, note that EFA may
better forecast the observations than the usual aggregation
procedure. Indeed the aggregation alone forecasts the ob-
servations directly, but it is constrained by many locations
at the same time. EFA forecasts the analyses, which gen-
erally have a significant discrepancy with the observations,
but the procedure is much less constrained since it is applied
per state component. In short, EFA may forecast the analy-
ses well enough to better estimate the observations than the
aggregation alone (when applied to all stations at the same
time).

3. Application to Air Quality

3.1. Experiment Setup

EFA is applied to forecast ground-level ozone concentra-
tions over Europe on the next day at 15:00 UTC, when ozone
concentrations often reach their daily peak. All simulations
are carried out for the full year 2001 by Eulerian chemistry-
transport models generated within the Polyphemus platform
[Mallet et al., 2007b].

10 5 0 5 10 15 20
35

40

45
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55

Figure 1. Simulation domain with the monitoring sta-
tions of EMEP network. The black rectangle, to the
north of Spain, locates the grid cell in which the weights
of Figure 5 are computed by EFA.

The models employed in this application (including the
model with which the analyses are generated) are part of
the ensemble introduced in Garaud and Mallet [2010]. All
models have a horizontal resolution of 0.5◦. Meteorologi-
cal inputs are from the European Centre for Medium-Range
Weather Forecasts (12-hour forecast cycles starting from an-
alyzed fields). The raw emissions are from EMEP (Eu-
ropean Monitoring and Evaluation Programme) database
and they are chemically processed following Middleton et al.
[1990]. The biogenic emissions are generated following Simp-
son et al. [1999]. The lateral and top boundary conditions
are from simulations by MOZART 2 [Horowitz et al., 2003].
In the generation of the ensemble, the input fields may be
in addition randomly perturbed.

Generation of the Analyses:
The model with which the analyses are generated2 uses

the Regional Atmospheric Chemistry Mechanism (RACM,
Stockwell et al. [1997]). It models the vertical diffusion with
the Troen and Mahrt [1986] parameterization within the un-
stable boundary layer and with the Louis [1979] parameter-
ization otherwise.

The analyses are produced with the optimal interpolation
which demonstrated good performance in Wu et al. [2008]
for ozone forecast. The controlled state is the ozone concen-
tration in the three first model layers above the surface. The
assimilated observations are hourly ground-level ozone con-
centrations from the EMEP network. Every hour, the net-
work provides observations at about 90 active background
stations over Europe (Figure 1).

The observation error covariance matrix (see Section A1)
is taken diagonal: Rt = rIt where r is a scalar variance, It is
the Ot×Ot identity matrix and Ot is the number of observa-
tions at time t. The background error covariance matrix Bt

is taken in Balgovind form [Balgovind et al., 1983], that is,
with covariance between two state components determined
by their geographical distance:

covar(lh, lv) = b

(

1 +
lh
Lh

)

e
−

lh

Lh

(

1 +
lv
Lv

)

e
−

lv

Lv , (10)

where lh and lv are the distances in the horizontal and in the
vertical respectively, Lh and Lv are a characteristic lengths
along the horizontal and the vertical respectively, and b is a
variance. The characteristic lengths are similar to those of
Wu et al. [2008]: Lh = 1◦ and Lv = 150m. The variances
b and r are determined so that the simulation passes the χ2

diagnosis [e.g., Ménard et al., 2000], that is, so that there is
consistency between the error statistics and the innovations:

T
∑

t=1

1

TOt

(

yt −Htx
f
t

)T (

Rt +HtBtH
T
t

)−1 (

yt −Htx
f
t

)

≃ 1 .

(11)
Several simulations were carried out in order to find a rea-
sonable variance pair that satisfies the relation 11. With
(b, r) = (190µg2 m−6, 51µg2 m−6), the sum in Eq. 11 is
1.02. The ratio3 between r and b is therefore about 0.27,
which is also an appropriate ratio according to Wu et al.
[2008].

It should be emphasized that checking the reliability of
the assimilation procedure is an important step in EFA as
the final target is the analysis. One mistake would be to
underestimate the observation variance: then the analysis
and therefore the result of EFA would be artificially close
to the observations at station locations. Roughly speaking,
as the ratio r/b tends to 0, the procedure tends to sequen-
tial aggregation carried out at individual observed locations,
which is certainly not the objective here. EFA is designed
to forecast the best a posteriori knowledge of the state, not
the observations.
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Ensemble Simulations:
A model in the ensemble is uniquely defined by its phys-

ical formulation, its numerical discretization and, for conve-
nience, by its input data. Notice that none of the models
are simplified. Any of them could a priori be used for oper-
ational forecasting or for modeling activities—the compar-
ison with observations however shows that several models
have poor average performance. EFA is applied to an en-
semble of twenty models. More members could possibly be
added, but the number of models is kept low so that the
spin-up period in the learning procedure should not be too
long. A 30-day spin-up period was found to be long enough
for twenty models. The EFA algorithm is applied starting
from 2 January 2001, and the performance is evaluated from
1 February 2001. For the first ensemble forecast, at 15:00 on
1 February 2001, thirty past analyses are available in each
grid cell to compute the twenty weights.

Out of the simulations of Garaud and Mallet [2010], nine-
teen members are selected for inclusion in the ensemble.
Five of them are very similar to the reference simulation,
except that one or two parameterizations were changed (for
vertical diffusion, and for vertical-wind diagnosis)4. The
other members were randomly generated based on 30 alter-
natives (with two, three or four options) related to the phys-
ical parameterizations, the numerical discretization and the
input data. Tests show that the overall results of EFA are
not sensitive to the choice of these nineteen members. A
fully random selection of these members gives very similar
results.

The twentieth member of the ensemble is based on the
reference model involved in an assimilation cycle. Since se-
quential data assimilation is applied to that model, it is
possible to compute an improved forecast starting from an
earlier analysis. In that case, the optimal interpolation is
carried out, on the reference model (from the beginning of
2001) until 19:00 in day D, and a subsequent forecast is car-
ried out until 15:00 in day D+1. This is applied every day
in a cycle supposed to mimic operational forecasting. Con-
trary to any of the nineteen other members of the ensemble,
the inclusion of this twentieth member makes a noteworthy
(though not essential) improvement to the EFA results.

Ensemble Forecast of the Analyses:
A slight adjustment to the algorithm is needed since the

assimilation (Eq. 4) is applied on an hourly basis, while the
aggregation is carried out on a daily basis (to forecast the
ozone field at 15:00). If the time index t refers to hours,
starting from t = 1 on the 2 January 2001 at 01:00, then the
assimilation produces analyses x̃a

t for every hour (Eq. 4).
But the aggregation occurs only for any t = 24n+15 (n ≥ 0),
so that only wi,24n+15 (Eq. 12) and x̂i,24n+15 (Eq. 7) are
computed. In addition the weights are computed only on
the basis of data at 15:00, for n ≥ 0:

wi,24n+15 = argmin
u∈RM

[

λ‖u‖22

+

n−1
∑

n′=1

(1 + ψn−n′)

(

x̃ai,24n′+15 −
M
∑

m=1

umx
m
i,24n′+15

)2


 .

(12)

These adjustments do not alter the theoretical guarantees.
In the long run, the result of EFA will be at least as good
as that of the best constant (in time) linear combination
considering only the concentrations at 15:00.

In this application, only the ground-level ozone field (that
is, ozone concentrations in the first layer of the models) is
aggregated, not the whole state. Nevertheless it would pos-
sible to aggregate the 3D ozone field and the 3D concentra-
tion fields of other chemical species. Due to the assimilation

procedure, the concentrations of all chemical species might
improve as the corrections applied to ozone propagate into
the model.

The aggregation parameters were chosen according to
previous studies [Mallet et al., 2007a; Gerchinovitz et al.,
2008; Mallet et al., 2009]. A few preliminary tests on the
available data have also been conducted. The penalization
is weighted with λ = 125 and the discounting coefficients
are ψn = γ/t2 with γ = 20. The results proved not to be
very sensitive to these parameters. The preliminary tests
explored values of λ in [75, 125] and of γ in [10, 30] without
noteworthy changes in the performance. This is consistent
with the low dependency of the aggregation results to the
parameters, which was observed in Mallet et al. [2009].

3.2. Results and Discussion

The reference model, to which the optimal interpolation
is applied, shows good performance and could be used in
operational forecasting. It is used to better quantify the im-
provements brought by the EFA procedure. The forecasts
(starting from analyses at 19:00) of the assimilation cycle
are also taken as a means to assess the ensemble forecasts.
These forecasts will be referred to as those of the reference
model with assimilation. Note that the reference model is
not in the ensemble, but the reference model with assimila-
tion is.

The performance is first evaluated with the root mean
square error (RMSE) between the forecasts and the anal-
yses, from 1 February to 30 December. All grid cells in
the first model layer are included in the calculation. The
RMSE between the reference forecasts and the analyses is
15.8µgm−3. The RMSE between the reference forecasts
with assimilation and the analyses is the lowest among all
members in the ensemble: 13.5µgm−3 which is a 15% reduc-
tion of the error. The RMSE between EFA and the analyses
is 11.3µgm−3, which is a 28% reduction of the error, com-
pared to the reference simulation. Note that, in a few tests
with ensembles composed of the reference model with as-
similation and of 19 randomly generated models, the RMSE
remained in 11.3− 11.4µgm−3.

In order to evaluate the spatial distribution of the im-
provements, the RMSE of time series may be computed on
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Figure 2. Difference between the RMSE (µgm−3) for
the reference with assimilation and the RMSE for EFA.
In each grid cell, the RMSE is computed with all the
15:00 concentrations from 1 February to 30 December.
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Figure 3. RMSE (µgm−3) against time for EFA and the reference simulation with and without assim-
ilation. For each day, the RMSE is computed with all grid cells of the simulation domain.
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Figure 4. Mean field of ground-level ozone concentration (µgm−3) at 15:00, from 1 February to 30 De-
cember. Top: reference (left) and reference with assimilation (right). Bottom: EFA (left) and analyses
(right).

a grid cell basis. In Figure 2, the difference between the
RMSE for the reference with assimilation and the RMSE

for EFA demonstrates that EFA performs better than the
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reference with assimilation in most grid cells—its RMSE is
lower in over 90% of the grid cells. The largest improve-
ments are essentially found in regions that are observed. In
the observed regions, the analyses differ the most from the
ensemble simulations, and there is room for improvement.
The RMSEs may also be computed on a daily basis (Fig-
ure 3). Again, EFA performs better than the reference, with
or without assimilation, at over 90% of the dates. It is note-
worthy that the peak RMSEs are significantly lower with
EFA, even compared to the reference with assimilation, for
example in September, October, late June and late July. In
this application, EFA is therefore not only efficient, with low
global RMSE, but also robust in the sense that it does not
introduce large local errors.

In each grid cell, the weights of EFA are learned indepen-
dently of the other grid cells. Yet EFA is able to reproduce
spatial patterns. On average, EFA produces patterns that
are almost identical to that of the analyses. In Figure 4,
the ground-level ozone field at 15:00, averaged from Febru-
ary to December, is shown for the reference simulation with
and without assimilation, for the EFA and for the analyses.
The two reference forecasts show very similar patterns, and
a number of patterns that appear in the analyses are either
missing or very faint. On the contrary EFA clearly captures
almost all patterns, such as the low concentrations off the
coasts of northern Spain; the lower concentrations (com-
pared to the references) over Ireland, over southern Scot-
land, over Slovakia, along Portuguese coasts or in the vicin-
ity of Lyon (France); the higher concentrations (compared
to the references) in the vicinity of Madrid or in northern
Germany. On seasonal averages (not shown here), EFA also
produces almost the same maps as the analyses. On a daily
basis, EFA still better catches the patterns than the refer-
ence with assimilation, but there are clear misses.

In Figure 5, the time evolutions of the weights associated
with the 20 members of the ensemble are shown in a grid
cell to the north of Spain. This grid cell is marked with
a black rectangle in Figure 1 and it is located in a region,
with low concentrations, that is reconstituted only by EFA
(see Figure 4). Many models are given a weight significantly
different from zero. Hence the algorithm seems to extract
information from the whole ensemble. The reference sim-
ulation with assimilation gets one of the highest weights,
probably because it produces the closest concentrations to
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Figure 5. Time evolution of the weights computed by
EFA from 2 January to 31 December, in a grid cell to the
north of Spain (black rectangle in Figure 1). The thick
red line in the upper part of the figure is associated with
the reference model with assimilation.

the analyses. At locations farther from the network, the
reference model with assimilation can be clearly given the
highest weights since it almost coincides with the analyses.
It is difficult to further interpret weights that can be nega-
tive and of any magnitude. The member that has the best
performance in a given grid cell is not necessarily given a
strong weight, since the objective of the aggregation is to
produce the best linear combination, not to select the best
model.

The time evolution of the weights is slightly erratic, which
may bring into question the robustness of the method. The
time evolution of the RMSE, as shown in Figure 3, demon-
strates some robustness in the performance. Furthermore,
the weights can be applied for D+2 forecasts with a lim-
ited loss in performance. In this case, the weights originally
computed for D+1 are applied as such to the D+2 forecasts
of the ensemble members. The RMSE of EFA D+2 fore-
casts, from 1 February to 30 December, is 11.9µgm−3. On
the contrary, the D+2 forecasts of the reference simulation
with assimilation are close to those without assimilation,
and their RMSE is 15.0µgm−3. This low performance is es-
sentially due to the low sensitivity of ozone forecasts to the
initial conditions; the benefits of data assimilation vanish
quickly. EFA overcomes this limitation. The D+2 forecasts
of EFA retain all the spatial patterns of the analysis: the
mean ground-level ozone field is very similar to that of D+1
forecasts and of the analyses (as shown in Figure 4).

Finally, the forecasts are compared to the observations
(Figure 6). Note that the forecasts should not reproduce
exactly the observations because there are measurement er-
rors and representativeness errors. This is the reason why
EFA does not aim to forecast the observations but the anal-
yses. The distance to the observations is measured with
a root mean square discrepancy (RMSD), whose formula
is the same as the RMSE but involves only observed loca-
tions. The RMSD between the forecasts and the observa-
tions is computed from 1 February to 30 December, using
the 15:00 observations of EMEP network. The RMSD of
the reference forecasts without assimilation is 21.6µgm−3.
The reference forecasts with the assimilation cycle perform
better with a RMSD decreased by 9%: 19.8µgm−3. The
RMSD of EFA is 28% lower than that of the reference fore-
casts (without assimilation): 15.6µgm−3. The D+2 fore-
casts of EFA show again good performance, with a RMSD
of 16.4µgm−3 (24% improvement compared to the refer-
ence without assimilation). In contrast, the reference with
assimilation only slightly improves the D+2 forecasts with
a RMSD of 21.0µgm−3.

4. Conclusions

This paper introduces an approach to couple data as-
similation and sequential aggregation of ensemble simula-
tions. Contrary to classical ensemble forecasting, the aim
is not to forecast the observations but the best a posteriori
knowledge of a model’s state. In this paper, the latter is
an analysis produced by a data assimilation method. The
proposed approach therefore produces an ensemble forecast
of the analysis. The ensemble aggregation is carried out by
a learning algorithm, which produces a linear combination
with weights associated with every model, time step and
component of the model’s state.

The learning algorithm theoretically guarantees that, in
the long run, the error between the aggregated forecasts and
the analyses is at least as low as the error of the best con-
stant combination of the ensemble members. This property
is verified for every component of the state, independently
of the other components, and without assumptions on the
analyses and on the ensemble simulations. Thus the method
competes in every grid cell and for every variable with the
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Figure 6. Concentration (µgm−3) averaged over all stations, against time, for the reference simulation,
EFA and the observations.

best constant linear combination of the ensemble members.
In that sense, EFA is able to optimally exploit the informa-
tion brought by the ensemble. Also, observation errors can
be properly accounted for in the assimilation stage.

The method is applied to ground-level ozone forecasting
with an ensemble of Eulerian chemistry-transport models.
EFA forecasts the analyses significantly better than any sin-
gle member in the ensemble, including the reference mem-
ber with assimilation. In the forecast of the analyses, the
RMSE of EFA is decreased by 28% compared to that of
the reference simulation. The method is able to reproduce
the average spatial patterns of the analyses. It also per-
forms very well in comparisons against observations (with
also a reduction of 28% of the RMSD, compared to the ref-
erence simulation). The improvements are still strong in the
D+2 forecasts, with 25% improvement (compared to the ref-
erence) in forecasting analyses and 24% in forecasting ob-
servations, which contrasts (in this application) with data
assimilation alone.

Ensemble forecasting of analyses provides a rigorous
mathematical and algorithmic framework, but it opens a
number of new issues at the same time. There may be fur-
ther work on the aggregation algorithm. For instance, in re-
gions where there are no observations, the reference forecasts
and the analyses should be similar: the algorithm should
quickly converge to the reference forecasts. The aggregation
algorithm should also take into account the spatial distri-
bution of the concentrations. Currently, the aggregation is
performed independently for each element of the model’s
state. This strategy gives a strong theoretical guarantee
since EFA then competes against the best constant linear
combination for every single state component, but it does
not include any information about the spatial patterns. An-
other area for further research is how to extend the method
to estimate the uncertainty associated with the forecasts.

Appendix A: Data Assimilation and Sequential
Aggregation

Let x̃
f
t be a model forecast at time t ∈ {1, . . . , T}. It is

also referred to as the state vector of the model. The anal-

ysis state vector is denoted x̃a
t , and the true state is x̃t

t. At
time t, the observation vector is denoted yt. A linear obser-
vation operator Ht maps from the space of the model state
to the observation space, so that Htx̃

f
t is the forecast of yt.

A1. Data Assimilation: Generation of the Analyses

In many data assimilation methods, the forecast error
e
f
t = x̃

f
t − x̃t

t is modeled as a random variable, with zero
mean and with variance Bt. Similarly, the observational er-
ror eo

t = yt − Htx̃
t
t is modeled as a random variable, with

zero mean and with variance Rt.
The analysis x̃a

t may be taken as the best linear unbiased
estimator, BLUE. This estimator is defined so that (1) it is
a linear combination of x̃f

t and yt, (2) it is unbiased, and (3)
its error ea

t = x̃a
t − x̃t

t has a variance with minimal trace—
it minimizes

∑

i
var(eai,t) where e

a
i,t is the ith component of

ea
t . In that sense, the BLUE can be seen as the best es-

timate of the true state, based on the simulated state, the
observations and their error statistics Bt and Rt.

The BLUE has an explicit formulation:

x̃
a
t = x̃

f
t +BtH

T
t

(

HtBtH
T
t +Rt

)−1

(yt −Htx̃
f
t ) . (A1)

Other estimators can be considered in the EFA method.
The key point is that the estimator should be the best
estimate—in some sense—of the true state. The BLUE may
be a good option, which can be the computed by a data
assimilation method like a Kalman filter.

A2. Sequential Aggregation

An ensemble of forecasts is available at time t with the
sequence (x1

t , . . . ,x
M
t ) where M is the number of models.

The forecast of a single model m is therefore denoted xm
t .

Sequential aggregation consists in generating a linear combi-
nation of the ensemble forecasts. The weights are computed
based on past observations and ensemble predictions. This
procedure is repeated before each forecast time-step. With
proper weight computations, the aggregated forecasts are
guaranteed to perform, in the long term, at least as well
as the best constant (in time) linear combination of mod-
els. Other algorithms compete against the best constant
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convex combination (i.e., with positive weights summing up
to one), or simply against the best model. Many aggrega-
tion algorithms have been derived in the machine learning
community, see Cesa-Bianchi and Lugosi [2006] for a good
introduction, and see Mallet et al. [2009] for their applica-
tion in the context of atmospheric forecasting.

Before every forecast step t, new weights vt are com-
puted according to past observations y1, . . . ,yt−1, the past
predictions xm

1 , . . . ,x
m
t−1 and, in given methods, the predic-

tions to be aggregated xm
t (m = 1, . . . ,M). For example, an

aggregation algorithm can be given by the discounted ridge
regression [Mallet et al., 2007a, section 13]:

vt = (v1,t, . . . , vM,t)
T = argmin

u∈RM

[

λ‖u‖22

+

t−1
∑

t′=1

(1 + ψt−t′)

∥

∥

∥

∥

∥

yt′ −
M
∑

m=1

umHt′x
m
t′

∥

∥

∥

∥

∥

2

2



 , (A2)

where ‖·‖2 is the Euclidean norm (2-norm), λ > 0, and ψt is
a decreasing sequence that discounts the quadratic discrep-
ancies of the faraway past; e.g., ψt = γ/tβ , with γ, β > 0.

It can be shown [Cesa-Bianchi and Lugosi , 2006] that, in
the long run, the mean quadratic performance of the aggre-
gated forecasts,

∑M

m=1
vm,tHtx

m
t , is at least as good as the

mean quadratic performance of the best constant (in time)
linear combination. Formally,

T
∑

t=1

1

TOt

∥

∥

∥

∥

∥

yt −
M
∑

m=1

vm,tHtx
m
t

∥

∥

∥

∥

∥

2

2

− min
u∈RM

T
∑

t=1

1

TOt

∥

∥

∥

∥

∥

yt −
M
∑

m=1

umHtx
m
t

∥

∥

∥

∥

∥

2

2

> O
(

lnT

T

)

,

(A3)

where Ot is the size of yt. On the left hand side, the first
term is the mean square error of the aggregated forecast,
and the second term is the mean square error of the best
constant linear combination.

In other words, the aggregated forecast tends to have a
root mean square error (RMSE) at least as good as that
of the best constant linear combination. This theoretical
guarantee holds whatever the sequence of observations and
predictions may be. No assumption is made, except that
the quadratic error per time step is bounded (which is ob-
viously satisfied in geophysical applications); in particular,
no stochastic assumption is made.

Notice that both the learned weights and the weights of
the best constant combination are unconstrained. In partic-
ular, the weights can be negative. Also note that there are
many other algorithms, several of which produce weights
for convex combinations. See Mallet et al. [2007a] for an
overview of the other algorithms.

Appendix B: Convex EFA

In the body of the paper, EFA is illustrated with the dis-
counted ridge regression. Other methods can be applied in
the EFA framework. The reader may refer to Mallet et al.
[2009] for an introduction to machine learning methods with
similar guarantees as that of Section 2.5. These methods are
further detailed in the technical report Mallet et al. [2007a].

The weights produced by the discounted ridge regression
are unconstrained. They can take any value, even negative.
There are learning methods that produce weights for convex
combinations in which the weights are all positive and they
sum up to 1. One example is the exponentiated gradient

[e.g., Cesa-Bianchi , 1999], which in the EFA context, reads:

wm
i,t =

exp
[

−2η
∑t−1

t′=1
xmi,t′

(

∑M

m′=1
wm′

i,t′x
m′

i,t′ − x̃ai,t′
)]

∑M

m′′=1
exp

[

−2η
∑t−1

t′=1
xm

′′

i,t′

(

∑M

m′=1
wm′

i,t′
xm

′

i,t′
− x̃a

i,t′

)] ,

(B1)
starting with wm

i,1 = 1/M , for all m. The aggregated fore-
casts x̂t will perform in the long run at least as well as the
best convex combination:

T
∑

t=1

1

T
‖x̃a

t − x̂t‖22

− min
u1,...,uN∈XM

T
∑

t=1

1

T

∥

∥

∥
x̃
a
t − C(u1, . . . ,uN ,x

1
t , . . . ,x

M
t )
∥

∥

∥

2

2

≤ O
(

1√
T

)

, (B2)

for an optimal choice of η. XM is the set of all vectors whose
components are positive and sum up to 1. The theoretical
guarantee is weaker than that of the (discounted) ridge re-
gression since only convex combinations are formed here.
The method could anyway show interesting performance in
special cases. Notice that there is also a discounted version
of the exponentiated gradient, see Mallet et al. [2009] for
further details.

Notes

1. This is the same guarantee as introduced in Section A2,
Eq. A3, except that the reference is the analysis, not the
observations.

2. This model is referred to as the fourth reference model (R3) in
Garaud and Mallet [2010].

3. The individual values of r and b have no impact on the assim-
ilation procedure as long as the ratio between r and b remains
the same.

4. Following the terminology of Garaud and Mallet [2010], these
five models are the six “reference members”, except (R3).
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