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GRAVIR, INRIA Rhdne-Alpes, 655 avenue de I'Europe, 38330 Montbonnot, France
{Cristian.Sminchisescu,Bill. Trigg&inrialpes.fr, www.inrialpes.fr/movi/peopk@minchisescu, Triggs

Abstract We believe that a successful monocular 3D body track-
We present a method for recovering 3D human body motion froing system must pay attention to each of these three diffi-
monocular video sequences using robust image matching, joint limalties. We control correspondence errors with a carefully
its and non-self-intersection constraints, and a new sample-andesigned robust matching metric that combines robust opti-
refine search strategy guided by rescaled cost-function covariancgg flow, edge energy, and motion boundar#y( Our sys-
Monocular 3D body tracking is challenging: for reliable track-e s the first to enforce both hard joint angle limits and
ing at 'eas.t 30 joint parameters ne.ed to be eSt".nated' .SUbJe(.:t B%dy non-self-intersection constraints, and also includes full
highly nonlinear physical constraints; the problem is chronically ill- (P occlusion prediction. The various ambiguities and nonlin-

conditioned as about 1/3 of the d.o.f. (the depth-related ones) a:? . ke th f . i dal
almost unobservable in any given monocular image; and matchir,‘?‘ﬁar't'eS make the parameter-space cost function muiti-modal,

an imperfect, highly flexible, self-occluding model to cluttered imfll-conditioned and highly nonlinear, so some form of non-
age features is intrinsically hard. To reduce correspondence amipcal search is required. Existing approaches that we are
guities we use a carefully designed robust matching-cost metric thavare of §1.2) do not work well in this context, so we intro-
combines robust optical flow, edge energy, and motion boundariefuce a novel hybrid search scheme that combines covariance-
Even so, the ambiguity, nonlinearity and non-observability make thgaled ‘oversized’ sampling with local optimization subject
parameter-space cost surface multi-modal, unpredictable and i joint and non-self-intersection constrainfg We fin-
conditioned, so minimizing itis difficult. We discuss the limitations g6, with experimental results on some challenging monocu-
ConDENsATIONike samplers, and introduce a novel hybrid search ;. sequences, that illustrate the need for each of robust cost

algorithm that combines inflated-covariance-scaled sampling and,jejing  joint and self-intersection constraints, and well-
continuous optimization subject to physical constraints. Experi- trolled samoling plus local optimization
ments on some challenging monocular sequences show that rob%%? piing p P )

cost modelling, joint and self-intersection constraints, and informed

sampling are all essential for reliable monocular 3D body tracklng.l.l High-DimensionaI Search Strategies
Keywords: 3D human body tracking, particle filtering, high-
dimensional search, constrained optimization, robust matching. Locating good poses in a high-dimensional body configura-
tion space is intrinsically difficult. Three main classes of
search strategies exidtical descentincrementally improves
1 Introduction an existing estimate,.g using local Taylor models to predict
good search directions [6, 23, 18, 28, 2&gular sampling
Extracting 3D human motion from natural monocular Videgvalgates the cost function at a predefined pattern qf points in
sequences poses difficult modelling and computation profst Slice of) parameter spaeg a local rectangular grid [11];
lems: §) Even a minimal human model is very COmp|e)(§1ndsto_chastlc samplmggener_ateg rqndqm samplmg points
with at least 30 joint parameters and many more body shapgeording to some hypothesis distribution encoding “good
ones, subject to joint limits and non-self-intersection corlaces to look™ [9, 25]. Densely sampling the entire param-
straints. i) Unlike the 2D and multi-camera 3D cases, in anfft€r Space would guarantee a good solution but is infeasible
given monocular image about 1/3 of the degrees of freeddhmore than 2-3 dimensions. In 30 dimensions any feasi-
are nearly unobservable (mainly motions in (relative) depth!€ Sample must be extremely sparse and hence likely to miss
but also rotations of near-cylindrical limbs about their axes§ignificant cost minima. Descent methods at least (at some
(i) Matching a complex, imperfectly known, self-occluding®Pense) findbcal minima, but can not guarantee global opti-
model to a cluttered scene is inherently hard. These difficility. Our method tries to balance local and global effort us-
ties interact: minor body modelling or feature matching errof89 @ combination of carefully controlled sampling and local
often lead to large compensatory biases in estimated deptPRlimization. Effective focusing of effort is the key to high-
which eventually cause mis-prediction and tracking failure. dimensional search. This is an active research area [9, 14, 7],
but no existing method can guarantee a global minimum.
To appear IEEE CVPR 2001 During tracking, the search method is applied time-




recursively, the starting point(s) for the current search beervability singularity: small rotations towards or away from
ing obtained from the optimized results at the previous tinthe camera leave the image unchanged to first order. Sim-
step, perhaps according to some noisy dynamical model. ifarly, finite towards- and away-from-camera rotations give
the (often limited!) extent that the dynamics and the imageery similar images, so even if the segment matching cost
matching cost are realistic statistical models, Bayes-law proig-monomodal in the image, it is always multimodal in pa-
agation of a probability density for the true state is possibleameter space. To handle these difficulties, time integration
For linearized monomodal dynamics and observation modr additional domain constraints such as joint limits and body
els under Gaussian noise, this leads to (Extended) Kalmaon-self-intersection must be incorporated.
Filtering. For likelihood-weighted random sampling under Deutscher [9] uses a sophisticated ‘annealed sampling’
general multimodal observation models)KIDENSATIONre-  strategy to speed updNDENSATION, but for his main se-
sults. In both cases the various hyperparameters must dagence uses 3 cameras and a black background. Sidenbladh
carefully tuned for good performance. Visual tracking usy25] uses a similar importance sampling technique with a
ally works in the ‘shotgun in the dark’ regime: observatiorstrong learned prior walking model to track a walking per-
likelihoods are quite sharply peaked but multimodal, so tson in an outdoor sequence. Our method does not yet include
avoid mistracking, the dynamical noise has to be turned @pmotion model (we optimize static poses), but it is true that
until it produces a scatter of samples just big enough to cowshen they hold, prior motion models are very effective track-
typically-nearby peaks. In this regime there is negligible trang stabilizers. It is possible, but expensive, to track using a
jectory smoothing so Kalman-style covariance updating is sbank of motion models [4]. Partitioned sampling [20] is an-
perfluous: the previous posterior determines the locations aother notable sampling technique for articulated models, un-
weights of the search regions, the dynamical noise determirger certain labelling assumptions [20, 9].
their breadth, and the observation likelihood determines theHeap & Hogg [14] and Cham & Rehg [7] combine
location and shape of the new posterior peak(s) within ea@oNDENSATION-style sampling with local optimization, but
region. they consider only the simpler case of 2D tracking. Cham
Many existing methods use inflated dynamical noise as &Rehg combine their heuristic 2D Scaled Prismatic Model
empirical search focusing parameter [7,14, 9], but we fif®PM) body representation with a first order motion model
that it produces poorly shaped search regions. An efficiemtd a piecewise Gaussian resampling method for tha-C
high-dimensional search must adapt to the local cost surfab&NSATION step. The Gaussian covariances are obtained
Rather than inflating the dynamical noise, we will argue th&tom the Hessians at the fitted optima, as in our method,
one should use realistic dynamics, then modestly inflate thet the search region widths are controlled by the traditional
resultingprior (previous posterior after dynamics) covariancenethod of adding a large dynamical noise. This appears to
to define the search region. This inflates the posterior uwork reasonably well for 2D SPM tracking, which is essen-
certainty as well as the dynamical one, allowing far deeptally free of observability singularities. But we fing%) that
sampling along the most uncertain directioagy(poorly ob- it can not handle the much less well-conditioned monocu-
servable depth d.o.f.), and thus preventing mistracking digr 3D case. One puzzling point in [7] is the presence of
to inadequate exploration of these hard-to-estimate parameti@sely-spaced minima with overlapping peaks, which mo-
combinations. This simple change makes a huge differenid¢ated Cham & Rehg to introduce their piecewise Gaussian
in practice. For example, for the 32d.o.f. cost spectrum ftistribution model. We do not observe such overlaps, and
fig. 3 with inflation large enough to double the sampling rawe suspect that they were caused by incomplete convergence
dius along the most uncertain directiond, for a modest in the optimizer, presumably due to either over-loose conver-
search for local minima along this cost valley), the uniforngence criteria, or a noisy cost function (we took considerable
dynamical noise method would produce a search voligie  pains to make ours smooth).
times larger than that of our prior-based one.

2 Human Body Model

1.2 Previous Work _ .
Our human body model (fig.1a,b) consists of kinematic

We will compare our method to several existing ones, whickkeletons’ of articulated joints controlled by angular joint
we briefly summarize here without attempting a full literaparameters covered by ‘flesh’ built from superquadric ellip-
ture review. 3D body tracking from monocular sequencesids with additional tapering and bending parameters [1]. A
is significantly harder than 2D [7,17] or multi-camera 3Ltypical model has about 30int parameters x,; 8 internal

[18, 11,6, 22] tracking and surprisingly few works have adsroportion parameters; encoding the positions of the hip,
dressed it [9, 25, 28, 15,5]. The main additional difficulty i€lavicle and skull tip joints; and 8eformable shapeparam-

the omnipresence of depth ambiguities. Every limb or bodsters for each body part, gathered into a vegipr A com-
segment lying near a frontoparallel plane has a first-order gllete model can be encoded as a single large parameter vector



wheree(r;|x) is the cost density associated with observation
i, the integral is over all observations, aw(ck) is the prior on

the model parameters. Discretizing the continuous problem,
our MAP approach minimizes the negative log-likelihood for
the total posterior probability:

f(x) = —logp(r|x) —logp(x) = fi(x)+ fp(x)

3.1 Observation Likelihood

Figure 1: Two views of our human body model, and examplé&’hether continuous or discrete, the search process depends
of our robust low-level feature extraction: original image (c)ritically on the observation likelihood component of the
motion boundaries (d), intensity-edge energy (e), and robysirameter-space cost function. Besides smoothness proper-
horizontal flow field (f). ties, the likelihood should be designed to limit the number of

spurious local minima in parameter space. Our method em-
x = (Xq,Xq,%;). During tracking we usually estimate onlyploys a combination of robust edge and intensity information
joint parameters, but our initialization method also estimat@# top of a multiple assignment strategy based on a weight-
the most important internal proportions and shape paranigg scheme that focuses attention towards motion boundaries.
ters, subject to a soft prior based on standard humanoid Hieature contributions are fused using robust (heavy-tailed) er-
mensions from [13] updated using collected image evidender distributions,i.e. both robustly extracted image cues and
Although far from photorealistic, this model suffices for highrobust parameter space estimation are used. The former pro-
level interpretation and realistic occlusion prediction, and o#des “good features to track”, while the latter directly ad-
fers a good trade-off between computational complexity arttesses the model-image association problem.

coverage. Robust Error Distributions: MAP parameter estimation is
The model is used as follows. Superquadric surfaces aigturally robust so long as it is based on realistic ‘total like-
discretized as meshes parametrized by angular coordinategHBods’ for the combined inlier and outlier distributions of
a 2D topological domain. Mesh nodes are transformed the observations. We model these as robust penalty functions
into 3D pointsp; = p;(x) and then into predicted image y,(s,) of the normalized squared erross = || Ar;||?/o?2.
pointsr; = r;(x) using composite nonlinear transformationgachp, (s) is an increasing sublinear function with(0) = 0
ri(x) = P(pi(x)) = P(A(xa,%i, D(xq4,1,))), whereD and -2 p,;(0) = 1, corresponding to a radially symmetric er-
represents a sequence of parametric deformations that cegr- distribution with a central peak of width. Here we
struct the corresponding part in its own reference frarhe, ysed the ‘Lorentzianp(s) = vlog(l + s/v) and ‘Leclerc’
represents a chain of rigid transformations that map it throughis) = (1 — exp(—s/v)) potentials, where is a strength
the kinematic chain to its 3D position, atirepresents per- parameter related to the frequency of outliers.
spective image projection. During model estimation, robust Normalizing by the number of nodég in each mesh, the
prediction-to-image matching cost metrics are evaluated fgbst adopted for thé!”” observation ise(F;|x) = Lei(x),

each predicted image featurg and the results are summedyhereWs; is a positive definite weighting matrix and:
over all features to produce the image contribution to the

overall parameter space cost function. We use both image- 1pi(Ari(x) W; Ari(x) ") if is assigned
based cost metrics such as robustified normalized edge ef:(X) = { vy =v !f back-facing
ergy, and extracted-feature-based ones. The latter associate Voce = kv, k> 1 if occluded

the predictionsr; with one or more nearby image featuresry,q yy¢a| robust observation likelihood is thus:
r; (with additional subscripts if there are several matches).

The cost is then a robust function of the prediction errors fi(x) = —logp(f|x) = fo(x) 4+ Nos b + Noce Voce
Ar;(x) =T; — r;i(x). 2

where f,(x) represents the term associated with the image
assigned model nodes, whilé,.. and N, ¢ are the numbers

3 Problem Formulation of occluded and back-facing (self-occluded) model nodes.

We aim towards a probabilistic interpretation and optimdfU€ Integration and Assigned Image DescriptorsWe use

estimates of the model parameters by maximizing the tof2pth €dge and intensity features in our cost function. For
probability according to Bayes rule: edges, the images are smoothed with a Gaussian kernel, con-

trast normalized, and a Sobel edge detector is applied. For
p(x|r) o p(r|x)p(x) = exp (- [e(r;|x)di) p(x) (1) intensities, a robust multi-scale optical flow method based on



Black’s implementation [2] gives both a flow field and an as3.3  Distribution Representation

sociated outlier map. The outlier map conveys useful infor- e
mation about the motion boundaries and is used to weigY}{e represent posterior distributions as sets of separate modes

the significance of edges (see fig. 1d). The motion bound € M, each having an associated probability, mean and

aries are processed similarly to obtain a smooth image. éanan_ce ma_ttrtlerZ- = (ci, 1, ztll) Tg'ﬁ‘ car:&bs vr:ewsd as
visible nodes on model occluding contou€3)( we perform a f>aussian mixture approximation. am ehg [7] use a

line search along the normal and retain all possible assi milar model but need a special piecewise representation as

ments within the search window, weighting them by their im= <"~ modes seem to occur in clugters after optimization. We
portance qualified by the motion boundary map. For visibl*%el'eve that this is an artifact of their cost function design. Our
nodes lying inside the objecT), we use intensity. informa- modes result from running local continuous optimizations to

tion derived from the robust optical flow. The assigned dafPNvergence, so they are necessarily either well separated or
term (2) thus becomes: confounded. Our sampling method is also significantly dif-

ferent from [7], as explained ifd.2.

1
) =5 Y pi (AW Ar ()")
€0, eEE; 3.4 Temporal Propagation
1
+5 > pi; (Arjf (x) Wj, Ar;, (X)T) Equation (1) gives the model likelihood in a static image,
JjeT under model priors but without initial state or temporal pri-
where the subscripts ah and;j; denote respectively multi- ©'S-  Adding temporal models with observatioRs =
ple edgest; assigned to model predictionand flow terms {T1, .., T:}, the posterior distribution becomes:
assigned to model predictigh ~
paRe) o plrifx)px) | ploxlxica) plxea[Rica)
Xt—1

3.2 Model Priors Herep(x:|x;—1) is the dynamical model ang(x;_1|R:_1)
The complete prior penalty over model parameters is a sufthe prior distribution fromt — 1. Together they form the
of negative log likelihoodg, = f. + f. + fpa cOrresponding Prior p(x|R—1) for the static image search (1).

to the following prior densitiep,, ps, pys:

Anthropometric data p,: The internal proportions for a i i i
standard humanoid are collected from [13] and used effef:l- Optlmlzatlon Algonthm

tively as a Gaussian priop, = N (g,, ), to estimate a o search technique combines robust constraint-consistent
concrete model for the subject to be tracked. Left-right synjs.g optimization and more global discrete sampling.
metry of the body is assumed: only “one side” of the internal

proportions parameters are estimated while collecting ima%re .

Parameter stabilizersp,: Certain details are far more impor-The robustified gradient and Hessian corresponding to the
tant than intuition would suggest. For example, it is imposnodel feature with possible assignments< A can be de-
sible to track common turning and reaching motions unlesised using the model-image Jacobiln= %_fx :

the clavicle joints in the shoulder are modelled accurately.

However, such parameters have fairly well defined equilib- T /

. . . i = J! " W. Ar;

rium positions and leaving them unconstrained would oftef’ : Z Pia Wia Sia

lead to ambiguities. We model them with Gaussian stabiliz-

ers arou.nd t'h(.a|r eqUIIIbr.I@,.g = N(pg, ). . - H = 3! <Z i, Wi, + 20 (W, Ar;, ) (W, Aria)T> Ji
Anatomical joint angle limits Cj;: 3D consistency requires acA

that the values of joint angles evolve within anatomically CORry o gradient and Hessian contributions from all observations

sistent intervals. We model this with a set of inequalities Qfis 55sembled, together with negative log prior contributions:
the formC}; - x < 0, whereC}; is a constraint matrix.

Body part inter-penetration avoidance p,,: Physical con- g =8+ VfatVfs+ Vi
sistency requires that different body parts do not inter- H=H,+ V%, +Vfi + Vfp
penetrate during estimation. We avoid this by introducin% . _

) ? ) ; use a second order trust region method for local optimiza-
repulsive potentials that decay rapidly outside the surface ofe . 2 .

1 tion. This chooses a descent direction by solving the regular-

each body partf,, = exp(~(x) [f()") where f(x) pon dis e o
defines the implicit surface of the body part ancbntrols the '
decay rate. (H+AW)Ax = —g subjectto Cj;x<0

acA
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Figure 2: (a) Displaced minimum due to joint limits con+igure 3: Typical covariance eigenvalue spect@ax/omin
straints, (b) Joint limits without body non-self-intersectiors 350 for the 8 d.o.f. arm model, 2000 for the 32 d.o.f. body
constraints do not suffice for physical consistency. one.

whereW is a symmetric positive-definite matrix andis a  overlapping modes lying further up the valley. Hence, we
dynamically chosen weighting factor. Joint limi€%; are sample according to rescaled covariances, typically scaling
handled as hard bound constraints in the optimizer, by prgp by a factor of around 10. One can sample either randomly
jecting the gradient onto the current active constraint seit according to a regular pattern. Our currentimplementation
Adding joint constraints changes the effective shape of tts@mples regularly, in fact only along the lines corresponding
cost function and hence the minimum reached. Fig. 2 plots@the lowest few covariance eigen-directions. Although this
1D slice through the constrained cost function together withives an exceedingly sparse sample, we find that it works well
a second order Taylor expansion of the unconstrained costpractice.
The gradient is nonzero at the constrained minimum owir gProposaI Density for Moden; — (¢, 11, %)
to the presence of the bounds. The constrained cost grg I Eigen-decomposB;, select itsk most uncertain eigen
- (2l

ent changes abruptly because active-set projection chang%s . . :
. . . . . R . irectionsv;, and reconstitute the subspace covariahce
the motion direction during the slice to maintain consistengy o L T
matrixX; = 375, A v; v

with the constraints. A
2. The proposal density j5 ~ A (u;, s X;). The stretch-

ing factors is 8—14 in our experiments.

4.2 Covariance Scaled Sampling

Covariance Scaled Sampler

Although representations based on propagating multigleJntil the desired number of samples are obtained:
modes, hypotheses or samples do tend to increase the|r@: Choose a mode; with probabilityc;

bustness of model estimation, the great difficulty with high-2. Sample fromm,’s proposal density;
dimensional distributions is finding a sampleable proposal
density that hits theitypical sets— the areas where most| Multiple-Mode Tracker
of their probability mass is concentrated. Here we develof &or each time-frame:
proposal density based on local parameter estimation undet:. Starting from the above samples, generate samplds
tainties. Local optimization gives us not only local modes, from p(x;|R;_1).

but also their (robust, constraint consistent) Hessians and. Refine each sampkle; using continuous optimizatio
hence estimates of their local parameter estimation uncertding4.1) to obtain(c;, u;, 3;). Prune redundant samplés
ties. The main insight is that alternative cost minima areconverging to the same minimum.
most likely to occur along local valleys in the cost surface, 3. Weight the samples by their prior likelihoods, assumjng
i.e. along highly uncertain directions of the covariance. It isthat they came from the closest (most probableoste-
along these directions that cost modelling imperfections, 3Dxiori) prior mode. Prune to keep the bdsmodes, and
nonlinearities and constraints have the most influence, as thenormalize the weights to compute
cost function is shallowest and the 3D movements are largest

there. This is particularly true for monocular 3D estimationfVe have empirically studied the shape of the cost surface by
where the covariance is unusually ill-conditioned owing to theampling along uncertain directions for various model config-
many unobservable motion-in-depth d.o.f. Some examplagtions. With our carefully selected image descriptors, the
of such multimodal behaviour along high covariance eigerost surface is smooth and our local optimizer reliably finds a
directions are given in fig.3. Also, it is seldom enough téocal minimum. Multiple modes occur for certain configura-
sample at the scale of the estimated covariance — signifiens, as in fig. 4, which shows the two most uncertain modes
cantly deeper sampling is needed to capture nearby but nofithe fig. 6 human tracking sequence at times 0.8s and 0.9 s.

=
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deformations of the arm muscles are significant and other im-
Figure 4: Multimodal behaviour along highest uncertaintgerfections in our arm model are also apparent.
eigen-directions (0.8 and 0.9s in cluttered body tracking se-The Gaussian single mode trackenanages to track 2D
quence). frontoparallel motions in moderate clutter, although it grad-
ually slips out of registration when the arm passes the strong
edges of the white pillar (0.5s and 2.2 s for the arm sequence
and 0.3 s for the human body sequence). Any significant mo-
tion in depth is untrackable.

The robust single mode trackdracks frontoparallel mo-
tions reasonably well even in clutter, but quickly loses track
during in-depth motions, which it tends to misinterpret as
frontoparallel ones. In the arm tracking sequence, shoulder
motion towards the camera is ‘explained’ as frontoparallel el-
bow motion, and the error persists until the upper bound of the
rﬁlbOW joint is hit at 2.6 s and tracking fails. In the full body
sequence, the pivoting of the torso is underestimated, being

rtly interpreted as quasi-frontoparallel motion of the left
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Figure 5: (a) Cost function slices at large scales, (b) Co
parison of sampling methods: (1)JOBDENSATION (dashed

circle coverage) randomizes each sample by dynamic noi bulder and elbow ioints. Despite the presence of anatomical
(2) MHT ([7], solid circle) samples within covariance suppor? u WJoInts. P! P '

(dashed ellipse) and applies the same noise policy as (1) J?Ii_nt cons_traints, the fist even_tually collapses into the body if
nally, our (3)Covariance Scaled Samplirfpattern ellipse) non-self-intersection constraints are not present.

targets good cost minima (flat filled ellipses) by inflating the 1N€ robust joint-limit-consistent multi-mode trackeor-

highly uncertain subspace of the current sample robust covdfictly estimates the motion of the entire arm and body se-
ance estimation (dashed ellipse)) guence. We retain just the 3 best modes found by sam-

pling along the 3 most uncertain directions for the arm se-

We have also studied the cost surface at much larger scaegnee, and the 7 best modes from the 6 most unc_ertaln di-
in parameter space — see fig. 5a. Note that we recover figgtions for Fhe full human body sequence. A.S d|spu§§ed
expected robust shape of the distribution, with some but nSt §4.2, multimodal behawou_r occurs mainly during signifi-
too many spurious local minima. Hence, the combination GRNtlY non-frontoparallel motions, between 2.2-4.0s for the

our robust cost function and informed search is likely to ™M Seguence, and over nearly the whole full body sequence
comparatively efficient computationally. (0.2-1.25s). For the latter, the modes mainly reflect the am-

biguity between true pivoting motion and its incorrect “fron-

toparallel explanation”.
5 Experiments We also compared our sampling method with a 3D version

of Cham & Rehg’s MHT [7] for the body turn sequence. (But
To illustrate our method we show results for an 8 second arttme original method used non-robust optimization and did not
tracking sequence and two full body ones (1.2s and 4 s). Alicorporate physical constraints or model priors). We used 10
of these sequences contain both self-occlusion and signifiodes to represent the distribution in our 30d.o.f. 3D model,
cant relative motion in depth. The first two (fig. 6) were shas [7] used 10 for their 38 d.o.f. 2D SPM model. Our first set
at 25 frames (50 fields) per second against a cluttered, wf-experiments used a nonrobust SSD image matching met-
evenly illuminated background. The third (fig. 7) is at 50 norric and a Levenberg-Marquardt routine for local sample opti-
interlaced frames per second against a dark background, mization, as in [7] (except that we use analytical Jacobians).
involves a more complex model and motions. In our unoptWith this cost function, we find that outliers cause large fluc-
mized implementation, a 270 MHz SGI O2 required about 5taations, bias and frequent convergence to physically invalid
per field to process the arm experiment and 180 s per field fownfigurations. Registration is lost early in the turn (0.5 ), as
the full body ones, most of the time being spent evaluating tle®on as the motion becomes significantly non-frontoparallel.



Figure 6: Arm tracking and full body tracking against a cluttered background.

Our second experiments used our robust cost function and dgasible configurations (fig. 8 g) with terminal consequences
timizer, but still with MHT-style sampling. The track survivedfor tracking. Finally, theobust fully constrained multi-mode
further into the turn, but was lost at 0.7 s when the depth vatrackeris able to deal with significantly more complex mo-
ation became larger. As expected, we find that a dynamidains and tracks the full sequence without failure (fig. 7).
noise large enough to provide usefully deep sampling along
uncertain directions produces much too deep sampling along .
well-controlled ones, so that most of the samples are wast8d Conclusions and Future Work
on uninformative high-cost configurations. Similar arguments
apply to standard GNDENSATION, as can be seen in theWe have presented a new method for monocular 3D human
monocular 3D experiments of Deutscher [9]. body tracking, based on optimizing a robust model-image
matching cost metric combining robustly extracted edges,
Black background sequence:in this experiment we focus fiow and motion boundaries, subject to 3D joint limits, non-
on 3D errors, in particular depth ambiguities and the infliself-intersection constraints, and model priors. Optimiza-
ence of physical constraints and parameter stabilization pfion is performed using Covariance Scaled Sampling, a novel
ors. We use an improved body model with 34 d.o.f. The foqﬂgh_dimensiona| search Stra‘[egy based on Sampling a hy-
extra parameters control the left and right clavicle joints in thgothesis distribution followed by robust constraint-consistent
shoulder CompIeX, which we find to be essential for fOllOWinmca| refinementto find a nearby cost minima. The hypothesis
many arm motions. Snapshots from the full 4 s sequence igtribution is determined by combining the posterior at the
shown in fig. 7, and various failures modes in fig. 8. previous time step (represented as a Gaussian mixture defined
TheGaussian single mode trackeranages to follow near- by the observed cost minima and their Hessians / covariances)
frontoparallel motions fairly reliably owing to the absence o&nd the assumed dynamics to find the current-time-step prior,
clutter, but it eventually loses track after 0.5 s (fig. 8 a-d). Thiéen inflating the prior covariances to sample more broadly.
robust single mode trackeracks the non-frontoparallel mo- Our experiments on real sequences show that this is signifi-
tion somewhat longer (about 1s, fig. 8 e-f), although it siggantly more effective than using inflated dynamical noise es-
nificantly mis-estimates the depth — the right leg, shouldéimates as in previous approaches.
and head are too far forward compared to the “correct” poseFuture work will compare stochastic and regular sampling
in fig. 7 — and eventually loses track during the turn. Th€SS and variant covariance scaled hypothesis distributions
robust multi-mode tracker with joint-limitmianages to track such as longer-tailed or coreless distributions. It should also
quite well, but as body non-self-intersection constraints ale possible to extend the benefits of CSS ttNDENSATION
not enforced the modes eventually converge to physically iby using inflated (diluted weight) posteriors and dynamics for



Figure 8: Various components failure modes

sample generation, then reweighting the resulfs,[9]. Our
human tracking work will focus on incorporating better pose
and motion priors.
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