N

N

Routines for Relative Pose of Two Calibrated Cameras
from 5 Points
Bill Triggs

» To cite this version:

Bill Triggs. Routines for Relative Pose of Two Calibrated Cameras from 5 Points. [Technical Report]
2000. inria-00548287

HAL 1d: inria-00548287
https://inria.hal.science/inria-00548287
Submitted on 20 Dec 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/inria-00548287
https://hal.archives-ouvertes.fr

Routines for Relative Pose of Two Calibrated
Cameras from 5 Points

Bill Triggs

INRIA Rhdne-Alpes,
655 avenue de I'Europe, 38330 Montbonnot, France.
http://www.inrialpes.fr/movi/people/ Triggs
Bill. Triggs@inrialpes.fr

July 23, 2000

1 Introduction

This report describes a library of C routines for finding tiekative pose of two cali-
brated perspective cameras given the images of five unkn®ypoints. The relative
pose is the translational and rotational displacement &etvthe two camera frames,
also calledcamera motion andrelative orientation.

As images contain no record of the overall spatial scalefattie scale of the inter-
camera translation can not be recovered. So the relative patlem has 5 degrees
of freedom: three angles giving the angular orientationhef $econd camera in the
frame of the first, and two angles giving the direction of theei-camera translation.
According to the usual coplanarity (epipolar) constragdach pair of corresponding
image points gives one constraint on these degrees of fnreestwin principle 5 point
pairs are enough for a solution. There are a number of wayatanpetrize the prob-
lem algebraically and solve the resulting system of polyianoonstraints to obtain the
solution. The method below uses a quaternion based forionlahd multiresultants
and eigendecomposition for the solution. There are a greayrprevious references
on this problem, although relatively few give algorithmétahle for numerical imple-
mentation. For a sample and further references, see [2,116,4, 3,1, 5, 9, 7].

A well-formulated polynomial system for the 5 point problgm@nerically has 20
possible algebraic solutions [1, 4, 5]. However many of éhe® often complex, and of
the real ones at least half have negative point depths,smreling to invisible points
behindthe camera. In fact, the 20 solutions fall into 10 “twistedrga— solution
pairs differing only by an additional rotation of the secarainera by 18Dabout the
axis joining the two cameras. The two members of a twistedadaiays give opposite
relative signs for the two depths of any 3D point, so they can not botphyesically
realizable. Hence, the 5 point relative pose problem hascst 10 real, physically
feasible solutions. More often it has between one and fiva sotutions é.g, [10]),
but in rare cases 10 feasible solutions are indeed posdibie B].



The relative pose problem has various singularities [7, thath for special point
configurations and for special motion types. We will not gtailen these. However,
note that for an inter-camera translation of zero, evendghdbe inter-camera rotation
can still be found accurately, the corresponding traratadiirection is undefined and
the point-camera distances can not be recovered as therbaseline for triangulation.
In fact, pure camera rotation is a singular case in all foatiahs of the general 5 point
problem of which we are aware, and has to be handled as a kpasa

2 CodeOrganization

The main entry point to the library is the driver routinel or i ent 5() . This checks
for zero translation usingel or i ent _appr ox.r ot (), then calls the main multire-
sultant based solverel ori ent 5m() . LAPACK is used for linear algebra, namely
LU decomposition, SVD and nonsymmetric eigensystems.ouarsmall utility rou-
tines are also needeelg for converting quaternions to and fraddx 3 rotation matrices.
For usage of the routines and further information, see tihensents at the start of each
file.

A test program is provided ibhest _r el ori ent 5. ¢. This can either generate
random motions and scenes, run the method on these, and aletemrror statistics,
or read a file containing a set of 5 point pairs and print thesjibs solutions found.
A random 5 point data filpoi nt s. 1 is included. See the comments in this for the
format and expected output from it.

Some older MiTLAB (or OCTAVE, etc) routines for the basic multiresultant method
are also included, but no attempt has been made to make éntaire exactly the same.

3 Problem Formulation and M ethod

This section formulates the relative pose problem algebtyi and briefly describes
the multiresultant solution method. The approach is egslnthe same as that of
Emeris in [2], but with many small differences of detail aotde additional processing
steps.

3.1 The Coplanarity Constraints

Given a pure projective camera with internal calibratiortnmaK !, the3 x 4 camera
projection matrix isP = K (R|t). Here,R = R(q) is a3 x 3 rotation matrix giving the
angular orientation of the camekajs the corresponding quaternion, anehcodes the
camera position.t{s the position of the world frame origin in this camera’s otinate
frame, and-Rt is the position of the camera centre in the world frame).

The3 x4 calibration-corrected perspective projection mafRXq) | t) parametrizes
the camera’s pose. We assume that the cameras are intecadilyated and pre-
normalize the measured homogeneous image points by (tiogdor lens distortion

f 0w
K = ( 0 f vo ) for a perspective camera with focal lengttand principal poin{uo, vo).
001



and then) multiplying them b=, so that the effective perspective matrix becomes
(R]t). Such normalized ‘points’ represent 3D vectors expressedinera frame coor-
dinates, pointing outwards along the optical ray of the &gponding image point. For
convenience, we assume that these 3-vectors have beenlizedria unit vectors. So
by “image point”, we really mean a unit-norm 3D direction taayiving the outwards
direction of the corresponding optical ray in the cameraiea

We use 3D coordinates centred on the frame of the first carsetthe two camera
matrices argl | 0) and(R(q) |t). We need to recoveR or q, andt up to scale. Let
Xi,Vi, © = 1...5, be the normalized image points (optical ray direction @egjtin
respectively the first and the second cameras. Each image/atirection vector has
an associated 30epth (point-camera distance), called for x; and u; for y;. The
corresponding 3D point is just; X; in the first camera frame ang y; in the second,
so by elementary 3D geometry:

wiyi = R (M%) = R(ux) +t (1)

Among other things, this is the basis of intersection / iaation for finding the point
depths\;, ;. As the three terms of (1) must be coplanar, we get the wedlakn
coplanarity or epipolar constraint:

[yi,RXi,t] =0 (2)

Where[a, b, c} is the 3-vector triple produ@t- (b A c) = det(a, b, ¢). The coplanarity
constraint (2) gives one scalar constraint(® t) per point pair. However note that
the constraint vanishes identically for- 0, so any relative pose method based onit is
likely to fail in this case.

We will use a quaternion based form of the coplanarity camstifor our relative
pose method. If you are not familiar with quaternion algely@u will have to take
the rest of this section on trust. Quaternions are a way obding 3D rotations, al-
gebraically convenient in the sense that only 4 numbers Yacler q containing a
3-vectorg and a scalag,) with one nonlinear constrainf§||?> = 1) are needed, rather
than the 9 components oBax 3 rotation matrixR subject to the 6 quadratic constraints
RR™ = I. Quaternions have a bilinear product that encodes rotatomposition, and
a conjugation operatiog which reverses the sign of the vector part. Any 3-veetor
can be considered to be a quatermiowith vanishing scalar patfy = 0. In quaternion
notation, the rotated vect®x; is written as the quaternion produgk; q (where jux-
taposition denotes quaternion multiplication), and th@erproduct of three 3-vectors
is the scalar part of their quaternion prodlpel; b, c] = (abc)o.

Putting these elements together, we can write the coplgnarnstraint (2) as a
bilinear constraint in two quaternion (4-vector) unknowgnandp = qt:

0 = [V, RXi,t] = (Yigx;@t)o = (YsaXip)o = q' B(Yi, X:) p 3

where thet x 4 matrix B turns out to be:

ey o (XY AYX = (i) D Y AX
B(y’LvX’L) - < —(Yi/\xi)T _yle (4)



(Here, ‘A’ is cross product, and the scalar component of the quatesrngowritten last).
We get one of these bilinear equations for each point pasoAbdwing to the form of
p = qt, there is a bilinear consistency constraint betwpemdq:

Pogo —P-d = (Pq)o = (qtq)o = 0 (5)

This gives a total o6 + 1 = 6 bilinear equations on thé + 4 = 8 components of
q,p- As q, p are defined only up to scale they have just 6 degrees of fredadmween
them, and the polynomial system turns out to be (genericalgll-constrained, with
20 roots.

3.2 Sparse Multiresultant Polynomial Solver
3.2.1 General Approach

Of the many ways to solve the above 6 polynomial system, wiersdl a multiresultant
approach. We can not describe this in any detail here. Sef(2 description and
references, and [8] for a general tutorial on methods ofieglypolynomial systems
using matrices. In our case, the method builds a la#§e(60) but fairly sparse matrix
from the polynomial system using multiresultant techngjend uses linear algebra
to reduce this to 0 x 20 nonsymmetric matrix whose eigenvalues and eigenvectors
encode the 20 roots of the system.

To get a general idea of the approach, note that any polyn@@aum of monomi-
als in its unknowns, multiplied by scalar coefficients. If ef@ose a set of monomials,
we can represent any polynomial on them as a row vector whusieg are the coef-
ficients and whose columns are labelled by the correspomdompmials. This allows
us to use linear algebra to manipulate systems of polynsmialfact, each row and
column of the60 x 60 and20 x 20 matrices that we build corresponds to a specific
monomial in the unknown variablesandp. The real art of the method lies in finding
suitable sets of row and column monomials, where “suitatyleans that the resulting
matrices are both nonsingular and relatively small. Exéng else follows almost in-
evitably from this choice. The choice requires some advatioeory in principle, and
brute force search in practice.

Suppose that we restrict attention to polynomials on a givemomial setA. In
linear algebra language, to evaluate the polynomial at atf§eét of variable values),
we dot-product the polynomial’s row vector with a columntgeeontaining the corre-
sponding monomials evaluated at the point. If the point @ of the polynomial, the
dot product (polynomial value) must vanish. So the root'swomial vector is orthogo-
nal to the polynomial’s row vector. If we can generate a seoiindependent polyno-
mials with the same root, these will give a series of linearst@ints on the monomial
vector. With luck, these will eventually suffice to restrice monomial vectorto a 1D
subspace, and hence give it uniquely up to scale. Givenitigsa trivial manipulation
to read off the corresponding variable values at the roahfiloe up-to-scale monomial
vector. If there are several roots, their monomial vectdireain the orthogonal com-
plement of the constraints. As different monomial vectaws lmearly independent,
we can only hope to constrain the monomial vector to a sulespdimension equal



to at least the number of independent roots, but it turns loait @igendecomposition
methods can be used to extract the roots from this residbapsice.

To create a series of independent polynomials with the sarog we work as
follows. Given a setd of column-label monomials and an input polynomialve can
form the set of all multiples g by arbitrary monomialg, such that the monomials of
the polynomialy p are all contained ird. This corresponds to forming the set of row
vectorsq p whose nonzero entries lie entirely within the columns lzeby A. If p
has a root at some poing,p must as well, so all of these rows will be orthogonal to
the root’s monomial vector. If we are interested in the sismous roots of a system
of several polynomials, we can form the set of admissible veators for polynomial
separately, and stack them together into a big “multiresiiitmatrix to get further
constraints on the root monomials.

If the system is generic and has only a single isolated rodtirs out that this
construction eventually succeeds in isolating the 1D sabtsspanned by the root’s
monomial vector. All that is needed for this is a sufficiendyge (and otherwise
suitable) column monomial set. There exist a number of theoretical multiresultant
construction methods that give sufficient sets founder various kinds of genericity
assumptions on the input polynomials. We will not go intosthyebecause the details
are complicated and in any case they seldom giw@malsets forA. A practical mul-
tiresultant method can usually do better by some kind of doatbrial search over the
possible monomial setd, which is exactly how the monomial sets given below were
generated.

In our case there are multiple roots so we can not use the atmmaruction as
it stands. However, by treating one of the variables in thabjfam as if it were a
constantice. part of the coefficients, not the monomials), we can runubtothe same
process to get a multiresultant matrix whose entries areongdr scalars, but rather
polynomials in the “hidden” (treated-as-constant) vagaRoots of the system are still
null-vectors of this matrix, provided that the hidden vat&is given its correct value
for the root. So we can find roots by looking for values of thddan variable for which
the multiresultant matrix is singular (has a nontriviallrspace, corresponding to the
root’s monomial vector). If the matrix is actually lineartime hidden variable (which
ours is), this requirement already has the form of a so-d@eneralized eigenproblem
for which standard linear algebra methods exist. If notait still be converted into an
eigenproblem —e.g by using companion matrices — but we will not need this here.

3.2.2 Detailsof the5 Point Method

In the implementation of the 5 point relative pose method, rtiultiresultant matrix
is constructed by taking the following 10 multiples of eadhte 5 + 1 = 6 input
polynomials (3) and (5):

(1,491,492, 03,43, 41 42, 1 G3, 45, 42 43, G5



These multiples give 80 x 60 multiresultant matrix with columns labelled respectively
by the following three lists of 10, 30 and 20 monomials:

[p1 43, p14f g2, P1 43 43, D1 41 43, D1 41 42 G3,

) ) (6)
P19195,P141,P1491492,P14143,P1 lh]
[P1 G5, D1 G5 43. D1 42 G5, P1 G5 P2 43, P2 GF 42, P2 41 03, D2 41 @3
P21 G2 43, P2 41 43, P2 43 P2 45 G5, P2 42 43 P2 @ D1 G -
P14G243,P1 Q§7p2 Q%,pz q192,P2 41 43, P2 qg,pz q2 4g3,
D2 q?,,pl q2,P193,P241,P2 42, P2 (J3,plap2]
4}, 65 42. 43 43+ €1 G5+ €1 Q2 G3, 01 453, @5, G5 43+ G2 G5 G5 @)

Q%vql q2,4q1 QBa‘J%a‘D QB7Q§7Q17(]2,‘]37 1]

Note that in the above monomials, we have normaligggito pg = 1, go = 1. (Equiv-
alently, the above monomials could each be homogenizedatepain po for p and

qo for q). The componenps does not appear above, because it has been treated as a
constant and “hidden” in the polynomial coeffients. This methat the coefficients of
the60 x 60 multiresultant matrix are linear polynomialsgn (because (3, 5) are linear

in p3), with coefficients given by the abo(y;, X;) matrices (4) for (3), and constant
coefficientsB = diag(—1, —1, —1, 1) for (5).

The ordering of the above column monomials was chosen so (hahe first 10
monomials give a nonsingular leadib@ x 10 submatrix with constant coefficients on
the 10 rows from (5);i{) only the last 20 columns contain non-constant entiies,
nonzero linear terms ip3. These properties are used in three steps as follows.

First, in the implementation, we have already eliminateslfttst 10 columns us-
ing the constant0 x 10 submatrix from the (5) rows. This reduces the problem to a
50 x 50 one involving only coplanarity equations (3), which desesithe matrix de-
composition work required for this stage by about 40% witremy significant increase
in complexity.

Second, we build the reducéd x 50 multiresultant matriXM from theB matrices,
as ab0 x 50 constant matriXMIy and a50 x 20 oneM; with

M = My + p3 (050x30 | M1)
This is already in the form of a generalized eigensystepyin
(Mj + p3 (050x30 | M1)) x = 0

so it could be solved directly using,g LAPACK’s dgegv() ordggev() . However,
many of the columns do not involvyey so there would be many unwanted roots at
infinity. Instead, we extract th20 x 20 submatrixA containing the last 20 rows of
M,' M, and solve the standard nonsymmetric eigensysten+ A I) x = 0, where
A=1/ps.

2strictly speaking, this is not the best numerical approdicivould be stabler to use pivoted LU decom-




Finally, the eigenvalues and eigenvectors of2bex 20 matrix give the 20 possible
roots. The eigenvectossare monomial vectors in the 20 monomials of (8), from which
q and henc&(q) can be recoveredis then recovered by linear least squares from the
coplanarity equations (2), and the point depths are founttidaygulation using (1).

3.3 TheZero Rotation Singularity

One further trick is included in the implementation. The ab&ormulation happens
to have an inessential singularity when the inter-cametation is zero, which is an-
noying because rotations near zero are common in practioegeT around this, we
perturb the input data with a random rotation matrix, solben undo the effects of
the random rotation on the solution. This does not solve thelpm, but it moves it
randomly around in the solution space so that occasiorlatési occur for all rotation
values, rather than guaranteed failures for some partizalaes, and none elsewhere.
This is usually preferable, especially if the method will lged in a RANSAC style
loop, as it spreads and randomizes the unreliability.

Another more systematic approach would be to have sevelttesultant routines
with different monomial sets and hidden variables, and bdaifferent singularities. Or
equivalently and more simply, to call the same routine saénes for each point set,
each time perturbing the points with a different input rim@atand undoing the effects
of this afterwards. The problem would then reduce to the ahaif a small set of
perturbing rotations that suffices to avoid all of the obserinessential singularities
of the method. We have not done this, as the randomized methems to perform
sufficiently well.

3.4 TheZero Trandation Singularity

For inter-camera translations near zere.(much smaller than the point-camera dis-
tances), the coplanarity constraints (2, 3) degeneratdaabove multiresultant method
becomesiill-conditioned. As a partial work-around for thie driver el or i ent 5()
also runs a method designed for the zero-translation cdse simply assumes that the
translation is exactly zero and finds tBex 3 rotation that best aligns the input points
y; ~ Rx;. The point-camera distances can not be recovered in thisasathere is no
baseline for triangulation, so they are set arbitrarily to 1

4 Performance

The method seems to work tolerably well in practice, givem @&lhmost universal ill-
conditioning of minimal-data pose problems.

position to reduce the system t®@ x 20 generalizeckigensystem:
({Ifl Mo} + p3 {L71(0 | Ml)}) x=0

where{—} means “take the fin&l0 x 20 submatrix”. This would allowL.—* M, = U to be ill-conditioned
or even singular without causing the method to fail. Howgewer have kept the above approach for now as
it is simple and it seems to work well in practice.



Camera Rotation Error vs. Image Noise

100 F———rm T Ty
E Multiresultant —+— ]
Zero Translation -
e —Xemmmmm k- Hemmmmm3 ===
10 B RIS 3

rotation error (degrees)

01k

0.01

0.01 0.1 1 10 100
optical ray direction error (milliradians)
Camera Translation Error vs. Image Noise

1000 ————r e —

r Multiresultant —+— 1
3 Zero Translation ---x--- 1
10 OO OR: SOPNONSHONORORS SEOOSRUOTOOT IO ST ol i

: >mm- -x--- x R R
10 / """ E
0.1 / ————— —

0.01

translation error (% scene)
-
T
i

0.01 0.1 1 10 100
optical ray direction error (milliradians)
Point Depth Error vs. Image Noise
100 F———— Ty
E Multiresultant —+— ]
Zero Translation ---x---
;\‘? 10 ¥ >emmm —e-—- —— - e et =
S
@
= O e S e 3
= E
]
©
E I
g o1 S E
0.01 0.1 1 10 100

optical ray direction error (milliradians)

Figure 1: The rotation, translation and point depth erroa &snction of image noise
for the 5 point multiresultant and zero translation methods

8



Rotation Error vs. Camera Translation

l00: o T T TR oty
@ E Multiresultant —— §
g Zero ¥ranslation ---x---
>
b3 p
o
T 10 - P
o F 7
] X
c //
8
g p
g P
g
]
£
5]
o
0.01 0.1 1 10 100
camera translation (scene scale units)
Camera Translation Error vs. Translation Size
10: L | AL T T
E Multiresultant —+— ]

0.01

0.01 0.1 1 10 100
camera translation (scene scale units)

camera translation error (scene scale units)

Point Depth Error vs. Camera Translation

[ Multiresultant —+— ]
’_\0\

g 10

5 3

o

L

o

]

° 1

€ F

©

o

0.1 bl il

0.01 0.1 1 10 100

camera translation (scene scale units)

Figure 2: The rotation, translation and point depth erroa &snction of camera trans-
lation distance for the 5 point multiresultant and zero $tation methods.

9



The experiments shown below use the following default valdde scene contains
5 randomly distributed 3D points drawn from a unit standardiation Gaussian distri-
bution 4 units from the first camera. The inter-camera tigitsh is a random Gaussian
vector with standard deviation 1 unit. The inter-cameration is random Gaussian
with standard deviatioR0°. The image (optical ray direction vector) noise is Gaussian
with standard deviation0~2 radians. Each experiment is run for 1000 trials and the
median error values are reported. The spatial distanceuset in the translation er-
ror graphs is the “scene scale”, by which we mean the smalt@st-camera distance.
This is preferable to the common policy of settiffi] to 1, as the latter muddies the
concept of “small translations”.

As the multiresultant method usually gives multiple salnt, we need to select
a single “best” one to report. We choose the solution withimirm rotation error
against the ground truth, and report its rotation, traistaand depth errors. This is
biased towards rotation errors in the sense that even ith@natolution has smaller
translation error (which does happen), it is not selected.

Figure 1 shows the median camera rotation and translatidrpaimt depth errors
as a function of image noise. The multiresultant method setenbe usable up to a
noise of around 10 milliradians on the measured optical iegctions, which would
translate to an image noise of 10 pixels or more for most etagge photogrammetric
cameras. The zero translation method gives a strongly disskition here because
the camera translations are non-negligible, but for zexndiation its error also scales
linearly with noise.

Figure 2 shows how the errors scale with camera translatistante, fromi0~2
up t0102 scene units. (In the latter case, the second camera movasdgrfrom the
points, so an accurate solution can not be expected andthkafrrors increase). The
zero translation method makes a moderate improvement beemultiresultant one
for small translations. The improvement is not large in éhparticular experiments,
but it does become larger as the noise level and/or the #timsidistance decrease
As would be expectedi)(the zero translation method gives very biased resultsge la
cameratranslations; aniil)(the point-camera distances can not be recovered acouratel
for small baselines.

Figure 3 gives probability densitiesd. relative frequencies) versus error size, for
the rotation, translation and point depth errors in trialthwhe standard noise, rota-
tion and translation distributions given above. The erristributions stretch to quite
large values, which after some threshold would have to bladstas cases where the
method failed. However, note that the random problem geéoenaakes no attempt to
detect cases where the generated data is intrinsicaltpiititionede.g because the
five random 3D points happen to be tightly clustered or neaityned. It is likely that
at least some of the observed large error values are dueltdlsaonditioned 5-tuples.
Many of these should already be recognizably ill-condiéidim the images, and hence
could potentially be avoided in a real relative pose problem

Figure 4 shows that neither method is particularly seresitev coplanarity of the
input points. Here, the random spherical scene is compitésgbe z-direction by an

3The multiresultant method fails for— 0 in the noiseless case, but even a small amount of noise seems
to perturb it enough to avoid this singularity, althoughi stith some loss of accuracy.

10



Probability Density of Camera Rotation Errors

Multiresultant —+— 1

01}
© i
E -
o 0.01
[} L
©
2 0.001
= i
S 00001 || 3
o ' [ 1
Q - 4
16-05 fpf » E
1e-06 | s s s
0.1 1 10 100
rotation error (degrees)
Probability Density of Camera Translation Errors
1l 71— T T T L
r Multiresultant —+—
€ o1l —
) [ :
2 L
3 0.01 | i
3 i
5 L
O\O 0.001 :- """"
> I
= 0.0001
Qo L
@
o) -
2  1e-05 :
o L
le0f Lok ol ol
0.001 0.01 0.1 1 10
translation error (scene units)
Probability Density of Point Depth Errors
lg L | T o T T T T ]
E Multiresultant —+— ]
0.1 =
L E
2 I
o 0.01 [ ~h E
@ E 3
Qo
o
5 L
0.001 ¢ E
0.0001

1 10
depth error (%)

Figure 3: Probability densities for the various sizes oftiain, translation and point
depth errors.

11



Rotation Error vs. Scene Flatness

20 T T T . T
@ Multiresultant —+—
g Zero Translation ---x---
g 15 [
Z i S B Zo S
S
c 10|
9
s
9 4
Q
E —
<
o

0

0 20 40 60 80 100

scene unflatness (%)

Figure 4: The rotation error as a function of scene flatness.

unflatness factor between 0 and 1 before running the methioel Moderate decrease
in the multiresultant method’s error as the unflatness emes is probably due at least
in part to the increase in the scatter of the 3D points, whidvides greater geometric

strength.

The run time of the method is about 5 milliseconds per calheodriverr el ori -
ent 5() on my 440 MHz Sun UltraSparc 10, for optimized code using fhee(but
slow) BLAS distributed with LAPACK. This is acceptable fon@-off use, but slower
than one would like for a routine that might be called manyetsnin a RANSAC loop.
Most of the time is spent in LU and eigendecomposition of thpot multiresultant
matrix. This could not be reduced substantially within tlherent approach unless a
more compact multiresultant matrix could be found.

References

[1] M. Demazure. Sur deux problemes de reconstructionhifieal report, INRIA, 1988.

[2] I. Z. Emeris. A general solver based on sparse resultaNtsmerical issues and kine-
matic applications. Technical Report RR-3110 (http://winvie.fr/RRRT/RR-3110.html),
INRIA, Sophia Antipolis, France, January 1997.

[3] O.FaugerasThree-dimensional computer vision: a geometric viewpdtT Press, 1993.

[4] O.D. Faugeras and S. J. Maybank. Motion from point matciultiplicity of solutions.
In IEEE Workshop on Computer Visioh989.

[5] A. Heyden and G. Sparr. Reconstruction from calibratatheras - a new proof of the
kruppa-demazure theorerd. Mathematical Imaging & Visign0:1-20, 1999.

[6] B. Horn. Relative orientationint. J. Computer Visiop4:59-78, 1990.

[7] J. Krames. Zur Ermittlung eines Objektes aus zwei Petsyn (Ein Beitrag zur Theorie
der “gefahrlicherOrter”). Monatshefte fur Mathematik und Physii9:327-354, 1941.

12



(8]

9]

(10]

(11]

B. Mourrain. An introduction to linear algebra methods §olving polynomial equations.
In HERMCA'98 1998. See also: http://www-sop.inria.fr/saga/logieiultires.html.

A. N. Netravali, T. S. Huang, A. S. Krishnakumar, and RHalt. Algebraic methods in
3D motion estimation from two-view point correspondencés. J. Imaging Systems &
Technology1:78-99, 1989.

J. Philip. A non-iterative algorithm for determining assential matrices corresponding to
five point pairs.Photogrammetric Record 5(88):589-599, October 1996.

B. P. Wrobel. Minimum solutions for orientation. Workshop on Calibration and Orien-
tation of Cameras in Computer VisipWashington D.C., August 1992. Proceedings still
unpublished, paper available from author.

13



