
HAL Id: inria-00548287
https://inria.hal.science/inria-00548287

Submitted on 20 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Routines for Relative Pose of Two Calibrated Cameras
from 5 Points

Bill Triggs

To cite this version:
Bill Triggs. Routines for Relative Pose of Two Calibrated Cameras from 5 Points. [Technical Report]
2000. �inria-00548287�

https://inria.hal.science/inria-00548287
https://hal.archives-ouvertes.fr

Routines for Relative Pose of Two Calibrated
Cameras from 5 Points

Bill Triggs
INRIA Rhône-Alpes,

655 avenue de l’Europe, 38330 Montbonnot, France.
http://www.inrialpes.fr/movi/people/Triggs

Bill.Triggs@inrialpes.fr

July 23, 2000

1 Introduction

This report describes a library of C routines for finding therelative pose of two cali-
brated perspective cameras given the images of five unknown 3D points. The relative
pose is the translational and rotational displacement between the two camera frames,
also calledcamera motion andrelative orientation.

As images contain no record of the overall spatial scale factor, the scale of the inter-
camera translation can not be recovered. So the relative pose problem has 5 degrees
of freedom: three angles giving the angular orientation of the second camera in the
frame of the first, and two angles giving the direction of the inter-camera translation.
According to the usual coplanarity (epipolar) constraint,each pair of corresponding
image points gives one constraint on these degrees of freedom, so in principle 5 point
pairs are enough for a solution. There are a number of ways to parametrize the prob-
lem algebraically and solve the resulting system of polynomial constraints to obtain the
solution. The method below uses a quaternion based formulation and multiresultants
and eigendecomposition for the solution. There are a great many previous references
on this problem, although relatively few give algorithms suitable for numerical imple-
mentation. For a sample and further references, see [2, 10, 11, 6, 4, 3, 1, 5, 9, 7].

A well-formulated polynomial system for the 5 point problemgenerically has 20
possible algebraic solutions [1, 4, 5]. However many of these are often complex, and of
the real ones at least half have negative point depths, corresponding to invisible points
behindthe camera. In fact, the 20 solutions fall into 10 “twisted pairs” — solution
pairs differing only by an additional rotation of the secondcamera by 180◦ about the
axis joining the two cameras. The two members of a twisted pair always give opposite
relativesigns for the two depths of any 3D point, so they can not both bephysically
realizable. Hence, the 5 point relative pose problem has at most 10 real, physically
feasible solutions. More often it has between one and five such solutions (e.g., [10]),
but in rare cases 10 feasible solutions are indeed possible [1, 4, 3].

1

The relative pose problem has various singularities [7, 11], both for special point
configurations and for special motion types. We will not go detail on these. However,
note that for an inter-camera translation of zero, even though the inter-camera rotation
can still be found accurately, the corresponding translation direction is undefined and
the point-camera distances can not be recovered as there is no baseline for triangulation.
In fact, pure camera rotation is a singular case in all formulations of the general 5 point
problem of which we are aware, and has to be handled as a special case.

2 Code Organization

The main entry point to the library is the driver routinerelorient5(). This checks
for zero translation usingrelorient approx rot(), then calls the main multire-
sultant based solverrelorient5m(). LAPACK is used for linear algebra, namely
LU decomposition, SVD and nonsymmetric eigensystems. Various small utility rou-
tines are also needed,e.g. for converting quaternions to and from3×3 rotation matrices.
For usage of the routines and further information, see the comments at the start of each
file.

A test program is provided intest relorient5.c. This can either generate
random motions and scenes, run the method on these, and accumulate error statistics,
or read a file containing a set of 5 point pairs and print the possible solutions found.
A random 5 point data filepoints.1 is included. See the comments in this for the
format and expected output from it.

Some older MATLAB (or OCTAVE, etc.) routines for the basic multiresultant method
are also included, but no attempt has been made to make the interface exactly the same.

3 Problem Formulation and Method

This section formulates the relative pose problem algebraically, and briefly describes
the multiresultant solution method. The approach is essentially the same as that of
Emeris in [2], but with many small differences of detail and some additional processing
steps.

3.1 The Coplanarity Constraints

Given a pure projective camera with internal calibration matrix K 1, the3 × 4 camera
projection matrix isP = K (R | t). Here,R = R(q) is a3×3 rotation matrix giving the
angular orientation of the camera,q is the corresponding quaternion, andt encodes the
camera position. (t is the position of the world frame origin in this camera’s coordinate
frame, and−R t is the position of the camera centre in the world frame).

The3×4 calibration-correctedperspective projection matrix(R(q) | t) parametrizes
the camera’s pose. We assume that the cameras are internallycalibrated and pre-
normalize the measured homogeneous image points by (correcting for lens distortion

1K =

(

f 0 u0

0 f v0

0 0 1

)

for a perspective camera with focal lengthf and principal point(u0, v0).

2

and then) multiplying them byK−1, so that the effective perspective matrix becomes
(R | t). Such normalized ‘points’ represent 3D vectors expressed in camera frame coor-
dinates, pointing outwards along the optical ray of the corresponding image point. For
convenience, we assume that these 3-vectors have been normalized to unit vectors. So
by “image point”, we really mean a unit-norm 3D direction vector giving the outwards
direction of the corresponding optical ray in the camera frame.

We use 3D coordinates centred on the frame of the first camera,so the two camera
matrices are(I | 0) and(R(q) | t). We need to recoverR or q, andt up to scale. Let
xi, yi, i = 1 . . . 5, be the normalized image points (optical ray direction vectors) in
respectively the first and the second cameras. Each image point / direction vector has
an associated 3Ddepth (point-camera distance), calledλi for xi andµi for yi. The
corresponding 3D point is justλi xi in the first camera frame andµi yi in the second,
so by elementary 3D geometry:

µi yi = (R | t)
(

λi xi

1

)

= R (λi xi) + t (1)

Among other things, this is the basis of intersection / triangulation for finding the point
depthsλi, µi. As the three terms of (1) must be coplanar, we get the well-known
coplanarity or epipolar constraint:

[

yi, R xi, t
]

= 0 (2)

where
[

a, b, c
]

is the 3-vector triple producta · (b∧ c) = det(a, b, c). The coplanarity
constraint (2) gives one scalar constraint on(R | t) per point pair. However note that
the constraint vanishes identically fort → 0, so any relative pose method based on it is
likely to fail in this case.

We will use a quaternion based form of the coplanarity constraint for our relative
pose method. If you are not familiar with quaternion algebra, you will have to take
the rest of this section on trust. Quaternions are a way of encoding 3D rotations, al-
gebraically convenient in the sense that only 4 numbers (a 4-vectorq containing a
3-vectorq and a scalarq0) with one nonlinear constraint (‖q‖2 = 1) are needed, rather
than the 9 components of a3×3 rotation matrixR subject to the 6 quadratic constraints
R R⊤ = I. Quaternions have a bilinear product that encodes rotationcomposition, and
a conjugation operationq which reverses the sign of the vector part. Any 3-vectorv
can be considered to be a quaternionv with vanishing scalar partv0 = 0. In quaternion
notation, the rotated vectorR xi is written as the quaternion productq xi q (where jux-
taposition denotes quaternion multiplication), and the triple product of three 3-vectors
is the scalar part of their quaternion product

[

a, b, c
]

= (a b c)0.
Putting these elements together, we can write the coplanarity constraint (2) as a

bilinear constraint in two quaternion (4-vector) unknownsq andp = q t:

0 =
[

yi, R xi, t
]

= (yi q xi q t)0 = (yi q xi p)0 = q⊤B(yi, xi)p (3)

where the4 × 4 matrixB turns out to be:

B(yi, xi) =

(

xi y⊤
i
+ yi x⊤

i
− (yi · xi) I yi ∧ xi

−(yi ∧ xi)
⊤ −yi · xi

)

(4)

3

(Here, ‘∧’ is cross product, and the scalar component of the quaternions is written last).
We get one of these bilinear equations for each point pair. Also, owing to the form of
p = q t, there is a bilinear consistency constraint betweenp andq:

p0 q0 − p · q = (pq)0 = (q t q)0 = 0 (5)

This gives a total of5 + 1 = 6 bilinear equations on the4 + 4 = 8 components of
q,p. As q,p are defined only up to scale they have just 6 degrees of freedombetween
them, and the polynomial system turns out to be (generically) well-constrained, with
20 roots.

3.2 Sparse Multiresultant Polynomial Solver

3.2.1 General Approach

Of the many ways to solve the above 6 polynomial system, we will use a multiresultant
approach. We can not describe this in any detail here. See [2]for a description and
references, and [8] for a general tutorial on methods of solving polynomial systems
using matrices. In our case, the method builds a large (60×60) but fairly sparse matrix
from the polynomial system using multiresultant techniques, and uses linear algebra
to reduce this to a20 × 20 nonsymmetric matrix whose eigenvalues and eigenvectors
encode the 20 roots of the system.

To get a general idea of the approach, note that any polynomial is a sum of monomi-
als in its unknowns, multiplied by scalar coefficients. If wechoose a set of monomials,
we can represent any polynomial on them as a row vector whose entries are the coef-
ficients and whose columns are labelled by the correspondingmonomials. This allows
us to use linear algebra to manipulate systems of polynomials. In fact, each row and
column of the60 × 60 and20 × 20 matrices that we build corresponds to a specific
monomial in the unknown variablesq andp. The real art of the method lies in finding
suitable sets of row and column monomials, where “suitable”means that the resulting
matrices are both nonsingular and relatively small. Everything else follows almost in-
evitably from this choice. The choice requires some advanced theory in principle, and
brute force search in practice.

Suppose that we restrict attention to polynomials on a givenmonomial setA. In
linear algebra language, to evaluate the polynomial at a point (set of variable values),
we dot-product the polynomial’s row vector with a column vector containing the corre-
sponding monomials evaluated at the point. If the point is a root of the polynomial, the
dot product (polynomial value) must vanish. So the root’s monomial vector is orthogo-
nal to the polynomial’s row vector. If we can generate a series of independent polyno-
mials with the same root, these will give a series of linear constraints on the monomial
vector. With luck, these will eventually suffice to restrictthe monomial vector to a 1D
subspace, and hence give it uniquely up to scale. Given this,it is a trivial manipulation
to read off the corresponding variable values at the root from the up-to-scale monomial
vector. If there are several roots, their monomial vectors all lie in the orthogonal com-
plement of the constraints. As different monomial vectors are linearly independent,
we can only hope to constrain the monomial vector to a subspace of dimension equal

4

to at least the number of independent roots, but it turns out that eigendecomposition
methods can be used to extract the roots from this residual subspace.

To create a series of independent polynomials with the same root, we work as
follows. Given a setA of column-label monomials and an input polynomialp, we can
form the set of all multiples ofp by arbitrary monomialsq, such that the monomials of
the polynomialq p are all contained inA. This corresponds to forming the set of row
vectorsq p whose nonzero entries lie entirely within the columns labelled byA. If p
has a root at some point,q p must as well, so all of these rows will be orthogonal to
the root’s monomial vector. If we are interested in the simultaneous roots of a system
of several polynomials, we can form the set of admissible rowvectors for polynomial
separately, and stack them together into a big “multiresultant” matrix to get further
constraints on the root monomials.

If the system is generic and has only a single isolated root, it turns out that this
construction eventually succeeds in isolating the 1D subspace spanned by the root’s
monomial vector. All that is needed for this is a sufficientlylarge (and otherwise
suitable) column monomial setA. There exist a number of theoretical multiresultant
construction methods that give sufficient sets forA under various kinds of genericity
assumptions on the input polynomials. We will not go into these, because the details
are complicated and in any case they seldom giveminimalsets forA. A practical mul-
tiresultant method can usually do better by some kind of combinatorial search over the
possible monomial setsA, which is exactly how the monomial sets given below were
generated.

In our case there are multiple roots so we can not use the aboveconstruction as
it stands. However, by treating one of the variables in the problem as if it were a
constant (i.e. part of the coefficients, not the monomials), we can run through the same
process to get a multiresultant matrix whose entries are no longer scalars, but rather
polynomials in the “hidden” (treated-as-constant) variable. Roots of the system are still
null-vectors of this matrix, provided that the hidden variable is given its correct value
for the root. So we can find roots by looking for values of the hidden variable for which
the multiresultant matrix is singular (has a nontrivial null space, corresponding to the
root’s monomial vector). If the matrix is actually linear inthe hidden variable (which
ours is), this requirement already has the form of a so-called generalized eigenproblem
for which standard linear algebra methods exist. If not, it can still be converted into an
eigenproblem —e.g. by using companion matrices — but we will not need this here.

3.2.2 Details of the 5 Point Method

In the implementation of the 5 point relative pose method, the multiresultant matrix
is constructed by taking the following 10 multiples of each of the 5 + 1 = 6 input
polynomials (3) and (5):

[1, q1, q2, q3, q
2

1
, q1 q2, q1 q3, q

2

2
, q2 q3, q

3

3
]

5

These multiples give a60×60 multiresultant matrix with columns labelled respectively
by the following three lists of 10, 30 and 20 monomials:

[p1 q3

1
, p1 q2

1
q2, p1 q2

1
q3, p1 q1 q2

2
, p1 q1 q2 q3,

p1 q1 q2

3
, p1 q2

1
, p1 q1 q2, p1 q1 q3, p1 q1]

(6)

[p1 q3

2
, p1 q2

2
q3, p1 q2 q2

3
, p1 q3

3
, p2 q3

1
, p2 q2

1
q2, p2 q2

1
q3, p2 q1 q2

2
,

p2 q1 q2 q3, p2 q1 q2

3
, p2 q3

2
, p2 q2

2
q3, p2 q2 q2

3
, p2 q3

3
, p1 q2

2
,

p1 q2 q3, p1 q2

3
, p2 q2

1
, p2 q1 q2, p2 q1 q3, p2 q2

2
, p2 q2 q3,

p2 q2

3
, p1 q2, p1 q3, p2 q1, p2 q2, p2 q3, p1, p2]

(7)

[q3

1
, q2

1
q2, q

2

1
q3, q1 q2

2
, q1 q2 q3, q1 q2

3
, q3

2
, q2

2
q3, q2 q2

3
, q3

3
,

q2

1
, q1 q2, q1 q3, q

2

2
, q2 q3, q

2

3
, q1, q2, q3, 1]

(8)

Note that in the above monomials, we have normalizedp,q to p0 = 1, q0 = 1. (Equiv-
alently, the above monomials could each be homogenized separately in p0 for p and
q0 for q). The componentp3 does not appear above, because it has been treated as a
constant and “hidden” in the polynomial coeffients. This means that the coefficients of
the60× 60 multiresultant matrix are linear polynomials inp3 (because (3, 5) are linear
in p3), with coefficients given by the aboveB(yi, xi) matrices (4) for (3), and constant
coefficientsB = diag(−1,−1,−1, 1) for (5).

The ordering of the above column monomials was chosen so that: (i) the first 10
monomials give a nonsingular leading10× 10 submatrix with constant coefficients on
the 10 rows from (5); (ii) only the last 20 columns contain non-constant entries,i.e.
nonzero linear terms inp3. These properties are used in three steps as follows.

First, in the implementation, we have already eliminated the first 10 columns us-
ing the constant10 × 10 submatrix from the (5) rows. This reduces the problem to a
50 × 50 one involving only coplanarity equations (3), which decreases the matrix de-
composition work required for this stage by about 40% without any significant increase
in complexity.

Second, we build the reduced50×50 multiresultant matrixM from theB matrices,
as a50 × 50 constant matrixM0 and a50 × 20 oneM1 with

M = M0 + p3 (050×30 |M1)

This is already in the form of a generalized eigensystem inp3 :

(M0 + p3 (050×30 |M1)) x = 0

so it could be solved directly using,e.g. LAPACK’s dgegv() ordggev(). However,
many of the columns do not involvep3 so there would be many unwanted roots at
infinity. Instead, we extract the20 × 20 submatrixA containing the last 20 rows of
M−1

0
M1, and solve the standard nonsymmetric eigensystem2 (A + λ I) x = 0, where

λ = 1/p3.
2Strictly speaking, this is not the best numerical approach.It would be stabler to use pivoted LU decom-

6

Finally, the eigenvalues and eigenvectors of the20×20 matrix give the 20 possible
roots. The eigenvectorsx are monomial vectors in the 20 monomials of (8), from which
q and henceR(q) can be recovered.t is then recovered by linear least squares from the
coplanarity equations (2), and the point depths are found bytriangulation using (1).

3.3 The Zero Rotation Singularity

One further trick is included in the implementation. The above formulation happens
to have an inessential singularity when the inter-camera rotation is zero, which is an-
noying because rotations near zero are common in practice. To get around this, we
perturb the input data with a random rotation matrix, solve,then undo the effects of
the random rotation on the solution. This does not solve the problem, but it moves it
randomly around in the solution space so that occasional failures occur for all rotation
values, rather than guaranteed failures for some particular values, and none elsewhere.
This is usually preferable, especially if the method will beused in a RANSAC style
loop, as it spreads and randomizes the unreliability.

Another more systematic approach would be to have several multiresultant routines
with different monomial sets and hidden variables, and hence different singularities. Or
equivalently and more simply, to call the same routine several times for each point set,
each time perturbing the points with a different input rotation and undoing the effects
of this afterwards. The problem would then reduce to the choice of a small set of
perturbing rotations that suffices to avoid all of the observed inessential singularities
of the method. We have not done this, as the randomized methodseems to perform
sufficiently well.

3.4 The Zero Translation Singularity

For inter-camera translations near zero (i.e. much smaller than the point-camera dis-
tances), the coplanarity constraints (2, 3) degenerate andthe above multiresultant method
becomes ill-conditioned. As a partial work-around for this, the driverrelorient5()
also runs a method designed for the zero-translation case. This simply assumes that the
translation is exactly zero and finds the3 × 3 rotation that best aligns the input points
yi ≈ R xi. The point-camera distances can not be recovered in this case as there is no
baseline for triangulation, so they are set arbitrarily to 1.

4 Performance

The method seems to work tolerably well in practice, given the almost universal ill-
conditioning of minimal-data pose problems.

position to reduce the system to a20 × 20 generalizedeigensystem:
(

{L−1
M0} + p3 {L

−1(0 |M1)}
)

x = 0

where{−} means “take the final20× 20 submatrix”. This would allowL−1M0 = U to be ill-conditioned
or even singular without causing the method to fail. However, we have kept the above approach for now as
it is simple and it seems to work well in practice.

7

0.01

0.1

1

10

100

0.01 0.1 1 10 100

ro
ta

tio
n

er
ro

r
(d

eg
re

es
)

optical ray direction error (milliradians)

Camera Rotation Error vs. Image Noise

Multiresultant
Zero Translation

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100

tr
an

sl
at

io
n

er
ro

r
(%

 s
ce

ne
)

optical ray direction error (milliradians)

Camera Translation Error vs. Image Noise

Multiresultant
Zero Translation

0.01

0.1

1

10

100

0.01 0.1 1 10 100

po
in

t d
ep

th
 e

rr
or

 (
%

)

optical ray direction error (milliradians)

Point Depth Error vs. Image Noise

Multiresultant
Zero Translation

Figure 1: The rotation, translation and point depth error asa function of image noise
for the 5 point multiresultant and zero translation methods.

8

0.1

1

10

100

0.01 0.1 1 10 100

ca
m

er
a

ro
ta

tio
n

er
ro

r
(d

eg
re

es
)

camera translation (scene scale units)

Rotation Error vs. Camera Translation

Multiresultant
Zero Translation

0.01

0.1

1

10

0.01 0.1 1 10 100ca
m

er
a

tr
an

sl
at

io
n

er
ro

r
(s

ce
ne

 s
ca

le
 u

ni
ts

)

camera translation (scene scale units)

Camera Translation Error vs. Translation Size

Multiresultant

0.1

1

10

0.01 0.1 1 10 100

po
in

t d
ep

th
 e

rr
or

 (
%

)

camera translation (scene scale units)

Point Depth Error vs. Camera Translation

Multiresultant

Figure 2: The rotation, translation and point depth error asa function of camera trans-
lation distance for the 5 point multiresultant and zero translation methods.

9

The experiments shown below use the following default values. The scene contains
5 randomly distributed 3D points drawn from a unit standard deviation Gaussian distri-
bution 4 units from the first camera. The inter-camera translation is a random Gaussian
vector with standard deviation 1 unit. The inter-camera rotation is random Gaussian
with standard deviation20◦. The image (optical ray direction vector) noise is Gaussian
with standard deviation10−3 radians. Each experiment is run for 1000 trials and the
median error values are reported. The spatial distance unitused in the translation er-
ror graphs is the “scene scale”, by which we mean the smallestpoint-camera distance.
This is preferable to the common policy of setting‖t‖ to 1, as the latter muddies the
concept of “small translations”.

As the multiresultant method usually gives multiple solutions, we need to select
a single “best” one to report. We choose the solution with minimum rotation error
against the ground truth, and report its rotation, translation and depth errors. This is
biased towards rotation errors in the sense that even if another solution has smaller
translation error (which does happen), it is not selected.

Figure 1 shows the median camera rotation and translation and point depth errors
as a function of image noise. The multiresultant method seems to be usable up to a
noise of around 10 milliradians on the measured optical ray directions, which would
translate to an image noise of 10 pixels or more for most close-range photogrammetric
cameras. The zero translation method gives a strongly biased solution here because
the camera translations are non-negligible, but for zero translation its error also scales
linearly with noise.

Figure 2 shows how the errors scale with camera translation distance, from10−2

up to102 scene units. (In the latter case, the second camera moves faraway from the
points, so an accurate solution can not be expected and all ofthe errors increase). The
zero translation method makes a moderate improvement over the multiresultant one
for small translations. The improvement is not large in these particular experiments,
but it does become larger as the noise level and/or the translation distance decrease3.
As would be expected: (i) the zero translation method gives very biased results at large
camera translations; and (ii) the point-camera distances can not be recovered accurately
for small baselines.

Figure 3 gives probability densities (i.e. relative frequencies) versus error size, for
the rotation, translation and point depth errors in trials with the standard noise, rota-
tion and translation distributions given above. The error distributions stretch to quite
large values, which after some threshold would have to be declared as cases where the
method failed. However, note that the random problem generator makes no attempt to
detect cases where the generated data is intrinsically ill-conditioned,e.g. because the
five random 3D points happen to be tightly clustered or nearlyaligned. It is likely that
at least some of the observed large error values are due to such ill-conditioned 5-tuples.
Many of these should already be recognizably ill-conditioned in the images, and hence
could potentially be avoided in a real relative pose problem.

Figure 4 shows that neither method is particularly sensitive to coplanarity of the
input points. Here, the random spherical scene is compressed in thez-direction by an

3The multiresultant method fails fort → 0 in the noiseless case, but even a small amount of noise seems
to perturb it enough to avoid this singularity, although still with some loss of accuracy.

10

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.1 1 10 100

pr
ob

ab
ili

ty
 /

de
gr

ee

rotation error (degrees)

Probability Density of Camera Rotation Errors

Multiresultant

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10

pr
ob

ab
ili

ty
 /

%
 o

f s
ce

ne
 u

ni
t

translation error (scene units)

Probability Density of Camera Translation Errors

Multiresultant

0.0001

0.001

0.01

0.1

1

0.1 1 10

pr
ob

ab
ili

ty
 /

%

depth error (%)

Probability Density of Point Depth Errors

Multiresultant

Figure 3: Probability densities for the various sizes of rotation, translation and point
depth errors.

11

0

5

10

15

20

0 20 40 60 80 100

ca
m

er
a

ro
ta

tio
n

er
ro

r
(d

eg
re

es
)

scene unflatness (%)

Rotation Error vs. Scene Flatness

Multiresultant
Zero Translation

Figure 4: The rotation error as a function of scene flatness.

unflatness factor between 0 and 1 before running the method. The moderate decrease
in the multiresultant method’s error as the unflatness increases is probably due at least
in part to the increase in the scatter of the 3D points, which provides greater geometric
strength.

The run time of the method is about 5 milliseconds per call to the driverrelori-
ent5() on my 440 MHz Sun UltraSparc 10, for optimized code using the (free but
slow) BLAS distributed with LAPACK. This is acceptable for one-off use, but slower
than one would like for a routine that might be called many times in a RANSAC loop.
Most of the time is spent in LU and eigendecomposition of the 5point multiresultant
matrix. This could not be reduced substantially within the current approach unless a
more compact multiresultant matrix could be found.

References

[1] M. Demazure. Sur deux problèmes de reconstruction. Technical report, INRIA, 1988.

[2] I. Z. Emeris. A general solver based on sparse resultants: Numerical issues and kine-
matic applications. Technical Report RR-3110 (http://www.inria.fr/RRRT/RR-3110.html),
INRIA, Sophia Antipolis, France, January 1997.

[3] O. Faugeras.Three-dimensional computer vision: a geometric viewpoint. MIT Press, 1993.

[4] O. D. Faugeras and S. J. Maybank. Motion from point matches: Multiplicity of solutions.
In IEEE Workshop on Computer Vision, 1989.

[5] A. Heyden and G. Sparr. Reconstruction from calibrated cameras - a new proof of the
kruppa-demazure theorem.J. Mathematical Imaging & Vision, 10:1–20, 1999.

[6] B. Horn. Relative orientation.Int. J. Computer Vision, 4:59–78, 1990.

[7] J. Krames. Zur Ermittlung eines Objektes aus zwei Perspektiven (Ein Beitrag zur Theorie
der “gefährlichenÖrter”). Monatshefte für Mathematik und Physik, 49:327–354, 1941.

12

[8] B. Mourrain. An introduction to linear algebra methods for solving polynomial equations.
In HERMCA’98, 1998. See also: http://www-sop.inria.fr/saga/logiciels/multires.html.

[9] A. N. Netravali, T. S. Huang, A. S. Krishnakumar, and R. J.Holt. Algebraic methods in
3D motion estimation from two-view point correspondences.Int. J. Imaging Systems &
Technology, 1:78–99, 1989.

[10] J. Philip. A non-iterative algorithm for determining all essential matrices corresponding to
five point pairs.Photogrammetric Record, 15(88):589–599, October 1996.

[11] B. P. Wrobel. Minimum solutions for orientation. InWorkshop on Calibration and Orien-
tation of Cameras in Computer Vision, Washington D.C., August 1992. Proceedings still
unpublished, paper available from author.

13

