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Abstract

This paper describes a unified theory for autocalibra-
tion of a moving camera. The camera models can be
2D projective, 2D affine camera and 1D projective pro-
jections. The scenes can be either non-planar scenes
or planar scenes and the camera may also undergoes
a pure rotation. All these cases are unified into the
same framework based on the direction bases. Each
formulation on the direction bases is also paralleled
with that on projective geometry concepts, essentially
encoded by the various forms of the absolute conic.
This unification provides not only a common theoreti-
cal framework, but also suggests unified parameterisa-
tion schema for estimation procedures.

1 Introduction

Autocalibration is the recovery of metric informa-
tion from only point correspondences of uncalibrated
images, using geometric self-consistency constraints.
The potential advantages of autocalibration are a re-
duced need for off-line calibration and greater on-line
flexibility.

We will assume familiarity with the projective ap-
proach to vision: 2D and 3D projective spaces, ho-
mogeneous coordinates, projective scene reconstruc-
tion techniques. . . Projective reconstruction is actu-
ally the simplest type of autocalibration. Using only
m ≥ 2 uncalibrated projective images and linear alge-
bra, it recovers the entire 3D scene and camera geome-
try modulo just 9 unknown parameters: 1 overall scale,
5 affine relative scalings and skewings, and 3 essen-
tially projective displacements of the plane at infinity.
However, this paper concentrates on the recovery of
these last few ‘metric’ parameters, given (information
equivalent to) a projective reconstruction. In fact, the
overall scale is never recoverable. We will use the term
‘Euclidean’ to mean ‘metric up to scale’,i.e. modulo
a Euclidean similarity transformation.

Since the seminal work of Maybank & Faugeras
[15, 5], a number of different approaches to autocali-
bration have been developed [7, 8, 1, 33, 32, 4, 14, 10,
18, 17, 29, 11]. For the ‘classical’ problem of a sin-
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gle perspective camera with constant but unknown in-
ternal parameters moving with a general but unknown
motion in a 3D scene, the original Kruppa equation
based approach [15] seems to be being displaced by
approaches based on the ‘rectification’ of an interme-
diate projective reconstruction [7, 10, 17, 29, 11, 8] of
which Trigg’s formulation based on absolute quadric
[29] has been the most significant. More special-
ized methods exist for particular types of motion,
particular scenes and simplified calibration models
[8, 31, 1, 18, 30]. Affine cameras [22], 1D cameras
[6] and Stereo heads [33, 12] can also be autocali-
brated. Solutions are still — in theory — possible if
some of the intrinsic parameters are allowed to vary
[10, 17]. The numerical conditioning of classical au-
tocalibration is historically delicate, although recent
algorithms have improved the situation significantly
[10, 17, 29]. The main problem is that classical auto-
calibration has some restrictive intrinsic degeneracies
— classes of motion for which no algorithm can re-
cover a full unique solution. Sturm [27, 28] has given
a catalogue of these. In particular, at least 3 views,
some translation and some rotation about at least two
non-aligned axes are required. Further work on the
degeneracies have also been studied in [2, 13]. Most
of the materials presented in this paper come from
[29, 30, 22, 6].

2 Preliminaries

2.1 Notation and Basics

Throughout the paper, vectors and matrices are respec-
tively denoted by lower and upper case bold letters.
We useP for image projections andH for inter-image
homographies;K, for upper triangular camera calibra-
tion andC = K−1 for its inverse;Λ for the abso-
lute quadric (in plane coordinates) or the dual absolute
conicΛ∗ andQ = K K⊤ = P Λ P ⊤ for its images;
Λ∗ for the absolute conic (in point coordinates); and
Q−1 = C⊤C for its image;Λ∞ for the dual abso-
lute conic on the known plane at infinity andΛ3×3 for
the absolute quadric (in line coordinates) or the dual
absolute points. The symbol∼ is for homogeneous
equality,i.e.equality up to a constant non-zero scale.

Introducing homogeneous Euclidean coordinates
for k-dimensional Euclidean spaces, points, direction



vectors and hyperplanes are encoded respectively as
homogeneousk + 1 component column vectorsx =
(xe, 1)⊤, t = (te, 0)⊤ and row vectorsp⊤ = (n⊤

e , d).
Points and directions on the plane satisfy respectively
p⊤ x = n⊤

e xe + d = 0 and p⊤ t = n⊤

e te = 0.
Directions can be appended to the point space, as a
‘hyperplane at infinity’ p∞ of points at infinity or
vanishing points. Projective transformations indiffer-
ently mix finite and infinite points. Under a projec-
tive transformation encoded by an arbitrary nonsin-
gular (k + 1) × (k + 1) matrix T , points and direc-
tions (column vectors) transform contravariantly,i.e.
by T acting on the left: x 7→ T x, v 7→ T v. To
preserve the point-on-plane incidence relation, hyper-
planes (row vectors) transform covariantly,i.e.by T−1

acting on the right:p 7→ p T −1.
The usual Euclidean dot product between hyper-

plane normals isn1 ·n2 = p1 Λ p⊤

2 where the symmet-
ric, rankk, positive semidefinite matrixΛ =

(

Ik×k 0
0 0

)

is called theabsolute quadric, which is the dual of the
absolute conic in space—a space conic in plane coor-
dinates [26, 20]. This quadricΛ encodes the Euclidean
structure in projective coordinates. Under projective
transformations it transforms contravariantly (i.e. like
a point) in each of its two indices so that the dot prod-
uct between plane normals is invariant:Λ 7→ T Λ T ⊤

andpi 7→ pi T −1, sop1 Λ p⊤

2 = n1 n2 is constant.Λ
is invariant under Euclidean transformations, but in a
general projective frame it loses its diagonal form and
becomes an arbitrary symmetric positive semidefinite
rankk matrix. When restricted to coordinates onp∞,
Λ becomes nonsingularΛ∞ and dualizing this dual-
ized form gives thek × k symmetric positive definite
absolute conicΛ∗. This measures dot products be-
tween direction vectors, just asΛ measures them be-
tween hyperplane normals.Λ∗ is definedonly on di-
rection vectors, not on finite points, and unlikeΛ it has
no unique canonical form in terms of theunrestricted
coordinates.

2.2 Direction bases, Absolute conics and
Euclidean structure

In Euclidean coordinates,Λ can be decomposed as a
sum of outer products of any orthonormal (in terms of
Λ∗) basis of direction vectors:Λ =

∑k
i=1

ei e⊤

i where
ei Λ∗ ej = δij . For example in 2DΛ =

(

I2×2 0

0 0

)

=
e1 e⊤

1 + e2 e⊤

2 wheree1 = (1, 0, 0), e2 = (0, 1, 0), are
the usual unit direction vectors. Gathering the basis
vectors into the columns of a(k + 1)× k orthonormal
rankk matrix U we haveΛ = U U⊤, p∞ U = 0 and
U⊤Λ∗U = Ik×k. The columns ofU spanp∞. All of
these relations remain valid in an arbitrary projective
frameT and with an arbitrary choice of representative
for Λ∗, except thatU 7→ T U ceases to be orthonor-
mal.

U is defined only up to an arbitraryk×k orthogonal
mixing of its columns (redefinition of the direction ba-
sis)U 7→ U Rk×k. Even in a projective frame where

U itself is not orthonormal, this mixing freedom re-
mains orthogonal. In a Euclidean frameU = ( V

0
) for

somek × k rotation matrixV , so the effect of a Eu-
clidean space transformation isU 7→

(

R t
0 1

)

U = U R′

whereR′ = V ⊤RV is the conjugate rotation: Eu-
clidean transformations of direction bases (i.e. on the
left) are equivalent to orthogonal re-mixings of them
(i.e. on the right). This remains true in an arbitrary
projective frame, even thoughU and the transforma-
tion no longerlook Euclidean. This mixing freedom
can be used to choose a direction basis in whichU is
orthonormal up to a diagonal rescaling: simply take
the SVD U ′ D V⊤ of U and discard the mixing ro-
tation V⊤. Equivalently, the eigenvectors and square
roots of eigenvalues ofΛ can be used. Such orthogo-
nal parametrizations ofU make good numerical sense
[30].

In 2D Euclidean space, given any two orthonormal
direction vectorsu, v, the complex conjugate vectors
x± ≡ 1√

2
(u ± iv) satisfy x± Λ∗ x⊤

± = 0. These
complex directions algebraically lie on the absolute
conic, and it is easy to check that any complex pro-
jective point which does so can be decomposed into
two orthogonal direction vectors, its real and imagi-
nary parts. The bottom line is that in the 2D case there
is only one such conjugate pair up to complex phase,
and these are called ‘circular points’ which character-
ize the Euclidean structure of the plane. However for
numerical purposes, it is usually easier to avoid com-
plex numbers by using the real and imaginary partsu
andv rather thanx±. The phase freedom inx± corre-
sponds to the2 × 2 orthogonal mixing freedom ofu
andv.

Theoretically, the above parametrizations of Eu-
clidean structure are equivalent. Which is practically
best depends on the problem.Λ is easy to use, ex-
cept that constrained optimization is required to han-
dle the rankk constraintdetΛ = 0. Direction bases
U eliminate this constraint at the cost of numerical
code to handle theirk × k orthogonal gauge free-
dom. The absolute conicΛ∗ has neither constraint
nor gauge freedom, but has significantly more com-
plicated image projection properties and can only be
defined once the plane at infinityp∞ is known and
a projective coordinate system on it has been chosen
(e.g.by induction from one of the images). It is also
possible to parametrize Euclidean structure by non-
orthogonal Choleski-like decompositionsΛ = L L⊤

(i.e. the L part of the LQ decomposition ofU ), but this
introduces singularities at maximally non-Euclidean
frames unless pivoting is also used.

2.3 Projective images, Cameras and Au-
tocalibration

To recover the metric information implicit in projec-
tive images, we need a projective encoding of Eu-
clidean structure. The key to Euclidean structure is
the dot product between direction vectors (“points at



infinity”), or dually the dot product between (normals
to) hyperplanes. The former leads to the stratified
“hyperplane at infinity + absolute conic” formulation
(affine + metric structure) ([3, 9, 16, 21] for projective
structure and [19, 25] for affine structure), the latter to
the “absolute quadric” one (cf. [29]). These are just
dual ways of saying the same thing. The hyperplane
formalism is preferable for ‘pure’ autocalibration or
auto-metric-reconstruction where there is noa priori
decomposition into affine and metric strata, while the
point one is simpler if such a stratification is given.

Since the columns of a 3D direction basis matrixU
are indeed 3D direction vectors, its image projection is
simply P U , whereP is the usual3 × 4 point projec-
tion matrix. Hence, the projection ofΛ = U U⊤ is the
3 × 3 symmetric positive definite contravariant image
matrix Q = P Λ P ⊤. Algebraically, this is the image
of the absolute quadric, now in dual line coordiates
which is dual to the image of the absolute conic. With
the traditional Euclidean decompositionK R ( I | − t)
of P into an upper triangularinternal calibration ma-
trix K, a 3 × 3 camera orientation (rotation)R and
anoptical centre t, Q becomes simplyK K⊤. Since
Λ is invariant under Euclidean motions,Q is invari-
ant under camera displacements so long asK remains
constant.K can be recovered fromQ by Choleski de-
composition, and similarly the Euclidean scene struc-
ture (in the form of a ‘rectifying’ projective transfor-
mation) can be recovered fromΛ. The upper triangular
inverse calibration matrix C = K−1 converts homo-
geneous pixel coordinates to optical ray directions in
the Euclidean camera frame.Q−1 = C⊤C is the im-
age of the absolute conic.

3 Unified Autocalibration Meth-
ods

3.1 Autocalibration of 2D projective
camera

Given several images taken with projection matrices
Pi = Ki Ri(I|−ti), and (in the same Euclidean frame)
an orthogonal direction basisU = ( V

0
), we find that

PiU ∼ KiRiV , movingKi to the left side givesi.e.

K−1

i Pi U ∼ R′
i (1)

whereR′
i = Ri V is a rotation matrix depending on

the camera pose. This is the most basic form of the
autocalibration constraint. It says that the calibrated
images (i.e. 3D directions in the camera frame) of
an orthogonal direction basis must remain orthogonal.
It remains true in arbitrary projective 3D and image
frames, as the projective deformations ofU vs.Pi and
Pi vs.Ci cancel each other out. As always, the direc-
tion basisU is defined only up to an arbitrary3 × 3
orthogonal mixingU 7→ U R.

The simplest approaches to autocalibration for non-
planar scenes are based on this basic consistency equa-

tion (1), an intermediate projective reconstructionPi,
and some sort of knowledge about theKi, e.g.classi-
cally that they are all the same:Ki = K for some un-
knownK. Nonlinear optimization or algebraic elimi-
nation are used to estimate the Euclidean structureΛ
or U , and the free parameters of theCi = K−1

i . Multi-
plying (1) either on the left or on the right by its trans-
pose to eliminate the unknown rotation, and optionally
moving theC ’s to the right hand side, gives the follow-
ing constraints linkingΛ to Qi:

Pi Λ P ⊤

i ∼ Qi = Ki K⊤

i (2)

In each case there are 5 independent constraints per
image on the 8 non-Euclidean d.o.f. of the 3D projec-
tive structure and the 5 (or fewer) d.o.f. of the internal
calibration. For example, three images in general posi-
tion suffice for classical constant-C autocalibration. In
each case, the unknown scale factors can be eliminated
by treating the symmetric3×3 left and right hand side
matrices as3 · 4/2 = 6 component vectors, and either
(i) projecting (say) the left hand sides orthogonally to
the right hand ones (hence deleting the proportional
components and focusing on the constraint-violating
non-proportional ones), or (ii ) cross-multiplying in the
usual way:

{

u⊤

i vi = u⊤

i wi = v⊤

i wi = 0
‖ui‖

2 = ‖vi‖
2 = ‖wi‖

2

where (ui, vi, wi) ≡ Ci Pi U

for the constraints on direction basis and

(Pi Λ P ⊤

i )ij (Qi)mn − (Qi)ij (Pi Λ P ⊤

i )mn = 0

where i ≤ j, m ≤ n = 1 . . . 3

for the constraints on the absolute conic.
Several recent autocalibration methods for 3D

scenes (e.g.[29, 10]) are based implicitly on these con-
straints, parametrized byK or Q and by something
equivalent toΛ or U . All of these methods seem to
work well provided the intrinsic degeneracies of the
autocalibration problem [27] are avoided.

In contrast, methods based on the Kruppa equa-
tions [15, 5, 32] can not be recommended for gen-
eral use, because they add a serious additional sin-
gularity to the already-restrictive ones intrinsic to the
problem [28]: if any 3D point projects to the same
pixel and is viewed from the same distance in each im-
age, a ‘zoom’ parameter can not be recovered from the
Kruppa equations. Numerical experience suggests that
Kruppa-based autocalibration remains ill-conditioned
even quite far from this singularity. This is hardly
surprising given that in any case the distinction be-
tween zooms and closes depends on fairly subtle2nd-
order perspective effects, so that the recovery of focal
lengths is never simple. (Conversely, the effects of an
inaccurate zoom-close calibration on image measure-
ments or local object-centred 3D ones are relatively
minor).



3.2 Autocalibration of 2D affine camera

Autocalibration for affine cameras was first proposed
in [22] which relies on the concept of the internal cali-
bration matrixKi,2×2 ∼

(

αu 0

0 αv

)

. This is also a strat-
ified method but things became considerablely simpli-
fied for affine cameras as the intermediate 3D struc-
ture has already been upgraded to affine. It is therefore
easy to recast this method into direction basis frame-
work by noticing that the plane at infinity has been
identifed and the uncalibrated translation vectors could
be fixed. The direction basis is now restricted to the
plane at infinity and therefore reduces to a3 × 3 ma-
trix U whose 3 columns are 3D direction vectors in
affine coordinates. Projecting the direction basisU
prallelly to the image plane involves only2 × 3 part
Mi ∼ Pi,2×3 as follows:

K−1

i,2×2MiU3×3 ∼ R2×3

This is the basic affine camera autocalibration con-
straintes. Multiplying either side on the left or on the
right by its transpose to eliminate the unknown rota-
tion and movingK−1

i ’s to the right side gives

Pi,2×3Λ∞P ⊤

i,2×3 ∼ Q2×2 = KiK
T
i ,

whereΛ∞ is the dual absolute conic on the plane at
infinity andQ2×2 is the line equation of the image of
the absolute point-pair. Notice that theΛ∞ is a full
rank conic instead of singularΛ or Λ3×3.

The unknown scale factors can also be eliminated
by treating the symmetric matrices as vectors. By
cross-multiplying in the usual way to eliminate the un-
known scale factors, we obtain the form of the con-
straints used by our affine calibration algorithm for the
constant unknown aspect ratio:

(MiΛ∞M⊤

i )ij(Q2×2)mn − (Q2×2)ij(MiΛ∞M⊤

i )mn = 0

where i ≤ j, m ≤ n = 1 . . . 2.

Projecting the left hand sides orthogonally to the
right hand ones gives

{

u⊤

i vi = 0
‖ui‖

2 = ‖vi‖
2

where (ui, vi)
⊤ ≡ K−1

i,2×2 Pi,2×3 U3×3

for the constraints on the direction basis.
Five independent parameters are required to specify

the Euclidean structure from the affine structure: the 9
components ofU3×3 modulo scale and the 3 d.o.f. of
a rotation matrix; or just the 5 parameters of the abso-
lute conic on the plane at infinity. Since each image
gives 2 independent constraints, 5 images are neces-
sary for the five intrinsic calibration parameters. Of
course, further constraints on the intrinsic calibration
parameters may reduce the number of images neces-
sary. For constant intrinsic calibration parameters, i.e.
the aspect ratio of the moving camera, three images
are enough.

3.3 Autocalibration of 1D projective
camera

For 1D projective camera [24], the scene to recover
is 2D Euclidean space which is the usual Euclidean
plane. The Euclidean structure of a plane is given by
any one of

• a3 × 3 rank 2 absolute line quadricΛ3×3;

• a 3 component line at infinityl∞ and its associ-
ated2 × 2 absolute conic matrix;

• a3 × 2 direction basis matrixU3×2 = (u v);

• a pair of absolute pointsx± = 1√
2
(u ± iv) which

are also the two roots of the absolute conic onl∞.

In each case the structure is the natural restriction of
the corresponding 3D one, re-expressed in 2D. Given
1D images taken with projection matricesPi,2×3 =
Ki,2×2Ri,2×2(I| − ti) (the internal calibration matrix
of a 1D projective camera isK2×2 = ( αu u0

0 1 )), and an
orthogonal direction basisU3×2, we find that

K−1

i,2×2Pi,2×3U3×2 ∼ R2×2

Equivalently eliminating the rotation matrix gives
the following constraints on the absolute conic:

Pi,2×3Λ3×3P
T
i,3×2 ∼ Q2×2 = Ki,2×2K

⊤

i,2×2

whereΛ3×3 is the rank 2 absolute line quadric.
Four independent parameters are required to spec-

ify the Euclidean structure of a projective plane: the 6
components ofU modulo scale and 1 d.o.f. of a rota-
tion on the plane; or the 4 d.o.f. of the rank 2 absolute
line quadric. In each case, the unknown scale factors
can be eliminated by treating the symmetric2 × 2 left
and right hand side matrices as 3-vectors, and either
projecting (say) the left hand sides orthogonally to the
right hand ones (hence deleting the proportional com-
ponents and focusing on the constraint-violating non-
proportional ones),

{

u⊤

i vi = 0
‖ui‖

2 = ‖vi‖
2

where (ui, vi) ≡ K−1

i,2×2 Pi,2×3 U3×2

for the constraints on direction basis, or cross-
multiplying in the usual way:

(PiΛ3×3Pi)ij(Q2×2)mn − (Q2×2)ij(PiΛ3×3P
⊤

i )mn = 0

where i ≤ j, m ≤ n = 1 . . . 2

for the constraints on the absolute conic.
The difference between 1D camera and 2D affine

camera resides only on that ofΛ3×3 andΛ∞. Each
image provides two independent constraints for two
internal parameters of each camera and 4 for the Eu-
clidean structre. For constant intrinsic parameters,
three images are sufficiant.



The above developement assumes that intermediate
2D projective reconstruction is available. This is al-
most granted for 2D projective camera case, while it is
peculiar for 1D camera. 2D projective reconstruction
from 1D images has always the inherent 2-way ambi-
guity [23] while the trifocal tensor is unique. In [6],
an elegant autocalibration method has been developed
from the trifocal tensor of the 3 views for the constant
unknown internal parameters.

3.4 Autocalibration of rotating camera

Now consider autocalibration from a rotating cam-
era. This is a particular case in which the translation
is zero. Obviously with zero-translation, no any 3D
structure could be recovered, but inter-image homo-
graphies (here particular infinity homographies) still
provide strong constraints on the internal calibration
parameters. The key is that with zero-translation, the
direction basis is restricted to the plane at infinity and
reduces to a3×3 matrixU . This direction basis is pro-
jected by the corresponding plane-at-infinity-to-image
homographyH . As the three columns ofU represent
3D direction vectors in affine coordinates, their images
still satisfy the autocalibration constraints (1):

K−1

i HiU3×3 ∼ R3×3

Multiplying on the left by its transpose and mov-
ing theKi’s to the right side gives the following con-
straints

HiΛ∞H⊤

i ∼ Qi = KiK
⊤

i

on the absolute conic which says that indeed the image
of the absolute conic on the image plane and the abso-
lute conic on the plane at infinity are in homographical
correspondence, expressed algebraically in dual form.

In each case, the unknown scale factors can be
eliminated by treating the symmetric3×3 matrices as
6-vectors, and either (i) projecting (say) the left hand
sides orthogonally to the right hand ones

{

u⊤

i vi = u⊤

i wi = v⊤

i wi = 0
‖ui‖

2 = ‖vi‖
2 = ‖wi‖

2

where (ui, vi, wi) ≡ K−1

i Hi U

for the constraints on the direction basis, or (ii ) cross-
multiplying in the usual way:

(Hi Λ∞ H⊤

i )ij (Q)mn − (Q)ij (Hi Λ H⊤

i )mn = 0

where i ≤ j, m ≤ n = 1 . . . 3

for the constraints on the absolute conic on which
many recent methods have been developed.

3.5 Autocalibration from Planar Scenes

Now consider autocalibration fromplanarscenes. Ev-
erything for non-planar scenes remains valid, except

that no intermediate 3D projective reconstruction is
available from which to bootstrap the process. How-
ever we will see that by using the inter-image homo-
graphies, autocalibration is still possible.

The Euclidean structure of the scene plane has been
described in the previous section for 1D camera case.
In each case the structure is the natural restriction of
the corresponding 3D one, re-expressed in 2D. In each
case it projects isomorphically into each image, either
by the usual3× 4 3D projection matrix (using 3D co-
ordinates), or by the corresponding3 × 3 world-plane
to image homographyH (using scene plane coordi-
nates). Hence, each image inherits a pair of circu-
lar pointsHi x± and the corresponding direction basis
Hi (u v), line at infinityl∞ H−1

i and3×3 rank 2 abso-
lute line quadricHi Λ3×3 H⊤

i . As the columns of the
planarU3×2 matrix represent 3D direction vectors (al-
beit expressed in the planar coordinate system), their
images still satisfy the autocalibration constraints (1):

K−1

i Hi U3×2 ∼ R3×2 (3)

whereR3×2 contains the first two columns of a3 × 3
rotation matrix.

Multiplying by its transpose on both sides to elimi-
nate the unknown rotation gives:

HiΛ3×3H
⊤

i ∼ Qi = KiK
⊤

i

which says that the image of the dual absolute conic is
the image of the rank 2 absolute line quadric.

The unknown scale factors can be eliminated by
treating the symmetric3×3 matrices as 6-vectors, and
cross-multipling in the usual ways gives

(Hi Λ3×3 H⊤

i )
AB

(Q)
CD

= (Q)
AB

(Hi Λ3×3 H⊤

i )
CD

where A ≤ B, C ≤ D = 1 . . . 3

for the quadric based version.
Splitting the basic constraints into components

gives the form of the constraints used by our planar
autocalibration algorithm:

{

‖ui‖
2 = ‖vi‖

2

ui vi = 0

where (ui, vi) ≡ Ci Hi (x̃, ỹ)

Four independent parameters are required to spec-
ify the Euclidean structure of a projective plane: the
6 components ofU3×2 modulo scale and the single
d.o.f. of a2×2 rotation; or the6 components of a3×3
absolute line quadricQ modulo scale and the rank 2
constraintdetQ = 0; or the 2 d.o.f. of the plane’s line
at infinity, plus the 2 d.o.f. of two circular points on
it. Since the above constraint equations give two in-
dependent constraints for each image,⌈n+4

2
⌉ images

are required to estimate the Euclidean structure of the
plane andn intrinsic calibration parameters. Two im-
ages suffice to recover the structure if the calibration is
known, three are required if the focal length is also es-
timated, four for the perspectivef, u0, v0 model, and
five if all 5 intrinsic parameters are unknown.



4 Conclusion

In this paper, we have presented a unified approach
to the autocalibration methods of a moving camera.
The key is the introduction of direction bases which
facilitates the comprehension of various autocalibra-
tion methods often presented in terms of the absolute
conic from the pure projective geometry. The camera
models we studied include 2D projective, 2D affine
and 1D projective projections. The scenes may be ei-
ther planar or non-planar. The moving camera can also
be zero-translation.

From a practical point of view, autocalibration has
some annoying fundamental limitations, so in practice
some sort of compromise between auto- and conven-
tional calibration is probably called for (this is an ac-
tive research area!). In particular, many common types
of camera motion are insufficient for classical autocal-
ibration — the skew and aspect ratio parameters tend
to be the hardest to estimate. Also, although the stabil-
ity of autocalibration algorithms has improved immea-
surably in the last few years, nonlinear equations must
still be solved and multiple or false solutions still pose
reliability problems. For both of these reasons, it defi-
nitely pays to keep the number of unknown parameters
to be estimated to a minimum.
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