
HAL Id: inria-00548299
https://inria.hal.science/inria-00548299

Submitted on 20 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Color segmentation for scene exploration
Gyuri Dorkó, Dietrich Paulus, Ulrike Ahlrichs

To cite this version:
Gyuri Dorkó, Dietrich Paulus, Ulrike Ahlrichs. Color segmentation for scene exploration. Workshop
Farbbildverarbeitung, Oct 2000, Berlin, Germany. �inria-00548299�

https://inria.hal.science/inria-00548299
https://hal.archives-ouvertes.fr

Color segmentation for scene exploration

Gy. Dorkó1 D. Paulus and U. Ahlrichs

Universität Erlangen–Nürnberg
Institut für Informatik
Lehrstuhl für Mustererkennung
Martensstr. 3, 91058 Erlangen

dorkogy@freemail.hu

[paulus/ahlrichs]@cs.fau.de

http://www.mustererkennung.de

Abstract

In this contribution we describe the results of the color structure code algorithm and
a modified split and merge algorithm, which both segment a color image into regions.
We integrate these algorithms into our system for knowledge–based image analysis
and compare the two distinct methods concerning their applicability in our system for
knowledge-based exploration of a scene.

1 Introduction

Color images can be segmented into regions, lines or points based on the distribution of
colors, similarly to the algorithms in gray–level images. For color images, homogeneity or
gradients have to be defined on vector valued functions, rather than the scalar functions
used for gray–level images. An example is the well–known region segmentation using the
split–and–merge strategy which was extended to color in [DJ93]; in [HP97] we made ex-
periments on different color distances using this segmentation algorithm. Another region
segmentation that was proposed for color images is the so–called color stucture code, CSC
[RB95]. There exist algorithms for color image segmentation which have no equivalent in
gray–level segmentation. These algorithms work locally and classify individual pixels into
color classes without considering the spatial neigborhood, e.g. in [ABS90]. In a second
step, pixels of one class which are spatially close are grouped to regions. In the following
we will not consider such segmentation algorithms.

The paper is organized as follows: we give a description of the color structure code algo-
rithm, in Sect. 2, which we apply in Sect. 3 to natural images taken from the sample set used
in our application domain, which is the recognition of office tools in a natural environment.
Problems during CSC segmentation and our solutions are described in Sect. 2.3. Several
filters for color images are applied in Sect. 3.1. In Sect. 3.2 we outline our system and de-
scribe how region segmentation is integrated into it and list results. We conclude in Sect. 4
and give an outlook on further work.

2 Color Structure Code Segmentation

The CSC color segmentation which we use here was first introduced in [RB95]. Although it
was described previously in this series of workshops, we briefly repeat the description using
some other formalism, so this contribution is self-contained. The base of this color image
segmentation method is a special data structure described in Sect. 2.1. The code element
which represents the regions is described in Sect. 2.2 besides of its creation procedure
which is the most relevant part of the algorithm. Sect. 2.3 points out some problems of the
segmentation and its implementation and it also gives some methods how to solve them.

1Gy. Dorkó is funded by SOKRATES. He is a student in Kálmán-Kandó Polytechnic, Budapest.

2.1 Hexagonal structure

The CSC segmentation is based on a special data structure so-called hexagonal island
structure, Fig. 1. Let the smallest circles be pixels and seven pixels in a specified structure
(Fig. 2, left) compose an island. These small islands are so-called “islands on level 0”. Each
seven islands compose another island on level 1 in the same structure and seven of these
new islands construct another one on level 2. Continue this procedure until one island covers
the whole image. Notice that an island on level N contains seven islands at most from level
N − 1 or when N = 0 it contains seven pixels instead.

Notice that two neighboring islands on level N are

Fig. 1: The hexagonal topology

overlapped and they share one and only one sub-island;
on level 0 this means they share a single pixel. To apply
this structure to an orthogonal bitmap can bring up some
difficulties. One simple method for this transformation
is to shift every other row theoretically by half of a pixel
either left or right. Fig. 2 (center) illustrate an island on
level 0 and level 1 over an orthogonal bitmap. By the help
of Fig. 2 (rightmost), an island is shown on level 2 but let
us point out that the overlapping part of its sub-islands
are not precise. It is confined to one shared sub-island
and not other additional pixels.

This hierarchical structure would seem to be complicated but it worth while to build up
because this will make the algorithm so fast and accurate later.

2.2 Creating code elements

On the described hexagonal hierarchical structure each island has one or more so-called
code elements. On level 0 a code element simply means linked pixels which are similar in
color. Each island on level 0 has up to seven code elements depending on the image and
the applied color similarity. It is also important that the whole island is “covered” by code
elements. On an island on level N where N > 0 a code element is defined as liked code
elements of its sub-islands which are connected. A code element can be implemented as
an array of pointers to other code elements and on level 0 as an array of image coordinates.
The code elements are stored on the appropriate islands together with other attributes like
area (number of pixels) and mean color.

In our implementation this creation procedure is a simple request to create all code el-
ements of the “top level island” and it does everything else due to the following recursive
algorithm: First of all an island on level N > 0 calls the procedure to create code elements
on all of its sub-islands if necessary (recursion). After all the code elements of its sub-island
have been computed we can create some new ones on the island itself and link the appropri-

Fig. 2: From left to right: islands on level 0 on hexagonal, and orthogonal strcture.
island on level 1, island on level 2 over an orthogonal bitmap

ate sub-code elements to their lists. Two sub-code elements must be attached to the same
code element if they are connected and must not if they are not. Whether two elements are
connected or not, can be detected easily by comparing their list of sub-code elements. If
they have an identical entry they are connected. This part of the algorithm is also called the
linking phase.

Trivially, the code element creation is different on level 0 from that on any other level.
Here we create code elements for the pixels itself on each island. Two pixels are connected
to the same code element if they are similar in color as mentioned earlier in this section.

Furthermore during the linking process it is unnecessary to create code elements with
only one sub-code element because if the algorithm did not find any connected element
on the same level means that this would be a so-called “root code element” and it can be
collected globally in an array.

This “hierarchical region growing” part of the algorithm would not have been as powerful
and accurate as it is without the following splitting phase [RB95] which extend the segmen-
tation with a global view. That means, before two connected sub-code elements are to be
linked we check the color similarity between their mean colors. If they are not similar they
will not be liked; moreover they must be separated by this method because they share a re-
gion on a previous level. The subregions of this common region will be associate to the one
which is closer in color. Therefore some additional splitting could be required on the lower
level and in these cases we should act in the same way which means an elegant recursion
in the implementation.

2.3 Final steps

After the previous phases the results (the regions) are represented hierarchically. Each
region has a root element which is stored either as an “immediate” root2 or as a simple
code element on the “top level island”3. Usually this hierarchical information cannot be used
directly. The final phase is responsible for converting them into an appropriate format. This
can be a label image4or a set of chain codes. The other important task of this phase is to
clear up some problems and difficulties of the original segmentation algorithm.

Problems and difficulties

During the implementation of the described algorithm we may meet some difficulties or prob-
lems. In rare cases the splitting phase can cause unconnected regions: To split one code
element from another always cut a region out. In absence of this sub-region, the original
area represented by the “maimed” code element is not one region any more but two. Fig. 3
shows a small example: The pixels marked “A” “O” and “X” were connected to the same
region but because of some reasons they had to be separated into two parts (“A” and “X”).
If “O” belongs to the same region as “X” it would not cause any problem but in the other
case cutting the pixel “O” out makes the region “X” unconnected. To avoid this and similar
confusions we integrated an algorithm after the splitting phase to detect these problems.

“Empty” code elements are another effect of the splitting method but instead of the pre-
vious problem it can be detected and solved easily. Another region connectivity problem is
due to the special hexagonal structure, directly to the special neighborhood relation. It is

1If a code element did not find any partner on a level it becomes a kind of root. These special elements can
be collected separately during the execution of the algorithm.

2The one and only island on the topmost level. It covers the whole image.
3A matrix with the same size as the original image. Each element corresponds to a number which specifies

the associated region (so-called region number).

X

X

X

X

X

X X

A

The removed pixel

AA

A

AA

A

A

A

AA

A

A

O

Fig. 3: A region becomes unconnected

2

2

1

1

Fig. 4: Homogenous diagonal line

neither 4-connected nor 8-connected. An example is shown on Fig. 4 where a one pixel
wide diagonal line has been segmented as multiple regions but not as single pixels. The
pixels marked with the same numbers are segmented into one region. Due to the special
neighbor relation this line is segmented to small parts and each part has 2 pixels.

An easy solution of the previously described problems is an extention of the final phase.
The detection and the correction of these problems are easier on the output (converted)
structure than on the hierarchical representation. If the output is a label image, this simply
requires relabeling the whole structure at the very end of the algorithm. In the implementa-
tion it means applying a flood-fill algorithm to each region. If it uses 4-connectivity the last
problem will be solved. The empty code elements will disappear as well as the unconnected
regions because their parts will be “reordered” with different numbers. It is also important to
mention that this method is not the perfect solution but it solves the problem very quickly.

3 Experiments

The primary goal of our knowledge–based system for scene exploration is to combine active
vision, object recognition, and knowledge–based pattern analysis. One application of the
architecture for this system which is described in [AFPN99] is to find objects in an office
room.

In Fig. 12 we see left the input image of an image taken from the sample set of office
tools, in the center the result computed with the method described in [DHP95] is shown,
right we have our new results computed with the CSC algorithm. The CSC algorithm has
one major parameter, which can be tuned in the implementation, namely the threshold which
determines the similarity of two color vectors depending on a chosen color distance. The
results vary considerably with the selection of this parameter; the results in Fig. 5 show
the mean of the number of computed regions depending on the threshold. In one hand
the following experiment shows that after applying the segmentation routine with the same
paramters the number of regions are about the same on different images (with same dimen-
sions and conditions). In another hand we could see that it depends on the pre-processing
and the final phase as well as the threshold level. We conclude it worth while to apply a filter
(in our example an SNN filter in a special hexagonal structure) and an opening by the final
phase in order to avoid small regions.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60 80 100 120 140 160 180 200

Pure segmentation
With SNN filter and opening

0

100

200

300

400

500

600

700

800

30 40 50 60 70 80 90 100

The similarity of the curves re-
sulting from different pictures
shows, that the choice of the
threshold can be deterimined for
an experiment globally, without
the need of adjusting it to an in-
dividual picture.

Fig. 5: Number of regions with and without filtering and opening for various thresholds

Number of regions
Un-filtered (Fig. 7) 512
Vector impulse noise (Fig. 8) 428
SNN (Fig. 9) 364
Vector median (Fig. 10) 292
Mean (Fig. 11) 529

Time for computation
Filtering: 0.21 sec
Structure creation: 0.14 sec
Segmentation (linking+splitting): 1.68 sec
Finalizing (labeling+opening): 0.42 sec

Table 1: Results of experiments: Number of regions (left) and computation times (right)

3.1 Color Preprocessing

Before a segmentation algorithm is applied to an image, we usually do some preprocessing.
Filtering is one of the most important and usual part of that. We applied a symmetric nearest
neigbor filter (SNN), a color vector median, as proposed in [SSW99], and a color mean filter
to the input images which we also overlayed with noise. The original image is shown in
Fig. 6; Fig. 7 to Fig. 11 are the segmentation results represented by contours. The number
of regions found are listed in Table 1 left. The computation times for our programs which
were compiled with GCC and computed on a Pentium III computer (600 MHz) under Linux
are listed in in Table 1 right; the image size was 768 × 576.

3.2 System

In order to localize objects in an office room, we apply various steps which require color
image processing.

First, objects are individually presented to the system in order to compute color his-
tograms. The objects are then put into the scene, i.e. into the office room. An estimate
of the object’s position is calculated using color histogram backprojection. In most cases,
the intensity-normalized rg space performed best here, as described in [CPAH98]. An ac-
tive camera is then moved on a linear sledge and points are tracked during the movement.
Color again improved the results when compared to tracking of points in gray–level images
[HP97]. The result of tracking is combined with calibration information on the camera and
the results of histogram backprojection to compute 3D estimates for the positions of objects.

Close-up views are now captured showing details of the scene at the estimated object
positions. These images are subject to color region segmentation. The images used in
this paper are taken from such experiments. Features of the color regions, such as size
and mean color are further used for knowledge-based verification of the object positions. A
semantic network is used for knowledge representation [AFPN99].

The computation consists of a (possibly iterated) sequence of individual processing
steps. During object verification, close–up views of objects captured by the active cam-
era are subject to segmentation. We provided a common interface to the two segmentation
algorithms used; this way they could be dynamically exchanged in the program. We also
varied the color space and distance measure.

4 Conclusion and Future Work

The CSC algorithm was integrated into the system for office exploration described in Sect. 3.2.
It now provides an alternative to the segmentation [DHP95]; with respect to computation
times, the CSC algorithm is superior, i.e. faster. Performance evaluation of image segmen-
tation is a non–trivial subject. In principle, the parameters of each algorithm used in the
sequence of processing steps has to be varied and the results have to be judged according
to some criterion; the number of regions, as shown in Fig. 5 cannot serve as an ultimate
criterion. In our case, the evaluation is based on the final recognition rate and the rate of
successfully found objects in the office room. This work is carried out currently. First re-
sults showed recognition rates in the range of 70% which is similar or slightly superior to our
previous results; the computation times were lower with the CSC approach.

References

[ABS90] I. Andreadis, M.A. Browne, and J.A. Swift. Image pixel classification by chromaticity anal-
ysis. Pattern Recognition Letters, 11:51–58, 1990.

[AFPN99] U. Ahlrichs, J. Fischer, D. Paulus, and H. Niemann. Approach to Active Knowledge-Based
Scene Exploration. In M. Bramer, A. Macintosh, and F. Coenen, editors, Research and De-
velopment in Intelligent Systems XVI – Proc. of the 19th SGES International Conference
on Knowledge-Based Systems and Applied Artificial Intelligence (ES99), BCS Conference
Series, pages 289–301, Cambridge, 1999. Springer.

[CPAH98] L. Csink, D. Paulus, U. Ahlrichs, and B. Heigl. Color Normalization and Object Localization.
In V. Rehrmann, editor, Vierter Workshop Farbbildverarbeitung, pages 49–55, Koblenz,
1998. Föhringer.

[DHP95] J. Denzler, B. Heigl, and D. Paulus. Farbsegmentierung für aktives Sehen. In Rehrmann
[Reh95], pages 9–12.

[DJ93] M. Dubuisson and A.K. Jain. Object contour extracting using color and motion. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 471–476. New York City,
1993.

[HP97] B. Heigl and D. Paulus. Punktverfolgung in Farbbildsequenzen In D. Paulus and Th.
Wagner, editors, Dritter Workshop Farbbildverarbeitung, pages 87–92 & 105, Stuttgart,
1997. IRB-Verlag.

[RB95] V. Rehrmann and M. Birkhoff. Echtzeitfähige Objektverfolgung in Farbbildern. In
Rehrmann [Reh95], pages 13–16.

[Reh95] V. Rehrmann, editor. Erster Workshop Farbbildverarbeitung, volume 15 of Fachberichte
Informatik, Universität Koblenz–Landau, 1995.

[SSW99] B. Smolka, M. Szezepansik, and K. Wojciechowski. Random walk approach to the prob-
lem of impulse noise reduction. In K.-H. Franke, editor, 5. Workshop Farbbildverarbeitung,
pages 43–50, Ilmenau, 1999. Schriftenreihe des Zentrums für Bild- und Signalverar-
beitung e.V. Ilmenau.

5 Color Images

Fig. 6: Noisy original Fig. 7: Unfiltered Fig. 8: Impulse-Noise

Fig. 9: SNN Fig. 10: Median Fig. 11: Mean

Fig. 12: Input image (left), split and merge segmentation (center), CSC segmentation (right)

The test image is shown in Fig. 12. Impulse noise was added to that picture as shown in
Fig. 6.4

4We used programs provided by B. Smolka for that purpose, which were also used in [SSW99]. The authors
acnowledge that fruitful cooperation.

