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Abstract often independent of the specific camera calibrations, in

which case we speak ofitical motions.

We investigate the motions that lead to ambiguous Euclidean «c|assical’ autocalibration assumes a moving projective
scene reconstructions under several common calibration co camera with constant but unknown intrinsic parameters
straints, giving a complete description of sumfitical motions [4, 18, 1, 23, 17]. Sturm [19, 20] categorizes both the
for: (i) internally calibrated orthographic and perspective cam- intrinsic and some algorithm-specific critical motions for
eras; {i) intwo images, for cameras with unknown focal lengths, - this. The uniformity of the constraints makes this case rel-
either different or equal. One aim of the work was to evalu- atjvely simple to analyze. But it is also somewhat unreal-
ate the potential of modern algebraic geometry tools foorFig  jstic: jt is often reasonable, g.to assume that the constant
ously proving properties of vision algorithms, so we usealde  gkew actually vanishes (a stronger constraint), whereas
theoretic calculations as well as classical algebra anthgéy. focal length often varies between images (a weaker con-
We also present numerical experiments showing the effdcts o straint). Also, although he characterizes the degeneracies
near-critical configurations for the varying and fixed foleaigth fully, Sturm only manages to give a rather implicit de-
methods. scription of the corresponding critical motions. For prac-
Keywords: structure from motion, critical motions, autocalibra- tical purposes a more explicit description would be useful.

tion, algebraic geometry. This paper derives explicit critical motions for Eu-
clidean SFM under several simple two image ‘unknown
. focal length’ calibration constraints [6, 16, 24, 2, 9]. How-
1 Introduction ever, we start by giving a complete description of critical-
ity for knowncalibrations, for both perspective and ortho-
‘Structure from Motion’ (SFM) is the problem of recover-  graphic cameras in multiple images. Although this analy-
ing 3D scene geometry from several images. Using pro- sis does not result in any new ambiguities, it rules out the
jective image measurements, it is only possible to recoverpossibility of any further unknown ones.
structure, camera poses (‘motion’) and camerainternal pa- o ¢ocond goal of our work — one aspect of our Eu-
_rameters (‘cglibratio_n_s’) up to an unknpwn 3D pr Oie‘?“"' ropean project OMULI — was to investigate the use of
ity [8, 5.]‘ With additional scene, motion or callbrat_|on formal algebraic reasoning tools to deduce rigorous prop-
cpn_strgmts, one can reduce th.e a“_"'b'g!“ty oa EUCI'deanerties of vision algorithms. Sturm [19] relies mainly on
S|m|Iar|Fy [13, 4,12, 7].Auto_caI|brat|on IS th_e recovery geometric intuition. This is unreliable in our less symmet-
of Euclidean structure, motion and calibration using par- rical situation and we have used a mixture of geometry,

:!al (often qugh;gnve)kconstralnts lOfn thlel can:he ra:ocsll\;bra- classical algebra, and ideal-theoretic algebraic geometry
lons, €.g.vanishing skew or equalfocal Iengtns beween . 1ations (Grobner bases, ideal quotient, radical and

images. It is useful because cameras often obey such Conaecomposition) in MPLE and MACAULAY 2. However

straints rat_her. well, whereas — espeually for hand-held we will focus on giving geometric interpretations of our

cameras_ viewing unknown Scengs — motion or structure algebraic results whenever possible.

assumptions are often rather dubious. Unfortunately, most We consider onlv autocalibration degeneracies: scene

autocalibration methods have situations in which they fail q : y licit gl ded f :

or are exceptionally weak. Practically, it is important to an mt_)t|on constraints are EXp 'C'Fy excluded from con-
sideration. Also, for both projective and Euclidean re-

characterize and avoid theseétical sets. Criticality is X ; ) i
construction there are certain scene geometries for which

Submitted to CVPR'99. This work was supported by Esprit LFBjgct SFM is inhe_r?ntly ambiguous [12, :_1-51 11, 10]. We ex-
CUMULLI. [30/Nov/98] clude sucteritical surfaces by assuming that the scene is




generic enough to allow unambiguous recovery of projec-
tive structure. Hencegriticality occurs iff the calibration
constraints admit alternative Euclidean ‘interpretations’
of the given projective structure.

2 Background

Image projection: We assume familiarity with the mod-
ern projective formulation of vision geometry [3, 12, 23].
A perspective (pinhole) camerais modeled in homo-
geneous coordinates by the projection equatian P X
whereX = (X,Y,Z,W) T is a 3D world pointx = (x,y,2) T

is its 2D image andP is the 3x 4 camergrojection ma-
trix . In a Euclidean fram® can be decomposed

 (43)

into a rotationR and translationt encoding the camera’s
3D pose éxtrinsic parameters), and a 3x 3 upper trian-
gularcalibration matrix K encoding its internal geome-
try. Here, f is thefocal length, a the aspect ratig s the
skewand(up, Vo) theprincipal point .

Absolute Conic: Projective geometry encodes only
collinearity and incidence. Affine structure (parallelism)
is encoded projectively by singling oupéane at infinity
Mo of direction vectors or points at infinity, and Eu-
clidean (similarity) structure by a proper virtual conic on
Me. Thisabsolute conicQ., gives dot products between
direction vectors. Its dual, théual absolute conicQ.,,
gives those between plane normaf3;, is a 4x 4 sym-
metric rank 3 positive semidefinite contravariant matrix.
Qi =diag(1,1,1,0) in any Euclidean framell, is Q%'s
unigue null vectorQ; M. = 0. Q%’'s image projection is
wi, =PQLPT = KKT, a dual image conic that encodes
the camera calibrationK is recoverable fromwy, or its
dual image point conicx. = w}, ! by Cholesky factor-
ization. wf andw., are proper virtual (positive definite)

f fsw
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Figure 1 Intersecting the visual cones of two image conics sat-
isfying the Kruppa constraints generates a pair of 3D conics

The constraints may apply to individual image conieg)(
vanishing skews = 0), or link them as a groupe(g.equal

but unknown focal lengthd; = f for all i). Ambiguity
arises only if some non-absolute conic and its images sat-
isfy the constraints. We call such conjstential or false
absolute conics They correspond one-to-one with possi-
ble false Euclidean structures for the scerfe.denotes

a potential 3D absolute coni€* its dual, w its image
andw" its dual image. True absolute conics are denoted
QW:Q:O:U)O%(*);-

Affine camera: A camera whose optical plane coin-
cides withl is affine [14]. This is a good approxima-
tion for distant (and therefore large focal length) cameras
viewing small objects. All visual rays except thoselbg
become parallel and the dual image absolute caiide-
generates to rank 2. Aarthographic camera is a cali-
brated affine one and has, = diag(1,1,0).

Kruppa constraints: Given image conics in several
images, there may or may not be a 3D quadric having
them as image projections. Constraints which guaran-
tee this in two images are callddruppa constraints.

so long as the camera centre is finite. In calibrated imageAny proper image conic is tangent to exactly two epipo-

coordinateX = |, w} = ww = |. We often use the abbre-
viations (D)(I)AC for @ual)(l mage)AbsoluteConic.

False absolute conicsGiven only a 3D projective re-
construction derived from uncalibrated images, the true
absolute coni€. is not distinguished in any way from
any other proper virtual planar conic in projective space.
In fact, given any such con@*, it is easy to find a ‘recti-
fying’ projective transformation that converts it to the Eu-
clidean DAC formQ;, = diag1,1,1,0) and hence defines

a false Euclidean structure. To recover the true structure,

we need constraints that single out the ttig andlMe
from all possible ‘false’ ones. In this paper we will con-
strain only the camera intrinsic paramet&s or equiva-
lently the images of the true absolute coaif; = KiK;'.

lar lines (possibly complex and/or coincident). It turns
out [12, 3, 24] that there is a corresponding 3D quadric
iff the tangent lines in the two images are in epipolar cor-
respondence (see fig. 1). In fact, for non-coincident im-
age centres and properimage conics satisfying the Kruppa
constraints, there is always a linear one parameter family
of 3D dual quadrics with these images. This family con-
tains exactly two planar (rank 3) dual quadrics, and also
the rank 2 one defined by (the symmetric outer product
of) the two camera centres. If the image conics are vir-
tual, the planar 3D quadrics are too and hence can serve
as potential absolute conics. Thlistwo images with dis-
tinct finite centres, a pair of proper virtual conics defines

a potential 3D absolute conic iff it satisfies the Kruppa



constraints, and in this case it always defines exactly two In essence, Euclidean structure recovery in projective
potential 3D absolute coniés space is a matter of parametrizing all of the possible
The Kruppa constraints have several algebraic formula- proper virtual plane conics, then using the calibration con-
tions [12, 3, 24]. Below we will use the following:83 straints on their images to algebraically eliminate param-
symmetric rank 2 matrix version linking the two dual im- eters until only the unique true absolute conic remains.
age conics, the fundamental matrix and one epipole: More abstractly, ilC parametrizes the possible conics and
T v o et T X the camera geometries, the constraints cut out some al-
FrapF = [e]x o [e] gebraic variety in(C,X) space. A constraint set is use-
This vanishes when dotted with the epipole and only holds ful for Euclidean SFM only if this variety generically in-
up to scale, so it gives only two independent constraints. tersects the subspacks= Xo in one (or at most a few)
points(C, Xo), as each such intersection represents an al-
ternative Euclidean structure for the reconstruction from

3 Approach that camera geometry. A set of camera poséscritical
o . N ) for the constraints if it has exceptionallg.§. infinitely)
We want to explicitly characterize theritical motions many intersections.

(relative camera placements) for which particular calibra-
tion constraints are insufficient to uniquely determine Eu-
clidean 3D structure. We assume that projective structure
is available. Alternative Euclidean structures correspond
one-to-one with possible locations for the absolute conic
in the projective reconstruction. Any proper virtual pro-
jective plane conic is potentially absolute, so we look for
such conic) whose images also satisfy the given cali-
bration constraints. There is ambiguity iff more than one
such conic exists. We waruclideancritical motions,

so we work in a Euclidean frame where the true absolute
conicQ. has its standard coordinates.

Several general properties help to simplify the problem:
Calibration invariance: The calibration constraints we Potential absolute conics can be represented in several
use assert either equality between images, or that certairways. The following parametrizations have all proven rel-
parameters have their ‘calibrated’ valugk a,s,u,v) = atively tractable:

(1,1,0,0,0). They are satisfied for a set of cameras iff () choose a Euclidean frame in whig is diagonal, and
they are also satisfied when each image is premultiplied gxpress all camera poses w.r.t. this [19, 20]. This is sym-
by its true inverse calibratio; . Hence, we are free  metrical w.r.t. all the images and usually gives the simplest
to assume that each camera is actually calibrateek |. equations, but in a frame that changesisdoes. To
The only difference from the fully calibrated case is that fing explicit critical motions, one must revert to camera-
our weaker knowledge does not allow every false conic pased coordinates which is sometimes delicate. The fi-

with oy’ # | to be excluded outright. nite andM. cases must also be treated separately,
Rotation invariance: For known-calibrated cameras ¢+ _ diag(cy, Gz, Cs, C4) With eithercs or ¢ zero.

wi, =1, the image of any false AC must be identical to the ) ) , .
image of the true one which is invariant to camera rota- (1) Work in the first camera frame, encodisyf by its

tions. Hencegriticality depends only on the camera cen- 1St |mag*eco’{ a”d;,,sugpor“”g plangn, 1). Subsequent
tres, not on their orientationsMore generally, any cam- 'magesw =~ Hiw; H; are given by the Inter-image ho-
era rotation that leaves the calibration constraints intact is M09raphiesli = Ry +tin" where(Ri| ) is thei™ cam-
irrelevant. For example, arbitrary rotations about the opti- €@ POS€. The output s in the first camera frame and re-
cal axis and 180flips about any axis in the optical plane mains well-defmgd even if t_he conic tends to infinity, but
are irrelevant if(a, s) is either(1,0) or unconstrained, and e @lgebrarequired is significantly heavier.
(uo, Vo) is either(0,0) or unconstrained. (iii ) Parametriz&®* implicitly by two imageswj, w; sub-
Translation invariance: For true or false absolute con- jectto the Kruppa constraints. In the 2 image case this ap-
ics on the plane at infinity, translations are irrelevant so proach is both relatively simple and rigorous — as above,
criticality depends only on camera orientation. two proper virtual dual image conics satisfy the Kruppa
1with more than two images the situation is more delicate &ed t Con_StraintS iff they d?ﬁne a (pa_ir of) corresponding 3D pq-
pairwise Kruppa constraints aret always sufficient to guarantee the  tential absolute conics — but it does not extend so easily
existence of a corresponding 3D quadric. to multiple images.

For elimination calculations, algebraic varieties are de-
scribed byideals (the sets of polynomials that vanish on
them), which in turn are characterized by certain ‘ex-
haustive’ polynomial sets calle@robner bases Va-
rieties can also balecomposedinto irreducible com-
ponents — a generalization of polynomial factoriza-
tion that we often use as an aid to interpreting re-
sults. These are all ‘standard’ algebraic geometry calcu-
lations available in specialized tools like AdauLAY 2
(http://www.math.uiuc.edu/Macaulay?2/) antNSULAR,
and in slightly less powerful form in general systems like
MAPLE.




4 Calibrated Cameras ones identified), Euclidean structure can always be recov-
. _ . ered uniquely. With only rs 2 distinct centres there is a
We start with fully calibrated perspective cameras: one parameter family of possible structures correspond-

Theorem 4.1 Given projective structure and calibrated ing to the bas relief ambiguity [11, 10, 15, 22].

perspective cameras at t 3 distinct finite camera  Proof: Choose coordinates in which camera 1 has orienta-
centres, Euclidean structure can always be recoveredtion R; = 1. Orthographic and affine cameras h&lg as
uniquely. With m= 2 distinct centres there is always ex- their optical planes, sA.. is known and any potential AC

actly a 2-fold ambiguity corresponding to a ‘twisted pair'. must lie onit. Potential DACs have the fo@i = (02 8)

Proof: The camera orientations are irrelevant because anyfor symmetric 3x 3TC- The orthographic calibration con-
false absolute conic has the same rotation invariantimagesstraintis that)CU " ~ diag(1, 1) whereU is the first two

as the true one. Assuming thit= | does not change OWs ofR. Inimage 1 this give€1; —Co2 = C12=0
the critical motions. Calibrated cameras never admit false nd two analogous constraints in image 2. Representing
absolute conics offil,, as the (known) visual cone of Rz by a quaterniomg and eliminatingCy; between these
each camera interseck, in a unique conic, which is ~ constraints gives

the_ true AC. IG|ven a finite false AC, work in a frame in (R +2) (2 +3) ((Go01+0203)C1s + (oo — ) Co3) =0
which it is diagonal and supported on the= 0 plane: i . o .

Q* = diag(cy,c2,0,c4). Since the cameras are calibrated This must hold for any motion satisfying the constraints.
and their orientations are irrelevant, the conic projection 'Ne first two terms correspond to optical axis rotations
in each camera becomés| —t)Q* (1] - )T ~ 1. Itis and 180 flips that leave the optical centre fixed, and are
easy to show that the only solutions to this €& ~ therefore excluded by the statement. Solving @in
diag1,1,0,1/7%) andty = (0,0,+2)T for somez > 0. terms ofq using the final term gives a linear family of so-
Hence, ambiguity implies that there are at most two cam- lutionsC = all +B(010; + 0207 ) whereo = (0,0,1)"

era centres, and the false AC is a circle of imaginary radius 1d0z = (the third row ofR) are the optical centres, and
iz, centred in the plane bisecting the two centres. (a,B) are arbitrary parameters. Givenand any false

This two-fold ambiguity corresponds exactly to the DAC C# 1, we can uniquely recover the family and its
well-knowntwisted pair duality [11, 10, 15], where one WO camera centres (the three rank 2 members of the fam-

of the cameras is rotated by I8@round the axis join- Iy €ach decompose into point pairs, but only one of these
ing their two centres. The improper self-inverse projective IS "eal). Since each family encodes its centres, families
transformation with distinct centres never coincide. By linearity, they
therefore intersect in at most one conic. All families in-
3988 tersect in the true DAGC = I, so no other intersection
T= 59 1‘/325 is possible.l.e. false structures are impossible for ortho-
graphic images fron»> 3 distinct centres. That the one
interchanges the true and false DAGQ*TT ~ Q parameter ambiguity for two cameras corresponds to the
and takes the projection matric& =Ry (| ‘ _ t:t) bas relief ‘flattening’ is well known [11, 10, 15, 22]
to P.T"' = P_ and P,T"! = —P,U where U = Two image orthographic absolute conic geometry is

diag—1,-1,1,1) is a 180 twisted pair rotation about easily understood in terms of the Kruppa constraints.
the z axis. The ‘twist' T represents a very strong pro- These are well behaved as the cameras tend to infinity, and
jective deformation which cuts the scene in half, moving hence still define a one parameter family of dual quadrics.
the plane between the cameras to infinity. By consider- However as the cameras recede and their focal length in-
ing twistedvs. non-twisted optical ray intersections, one creases, their DIACs become progressively flatter and this
can also show that it reverses the relative signs of the pro-constrains the 3D family to be flatter too, until in the limit
jective depths [21] of each correspondereg,as recov-  all members of the family become infinitely flat rank 3
ered by the equatioly F X1 = A2 (eAX2). Moreover,any disk quadrics squashed orifi,.

proper virtual Kruppa geometry (fig. 1) has such a ‘twisted

pair’ projective involution symmetry, scalibrated or not,

two image Euclidean structures always occur in twisted D FOcal Lengths from 2 Images

pairs. However the twist is a simple 180otation only

for axisymmetric DIACS. For two cameras, projective geometry is encapsulated in
the 7 d.o.f. fundamental matrix, and Euclidean geometry
Theorem 4.2 Given projective structure and » 3 in the 5 d.o.f. essential matrix. Hence, from 2 projec-

scaled orthographic cameras with distinct projective cen- tive images we might hope to estimate Euclidean struc-
tres (.e. viewing directions, with diametrically opposite ture plus two additional calibration parameters. Hartley



[6] gave a method for the case where the only unknown systemMe,3(1) (f2,(af)?,1)T = 0, which has a solution
calibration parameters are the focal lengths of the two iff the determinant of any of its nontrivial 8 3 minors

cameras. This was later elaborated by Newsaia.[16], vanishes — a single cubic jij giving at most 3 solutions
and Zeller & Faugeras and Bougnoux [24, 2]. Hippisley- for, f, a.
Cox & Porrill [9] give a related method for equal but un- Now consider the critical motions of the above meth-

known focal lengths and aspect ratios. All of these meth- ods. Assume finite, f andt # 0.

ods are Kruppa-based. We will give a unified presentation

and derive the critical motions for the Hartley-Newsam- 'h€orem 5.1 For the known a, unequal f problem, the

Bougnoux (unequal) and Newsam (equdl) case. critical motions f_or th_e Hartley, NeV\_/sam and Bougnoux
Suppose that we can write all pairs of dual image con- m_ethods are all identical and intrinsic to any me_thod f(_)r

ics satisfying the calibration constraints as a parametric this problem. In fact, th,ey are exactly thTe two evident sin-

family (wj(A), w(A)). As they already obey the calibra- gularities of Bougnoux equationsi)( p, Fp. = 0 and

tion constraints, pairs of nonsingular conics in this family (1) P2 FD[€]xp1=0.

represent possible 3D absolute conics iff they also satisfy

the Kruppa constraints; " wi(A)F = ple]x wi(A)[e]}

for some scalap. Solving these equations far 1 gives

the possible image DIACs and hence 3D absolute conics

If w(A) are linear in their parameteks the system is bi-

linearinA, . In particular, for zero skew and known prin-

cipal pointp;, w’ () is linear inf2 and(a; f;)2. For known

a; and unconstrainef], this gives fully linear equations in

uf2, pandf:

Case () occurs when the principal points are in epipolar
correspondencsd,e. the optical axes intersect.ii) oc-
curs whenever the poirid [e]x p1 on the line at infinity
in the first camera lies on the epipolar lif€ p, of the
other principal point. This condition is actually symmet-
ric between the images. i = p, = (0,0,1) T, (i) occurs
wheneverF T p, contains the direction orthogonal to the
epipolar line[e]« p1, i.e. whenever the epipolar plane of
optical axisp; is orthogonalto that of axisp, [16]. If ei-
ther principal point coincides with an epipole, boithgnd
Fr (f22D+ png) F = [elx ((“ f22) D+ “plpI) [el< (ii) apply and a second order singularity occurs.

where D = diag(1,1,0). Writing the 3x 3 symmetric ~ Theorem 5.2 For the known a equal f problem, there is
rank 2 matricesF" DF, ..., [e]lxp1p{ [€]. as 6 vec-  aunique solution for f everywhere outside the critical va-
tors gives a 6< 4 rank 3 homogeneous linear system riety of the unequal f method. On this variety there are
Mexa (2,1, uf2, w)T = 0. This can easily be solved for generically exactly two solutions corresponding to the two
W f1, f2. There are multiple solutions fdr — and hence  roots of the single surviving quadratic in p. Both solutions
ambiguous Euclidean structures — iff the coefficient ma- may be real, or one may be imaginary?(€ 0). There are
trix Mey4 has rank< 2. We will study this case below. more than two real solutions (in fact any f is possible)
Newsamet.al. [16] use the SVD of to project 3 inde-  only on the following subvarieties of the corresponding-
pendent rows out of this system. Bougnoux [2] uses prop- principal-point varietyp] Fp; = 0, where(R(q),t) is the
erties of fundamental matrices to solve it in closed form:  relative pose of the second camera with quatermjon

TED[el, TE (i) ta02—t2G3+1t10o = 0 and o —tagzs —taGo =0

i =- (P2 T L P (P Py (i) ta01+t202 +t303 =0 and kg1 —t10z +t3go = 0
p, FTDFD[e]x p1 (i) g=0and =0
I the focal lengths are known to be equel= f, = f,the ~ (V) G3=0and =0

system takes the foriM 6..2(1) (flz) = 0 whereMeg2(H) Each of these subvarieties has codimension 2 in the space
is linear inp and generically has rank 2. This system has of all motions, and codimension 1 in the corresponding
a nontrivial solution iff all of its 2« 2 minors vanish —a  principal point variety. i{i) and {v) correspond to paral-
set of quadratic constraints @n If the focal lengths re-  lel optical axes (axis rotations, and I8flips about any
ally are equal, at most two of these quadratics are linearly axis in the optical plane, plus arbitrary translationii.) (
independent and we can generically eliminateptheerm requires both planar motiog-t = 0 and corresponding
between them, solve linearly fqr, substitute intdVigy» principal points. The intersection of these two varieties
(which then has rank 1) and solve uniquely fdt. This has two components:a) arbitrary planar motions when
fails iff all of the quadratics are:i proportional — in the optical axes lie in the plane.§.a driving car with
which case the single quadratic gives exactly two possibleforwards-pointing camera), and)(‘turntable rotations’
solutions forpandf ; (ii) zero — in which cas#gy2 =0 about the intersection point of the two optical axes, when
and anyf is possible. We will return to these cases below. these do not lie in the plane. Subvariety €orresponds
Finally (c.f.[9]), equal but unknown aspect ratios and fo- to case ). Case &) has two solutions fof but is generi-
cal lengthsay =ap =4, fy = fo = f, give a6x 3rank 3 cally nonsingular.
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Figure 2 Relative errors in quasi-linedrand bundle-based 3D  Figure 3 Errors in quasi-linear and bundle-basédand 3D
structurevs.camera elevation, for unequal and eqtiahethods. structure with unknown and knowh for equalf methods.

The above results are straightforward but fairly heavy to as above, Euclidean bundle adjustment is applied to get
prove using the automated algebraic tools we are study-Euclidean structure, and the resulting 3D error is calcu-
ing here. (Newsanet.al. [16] — a reference we were lated by Euclidean alignment. Means over 100 trials are
unaware of while completing this work — give a fairly shown. The Bougnoux and Newsam uneqtiahethods
simple SVD-based proof for their unequél method, give essentially identical results: only the latter is plotted.
but an incomplete result for the equélone). Since In the first experiment, cameras &t2,—2,0) and
we were initially sceptical that the general Kruppa ap- (2,—2,0) focus on the origin. Their elevation angles are
proach and Bougnoux’ detailed manipulations [2] intro- then varied, upwards for the left camera and downwards
duced no spurious ambiguities, we proved the resultsfor the right one, so that their optical axes are skewed and
twice: once in a fundamental matrix / Kruppa constraint no longer meet. Quasi-linear focal lengths and bundle ad-
based parametrization, and once in an image conic /justed Euclidean structures are estimated, both with and
plane homography based one. In each case, given thevithout the equalf constraint. Fig. 2 shows the result-
parametrization we can more or less mechanically calcu-ing RMS errors as a function of elevation angle. At zero
late and decompose the variety on which the constraintselevation, the optical axes intersect and the cameras are
degenerate using McAULAY 2. The calculations are  equidistant from this intersection, so both equal and un-
‘routine’, although the homography based ones are nearequal f methods are critical. This can be seen clearly
the limits of the current system. in the graphs. The unequélmethod also breaks down

when the epipolar planes of the optical axes become or-
thogonal at around 35elevation — the second compo-
6 Experiments nent of the unequal critical variety, but non-critical for
the equalf method. For geometries more than about 5-
We have performed some synthetic experiments to evalu-10° from criticality, the unequal and equélbundles both
ate the effects of critical motions. We will focus on the give results very similar to the optimal 3D structure ob-
guestion of how far from critical two cameras must be to tained withknowncalibration.
get reasonable estimates of focal length and Euclidean 3D In the second experiment, cameragafl, —2,0) and
structure. The first experiment studies the uneduzdse, (1,—2,0) focus on the origin, then the left camera is ro-
the second the equdl one. For both experiments, two tated so that its optical axis sweeps the world plase0.
unit focal length perspective cameras view 25 points dis- This is always critical for the unequdl method and the
tributed uniformly within the unit sphere. Gaussian noise equalf one always gives two possible solutions. But in
of 1 pixel standard deviation was added to the 51212 these trials, one is always tiny or imaginary and can safely
images. For each pose, an optimal projective structure andbe discarded. In fig. 3, the upper graph compares the
fundamental matrix is estimated by projective bundle ad- quasi-linear equal result with that obtained after optimal
justment, the focal length(s) are estimated quasi-linearly equalf bundle adjustment. The lower graph compares the



structures obtained with equél and known-calibration
bundle adjustments. At rotation angles of aroun2i7°
the camera axes are parallel, and at aro42@ their in-
tersection is equidistant from both cameras. These are in- [7]
trinsic equalf degeneracies, clearly visible in the graphs.
Moving about 5-10from criticality suffices to ensure rea-
sonably accurate focal lengths and Euclidean structure.

v

Conclusions

We have explicitly described the critical motions for a
number of simple calibration constraints, ranging from [10]
unknown focal lengths to fully calibrated cameras. Nu-
merical experiments studying the effects of near-critical
configurations were also presented.

One of our aims was to see what could be achieved
in vision with formal ideal-theoretic calculations.

It is

clear that although automated tools for thisA&huLAY

2, SNGULAR, CoCoA) have progressed significantly in
recent years, they can not yet replace geometric intuition. [13]
Even when a calculation terminates — and the ‘ceiling’
for this is still frustratingly low — the geometric interpre-
tation of the results remains a difficult ‘inverse problem’. [14]
However when it comes to rigorously proving formal
properties of systems of equations we have found these

tools a powerful computational aid and a good deal more 15

reliable than ‘proof by intuition’. Hence, we feel that these
methods do have a place in vision, particularly for study-
ing singularities of simple algebraic (auto)calibration and
camera pose methods.

We are currently investigating critical motions where
even less is known about the calibratierg.cameras hav-
ing zero skew and unit aspect ratio, but with the other pa-
rameters unknown and possibly varying.
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